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1 Executive summary

This report gives a brief overview of the origin of elliptic problems in plasma

physics models, and the tokamak geometry they are solved in. Drawing mainly

on experience with BOUT++, approaches to testing of both correctness and

performance, and the pros and cons of them are discussed. A series of geometries

which can be used for testing are described, starting with slabs of increasing

complexity, and then tokamak geometries. Finally two simple time-dependent

sets of equations are suggested, one for the shear Alfvèn wave, and the other

the Geodesic Acoustic Wave (GAM). These provide ways to test the long-term

numerical stability of the elliptic solver, together with the boundary conditions

parallel and perpendicular to the magnetic field.

2 Elliptic solvers in plasma equations

Elliptic problems appear in plasma equations typically in the electromagnetic

fields, in the limit where the displacement current is neglected and light speed

goes to infinity. Two common components are solving for the electrostatic

potential φ, and the parallel component of the vector potential A|| = b · A
where b = B/ |B| is the unit vector along the magnetic field B.

The electrostatic potential is calculated from a fluid vorticity ω, or analogously

in gyro-fluid and gyro-kinetic models, from ion and gyro-centre density differ-

ences. These give rise to an equation of the form

∇ ·
( n

B2
∇⊥φ

)
= ω (1)

where n is the plasma density, which varies in time and space. This system is

often simplified by replacing n by a constant. By analogy with buoyancy-driven

flows, this is called the Boussinesq approximation. The operator∇⊥ = ∇−bb·∇
is the component of the gradient perpendicular to the magnetic field. It arises

because the ion polarisation drift, which ultimately gives rise to ω, depends on
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the electric field perpendicular to the magnetic field.

The electric field parallel to the magnetic field is determined by quite different

physics, being mainly determined by the electron dynamics rather than the ions.

The electromagnetic potential A|| = b · A is related to the current along the

magnetic field:

B = ∇×A

J =
1

µ0
∇×B

=
1

µ0
∇×∇×A

=
1

µ0

[
∇ (∇ ·A)−∇2A

]
The Coulomb gauge is chosen, setting∇·A = 0. The current along the magnetic

field is therefore

J|| = b · J = − 1

µ0
b · ∇2A (2)

This elliptic operator is slightly different from equation 1 above, but often the

following approximation is used:

b · ∇2A ' ∇ ·
(
∇A||

)
(3)

In addition derivatives of A|| along the magnetic field are often neglected, so

that the same operator as equation 1 can be used.

The potential A|| appears in models through the perturbed magnetic field

δB = ∇×
(
bA||

)
(4)

It also appears in the component of the electric field parallel to the magnetic

field:

E|| = b ·E = −b · ∇φ−
∂A||

∂t
(5)

which appears in an Ohm’s law equation for the current along the magnetic

field.
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Figure 1: Domain perpendicular to the magnetic field in a torus. For illustration
only. Left: A part of the domain; Right: Space filling after many toroidal turns.

2.1 Embedded domain

The elliptic equation to be solved for φ in equation 1 may appear to be a 2D

problem, because it depends on the component of the electric field perpendicular

to the magnetic field. Indeed if the magnetic field were constant in space then

this would be a 2D system. In a tokamak however the magnetic field varies in

space, and generally has components in both toroidal and poloidal directions.

This means that the 2D domain does not in general close on itself, but forms a

spiral which fills the toroidal volume. This is illustrated in figure 1. In many

situations the tilt of the 2D plane in the toroidal direction can be neglected,

using the fact that variation along the magnetic field (which is predominantly

toroidal) is generally small. Some important exceptions are:

• Low-n (toroidal mode number) instabilities and waves. For these the

assumption that parallel gradients are small relative to perpendicular can

break down, and the corrections become important.

• In low aspect-ratio (“spherical“) tokamaks, the pitch of the magnetic field

can become quite large: At the outboard midplane of MAST and MAST-

U, the pitch can be nearly 45o.

In either of these cases solving for the potential may require a 3D solve, rather

than a decoupled set of 2D solves. It seems likely that in most cases the correc-

tions should be small, and that 2D solves would be a good preconditioner for

solving the full 3D problem.

4



3 Tests of elliptic solvers

As for many components of scientific high performance codes, tests need to

address both the correctness and performance of the implementation.

3.1 Correctness tests

In all correctness tests it is important to define a figure of merit. This should be

quantitative, and sufficiently well defined that it can be automated. This enables

a pass/fail criterion to be established, and the test integrated into continuous

integration workflows.

It is usually useful to combine both a measure of a global average error (such as

root-mean-square, l2 norm), and a measure which is sensitive to large localised

errors (such as maximum absolute error, l∞ norm). This enables both the

overall accuracy of the scheme to be assessed, and also helps identify problems

with specific areas of the mesh such as boundaries.

Round-trip tests: The simplest tests to implement are those which use a

forward operator to check the accuracy of an inversion method. This type of

test is often fast, and useful as check while developing the code. There are

some subtleties in this which can lead to spurious issues: The forward operator

must use the exact same discretisation as the inverse operator being tested. The

forward operator itself should also be checked for correctness. Manual inspection

of a forward operator is usually more straightforward than an inverse operator,

but is not a substitute for an actual quantitative test.

Analytic solution tests: In simple geometries (such as slabs), and for partic-

ular choices of the density n in equation 1, an analytic solution can be found.

In these cases the numerical solution can be compared against the analytic, to

calculate the error. To properly check the method, a convergence test should

be performed, using multiple grids with different resolutions, and the order of

convergence compared against the theoretical order of the method used. Testing

the order of convergence in this way can be challenging in some cases: Depend-

ing on the system, it can be that numerical round-off begins to affect the error,

before the error enters the asymptotic regime.
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Manufactured solution tests: Simple analytic tests have the benefit of being

easy to implement, but are typically limited in their thoroughness: In a slab, for

example, many metric tensor components are zero which in a realistic simulation

would be non-zero. In that case the slab test is not able to tell whether the

parts of the code which depend on those metric components are implemented

correctly. The challenge for testing is that realistic cases which exercise all parts

of the code typically do not have analytic solutions (otherwise there would be

little point in using the code). Fortunately since the system to be tested is

relatively straightforward, an analytic solution can be chosen (manufactured)

for φ, differentiated analytically to calculate the ω function. Values for ω can

then be calculated on a grid, inverted and compared to the original expression.

As part of this, a non-trivial geometry needs to be generated analytically. This

need not necessarily be of the same form as real simulations (e.g. a tokamak),

provided that it exercises the same parts of the code (preferably, all the code).

3.2 Performance tests

The elliptic solver is often the main bottleneck to parallel scaling of plasma

physics codes, certainly in existing codes such as BOUT++. This is because it

involves global communications, or at least communications over a large region

of the domain, and this inversion is done frequently as part of the time advance.

Elliptic solvers are critical to many areas of scientific computing, certainly not

unique to plasma physics. Experience with BOUT++ however, has been that

the plasma use case is different from others in ways which are important for

performance: Libraries are often optimised for solving very large systems of

equations (millions of d.o.f), for applications where a relatively small number

of such large systems may need to be solved. In typical plasma turbulence

simulations, however, the size of each system may be relatively small (104 d.o.f

for a 2D system; 100s of degrees of freedom per solve if decomposed into 1D

systems), but a turbulence simulation may require 105 or 106 such solves. Since

the systems to be solved are part of the time evolution, these 105 or 106 solves are

essentially serial unless parallel-in-time techniques are used, and must be solved

efficiently. Since the quantity being solved for is evolving in time, solutions tend

to be close to previous solutions, and so iterative schemes tend to be effective.
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It is more important that performance tests use problems which are close to

those which will be solved in production systems, than it is for correctness

tests. Different problem sizes hit different thresholds in cache sizes, message

sizes, work intensity, network capacity etc. Problems in slab geometry, which

are simpler to solve than realistic situations, may have different convergence

characteristics, and not exercise the preconditioner, changing the proportion of

time spent in parts of the solver. As discussed above, a characteristic of typical

problems is that they are solving systems which start from a generally good

initial guess, the value at the previous time step. This should be taken into

account in the performance testing.

Specific solution algorithms, their scaling, theoretical and measured perfor-

mance are not discussed in this report beyond the comments above. These

will be addressed in task 1.2 and 1.3.

4 Tests in slab geometries

A series of slab simulations of gradually increasing complexity can be used in

build a code up step-by-step, and help to identify problems early before moving

on to more complex systems.

• A 2D domain, with fixed (Dirichlet) boundary conditions on all sides, and

the magnetic field directed perpendicular to the domain. This is a simple

problem which is probably included as an example in most finite difference

or finite element packages.

• The magnetic field vector b is not perpendicular to the plane the potential

φ is being solved on. This introduces some non-zero metric terms, and can

be made more challenging by varying the angle of the magnetic field with

position.

• The boundaries can be modified so that the mesh is periodic in one di-

rection, but continues to have boundaries in the other. In a tokamak the

periodic direction would correspond to the poloidal or toroidal directions

(depending on the coordinate system chosen), and the other direction to

the radial direction from inside (core) to outside (edge).
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• A variation on the above is to introduce a corner into the problem, so that

the domain is periodic over part of the boundary (in the core), but has

fixed boundaries over the rest of the boundary (the scrape-off layer).

4.1 Slab with a pole

It was found in developing a BOUT++ implementation, that the above slab ge-

ometries were not sufficiently challenging to be able to exercise a GPU precon-

ditioner (Hypre). To make the problem more challenging, and closer to realistic

tokamak geometry, a test case was developed which has a pole in the coordinate

system close to (but outside) the mesh edge. This mimics the singularity at the

X-point which occurs in field-aligned coordinates.

In field-aligned coordinates one of the coordinates is aligned with the magnetic

field. In this case the y coordinate basis vector ey is aligned to B, so therefore

the gradients of the x and z coordinates are perpendicular to B. A choice used

in BOUT++ and other plasma simulation codes is a Clebsch coordinate system,

characterised by B = ∇z × ∇x. For details see the BOUT++ manual section

on field-aligned coordinates [1].

The radius from a pole, r is used to set non-zero metric tensor components

gxx = ex · ex = 1/r2 (6)

gyy = ey · ey = 1 + 1/r2 (7)

gzz = ez · ez = 1 (8)

gyz = ey · ez = 1/r (9)

and so coordinate Jacobian J = 1/r.

In BOUT++ the input file for this configuration is shown in figure 2.

5 Tests in tokamak geometries

These tests approach realistic production cases, introducing a toroidal geometry

with sheared magnetic field in doubly-periodic domains, and then by introducing
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1 # Mesh size

2 Lx = 10

3 Ly = 10

4

5 # Number of grid cells

6 nx = 20

7 ny = 32

8

9 # mesh spacing

10 dx = Lx / (nx - 4) # Account for 4 guard cells in X

11 dy = Ly / ny

12

13 # Location of the pole in the coordinates

14 pole_x = Lx + 1.0

15 pole_y = Ly + 1.0

16

17 # Distance from the pole

18 # Note here "x" is normalised to [0,1] on the grid; "y" normalised

to [0,2*pi]

19 r = sqrt(( pole_x - x * Lx)^2 + (pole_y - y * Ly / (2*pi))^2)

20

21 # This mimics the metric tensor close to the X-point in a tokamak

22 # by here setting poloidal field Bp ~ r

23

24 g11 = r^2

25 g22 = 1

26 g33 = 1 + 1 / r^2

27 g12 = 0

28 g13 = 0

29 g23 = -1/r

30

31 J = 1 / r

32

33 g_11 = 1 / r^2

34 g_22 = 1 + 1 / r^2

35 g_33 = 1

36 g_12 = 0

37 g_13 = 0

38 g_23 = 1 / r

Figure 2: Part of a BOUT++ input file for a slab with a pole. See BOUT++
manual for details of the code [2].

an X-point into the domain. For each geometry two kinds of tests can be

performed:

• A single solve (for correctness), or small number of solves with slowly

varying input (for performance).

• Time-evolving a relatively simple system of equations, in which the elliptic

solve is a key part. The purpose of this is to identify potential issues with
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slowly accumulating errors. These errors may be below tolerance in a

single solve, but interact with the time evolving system in a way which

leads to numerical instability.

5.1 Tokamak geometries

Tokamak grids are typically generated from a numerical equilibrium, and typ-

ically those are provided from experiment at low resolution (e.g. 64x64 for

the whole poloidal cross-section). Higher resolution inputs can be generated

using a free boundary Grad-Shafranov solver, but generating a sequence of sim-

ulation meshes from Grad-Shafranov solutions for a convergence test remains

challenging. Not conceptually difficult, but the capability to do it has not been

implemented and would require some considerable effort to do in a rigorous way.

For convergence tests, the easiest approach would seem to be to use an analytic

solution, either to the Grad-Shafranov solution itself, or a simplified solution

which is not a Grad-Shafranov solution but shares important characteristics

(such as an X-point).

5.1.1 Numerical tokamak equilibria

If an analytic equilibrium and convergence to small tolerances is not required,

then numerical solutions are available for many different tokamaks, both real

and conceptual. A common starting point is circular cross-section geometries,

which don’t have an X-point. Examples include the ‘cbm18’ series of equilibria

generated by P.Snyder (GA). Alternatively an equilibrium can be generated by

a free-boundary equilibrium code such as EFIT, EFIT++, Helena, or FreeGS[3].

5.1.2 Analytic tokamak equilibria

The Grad-Shafranov equation is a nonlinear partial differential equation, and

so finding analytic solutions is non-trivial. Some have however been found:

The Soloviev solutions are widely used, but only include closed flux surfaces

(the plasma core), not the separatrix and scrape-off layer. In addition these
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solutions typically have jumps or current sheets at the edge which make them

problematic to extend into the vacuum

Cerfon & Freidberg found a set of analytic equilibria which include a separatrix

and vacuum region outside the plasma [4]. That algorithm has been imple-

mented in Python by John Omotani [5]. This could be used as input to a mesh

generator for convergence studies.

6 Time-evolving systems

These are simple systems of equations which are intended to be relatively quick

to simulate, but which can help identify problems with numerical methods or

boundary conditions at an early stage.

Since we wish to identify numerical instabilities and error accumulation, we

choose systems which are stable: These systems of equations support waves

which are either stable or damped. Any growing mode can therefore be identified

as a numerical artefact.

6.1 Shear Alfvèn wave

This is an electromagnetic wave along the magnetic field. Due to the variation

of the magnetic field in a tokamak, there is a radial (across the field) phase

velocity, and an initially coherent mode will tend to mix and dissipate due to

the model and numerical damping.

The set of equations evolves the vorticity U and parallel vector potential A||. It

appears in normalised form as:

∂U

∂t
= ∇||j|| (10)

∂A||

∂t
= −∂||φ− ηj|| + µ||e∇2

||j|| (11)

j|| = − 2

βe
∇2
⊥A|| (12)

∇2
⊥φ = U (13)
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where ∇||f = ∇ · (bf) is the divergence of a flow along the magnetic field, and

∂|| = b · ∇ is the gradient along the magnetic field. The factor βe is the ratio

of electron pressure to magnetic pressure, and is typically around 10−4 in the

plasma edge. Dissipation is included in the form of resistivity η and parallel

electron viscosity µ||e. The resistivity would typically be small (< 10−2), and

electron viscosity much smaller than that (usually neglected).

6.1.1 Energy conservation

The equations for this wave contain only energy sinks (dissipation), and so

oscillations can only grow if there are sources of energy from either numerical

instability or boundary fluxes. To calculate the energy in the system, multiply

the vorticity equation by φ and the A|| equation by j||, then integrate over the

simulation volume.

φU = φ∇ · ∇⊥φ = ∇ · (φ∇⊥φ)−∇φ · ∇⊥φ︸ ︷︷ ︸
|∇⊥φ|2

(14)

∂

∂t
(φU) = φ

∂U

∂t
+ U

∂φ

∂t
(15)

= φ∇||j|| +∇2
⊥φ

∂φ

∂t
(16)

∇2
⊥φ

∂φ

∂t
= ∇ ·

(
∂φ

∂t
∇⊥φ

)
−∇∂φ

∂t
· ∇⊥φ︸ ︷︷ ︸

1
2

∂
∂t (|∇⊥φ|2)

(17)

and so

∂

∂t

[
∇ · (φ∇⊥φ)− |∇⊥φ|2

]
= φ∇||j|| +∇ ·

(
∂φ

∂t
∇⊥φ

)
− 1

2

∂

∂t

(
|∇⊥φ|2

)
(18)

Putting these together gives an equation for the evolution of the kinetic energy

in the E×B motion:

1

2

∂

∂t

(
|∇⊥φ|2

)
= −φ∇||j|| +∇ ·

(
φ∇⊥

∂φ

∂t

)
(19)

On the left is the energy in the E×B motion, since the factors of ion mass and

density are constant here, and have been normalised out. The first term on the

right is a transfer of energy from electromagnetic energy, and the second term is
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a flux of energy from the boundary. Integrating this equation over a volume, the

divergence term on the right will become a surface integral over the boundary:

∂

∂t

∫
V

1

2
|∇⊥φ|2 dV = −

∫
V

φ∇||j||dV +

∮
S

φ∇⊥
∂φ

∂t
· dS (20)

and so the flux of energy through the boundary is zero if φ is zero, or if the

component of ∇⊥φ normal to the boundary is constant in time.

Similarly, the A|| equation gives:

j||A|| =
2

βe
A||∇2

⊥A|| =
2

βe
∇ ·
(
A||∇⊥A||

)
− 2

βe
∇A|| · ∇⊥A||︸ ︷︷ ︸
|∇⊥A|||2

(21)

∂

∂t

(
j||A||

)
= j||

∂A||

∂t
+A||

∂j||

∂t
(22)

= j||
(
∂||φ+ ηj||

)
+

2

βe
A||∇ ·

(
∇⊥

∂A||

∂t

)
(23)

= j||∂||φ+ ηj2|| +
2

βe
∇ ·
(
A||∇⊥

∂A||

∂t

)
− 2

βe

1

2

∂

∂t

∣∣∇⊥A||∣∣2(24)

and so:

∂

∂t

[
2

βe
∇ ·
(
A||∇⊥A||

)
− 2

βe

∣∣∇⊥A||∣∣2] = j||∂||φ+ηj2||+
2

βe
∇·
(
A||∇⊥

∂A||

∂t

)
− 2

βe

1

2

∂

∂t

∣∣∇⊥A||∣∣2
(25)

1

βe

∂

∂t

∣∣∇⊥A||∣∣2 = −j||∂||φ− ηj2|| +
2

βe
∇ ·
(
∂A||

∂t
∇⊥A||

)
(26)

Integrating over the volume:

∂

∂t

∫
V

1

βe

∣∣∇⊥A||∣∣2 dV = −
∫
V

j||∂||φdV −
∫
V

ηj2||dV +

∮
S

2

βe

∂A||

∂t
∇⊥A|| · dS(27)

Like the E×B energy equation (eq 20), the flux of energy through the boundary

is zero if A|| = const or ∇⊥A|| · S = 0.

The exchange of energy between E×B and electromagnetic forms is through
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φ∇||j|| and j||∂||φ. These should balance for energy to be conserved:

φ∇||j|| = φ∇ ·
(
bj||
)

= ∇ ·
(
bφj||

)
− j|| b · ∇φ︸ ︷︷ ︸

∂||φ

(28)

Hence there are no fluxes of energy through the parallel boundary if j|| or φ are

zero at the boundary.

From this we conclude:

• φ = 0 or ∇⊥φ · S = const for conservation of energy

• A|| = const or ∇⊥A|| · S = 0 for conservation of energy

• There is no requirement that the form of ∇2
⊥ in vorticity and j|| equations

is the same, since the only term which is common to both equations is

φ∇||j|| ↔ j||∂||φ

6.2 Geodesic Acoustic Wave

The Geodesic Acoustic Mode (GAM) is an axisymmetric (n = 0) sound wave

which occurs through oscillations in the radial current. It involves an up-down

(m = 1) asymmetry in the density, together with a potential which is approx-

imately constant on flux surfaces (m = 0). It can arise from a simple system

of equations, but because it involves currents across the magnetic field, it exer-

cises the radial boundary conditions. If an annulus is simulated, so that there

is a boundary to the inner core, then treatment of that core boundary can be

important, to ensure that there is no net current, or that radial boundary layers

don’t form.

6.2.1 Simplified model

The GAM oscillation arises because radial gradients of zonal (n = 0, m ' 0)

electrostatic potential causes E×B advection of density in the poloidal direction.

Because the magnetic field strength varies between inboard and outboard sides,

E×B advection is faster on the outboard side than the inboard. This leads to

rarefaction and compression at the top and bottom of the device (depending
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on flow direction). The change in pressure at top and bottom of the device

alters the diamagnetic current across the magnetic field, which then modifies

the electrostatic potential.

We require equations for current continuity and density n:

∇ ·
[
min

B2

∂∇⊥φ
∂t

]
= ∇ ·

[
p∇×

(
b

B

)]
+∇||j|| (29)

∂n

∂t
= −∇ ·

[
n

b×∇φ
B

]
(30)

The first (vorticity) equation includes a current along the magnetic field, j||.

This is not required to derive the wave analytically, but is required in a numerical

simulation to ensure that φ remains approximately constant along the magnetic

field. For this purpose a simple electrostatic Ohm’s law can be used:

j|| = −1

η
b · ∇φ (31)

Decreasing η will make the potential relax more quickly to a constant along flux

surfaces.

The usual approach to solving this is to use

∇× b

B
' 2

B
b× κ

and to split the E × B advection term into a divergence-free advection term,

and a divergence term:

∂n

∂t
= − 1

B
b×∇φ · ∇n− n∇ ·

(
1

B
b×∇φ

)
(32)

then approximate

∇ ·
(

1

B
b×∇φ

)
' 2

B
b× κ · ∇φ (33)

It is usual to neglect the poloidal derivative (y) terms in the E × B advection

operator. In Clebsch coordinates this term looks like

1

B
b×∇φ · ∇n =

∂φ

∂x

∂φ

∂z
− ∂φ

∂z

∂φ

∂x
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For axisymmetric flows the z derivatives are zero, so this term vanishes, leaving

only the compression term. This leaves a minimal GAM model:

∂Ω

∂t
=

2

B
b× κ · ∇p+∇||j|| (34)

∂n

∂t
= −n 2

B
b× κ · ∇φ (35)

Ω =
min0
B2

0

∇2
⊥φ (36)

where n0 and B0 are constants in space and time, and an isothermal approxi-

mation is used here:

p = enT0 (37)

Note also that here φ is assumed to be approximately constant on flux surfaces,

which will need to be enforced numerically using an Ohm’s law.

6.2.2 Analytic solution

Starting with the density equation, we look for solutions of the form

n (x, θ, t) = n̂ (θ) eikx−iwt

and potential φ:

φ (x, θ, t) = φ̂eikx−iwt

Linearising equation 35, assuming a simple circular cross-section, large aspect-

ratio, and keeping only the poloidal flow

b× κ · ∇ → 1

R
sin θ

∂

∂x
(38)

we get

n̂ = n0
2k

BRω
sin θφ̂ (39)

Hence if we assume φ̂ is independent of θ then n̂ has a sin θ dependence.

The parallel current term will act to equalise potential over a flux surface, but

provided this occurs sufficiently rapidly we can remove it from the analysis and

assume that φ is constant on flux surfaces. To remove the parallel current term
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from the vorticity equation, average over a flux surface by defining 〈·〉 so that〈
∇||
〉

= 0. For large aspect ratio:

〈·〉 =

∮
·dθ

This gives:

∂

∂t
〈Ω〉 =

〈
2

B
b× κ · ∇p

〉
(40)

−iωmin0
B2

(
−k2

) 〈
φ̂
〉

=

〈
2
eT0
BR

sin θ (ik) n̂

〉
(41)

ωk2
min0
B2

=

〈
4
k2en0T0
ωB2R2

sin2 θ

〉
(42)

Most terms cancel, leaving

ω2 =
eT0
mi

2

R2

i.e. the frequency depends on the sound speed cs =
√
eT0/mi and major radius

R. This is the correct dependency for GAMs in the simple electrostatic, large

aspect ratio limit when parallel flows are neglected.

6.2.3 Mass and energy conservation

For accurate and stable numerical simulations the mass and energy of the system

should be conserved over long times.

Starting by multiplying the vorticity equation by φ

φΩ = φ
min0
B2

0

∇2
⊥φ =

min0
B2

0

[
∇ · (φ∇⊥φ)− |∇⊥φ|2

]

∂

∂t
(φΩ) = φ

∂Ω

∂t
+ Ω

∂φ

∂t
(43)

= φ
2

B
b× κ · ∇p+ φ∇||j|| + Ω

∂φ

∂t
(44)

Ω
∂φ

∂t
=
min0
B2

0

[
∇ ·
(
∂φ

∂t
∇⊥φ

)
− 1

2

∂

∂t
|∇⊥φ|2

]

17



∂

∂t

[
1

2

min0
B2

0

|∇⊥φ|2
]

= −φ 2

B
b× κ · ∇p− φ∇||j|| (45)

+
min0
B2

0

[
∂

∂t
∇ · (φ∇⊥φ)−∇ ·

(
∂φ

∂t
∇⊥φ

)]
(46)

This equation describes the change of E × B kinetic energy. The first line

(eq 45) contains transfer terms from other forms of energy, whilst the second

term describes fluxes from the boundaries. By setting either φ = 0 or∇⊥φ·S = 0

at the boundary the fluxes go to zero at the boundary.

Many choices for the parallel current are possible, but a simple form is

E|| = −∂||φ = ηj|| (47)

where η is the resistivity. In this case

∇||
(
φj||
)

= φ∇||j|| + j||∂||φ (48)

= φ∇||j|| − ηj2|| (49)

−φ∇||j|| = −ηj2|| −∇||
(
φj||
)

(50)

and so this term is always a sink of energy, and boundary fluxes go to zero if

φ = 0 or j|| = 0 at the boundary.

The curvature transfer term can be derived by starting from

∇ ·
(
φp

2

B
b× κ

)
= φ

2

B
b× κ · ∇p+ p

2

B
b× κ · ∇φ+ pφ∇ ·

(
2

B
b× κ

)
(51)

∂

∂t

[
1

2

min0
B2

0

|∇⊥φ|2
]

= p
2

B
b× κ · ∇φ− ηj2|| (52)

+
min0
B2

0

[
∂

∂t
∇ · (φ∇⊥φ)−∇ ·

(
∂φ

∂t
∇⊥φ

)]
(53)

− ∇ ·
(
φp

2

B
b× κ

)
−∇||

(
φj||
)

(54)

+ pφ∇ ·
(

2

B
b× κ

)
(55)
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Multiplying equation 35 by the constant eT0 we get

∂p

∂t
= −p 2

B
b× κ · ∇φ (56)

It can be seen that this term balances the first term on the right of equation 52.

The total energy:

E =

∫
V

dV

[
1

2

min0
B2

0

|∇⊥φ|2 + p

]
(57)

is conserved (apart from resistive losses) so long as the terms in equations 53,

54 and 55 vanish.

1. Equations 53 and 54 are divergences, and all go to zero at the boundaries

if φ = 0 at the boundary.

2. Equation 55 is not a divergence, so can produce sources and sinks of energy

in the domain, not just at the boundary. Since p and φ can be arbitrary

functions, the curvature vector must satisfy

∇ ·
(

2

B
b× κ

)
= 0 (58)

The toroidal component of this curvature vector 2
Bb×κ doesn’t affect the

conservation properties; the radial x component is essential for the GAM.

Either the x component has to be constant, or the y component must also

be included.

7 Conclusions

A set of test cases have been described, starting from simple slabs and pro-

gressing first to more complex geometries, and then to integrating the elliptic

solver as part of a time-evolving system. Criteria for correctness have been

specified: l2 and l∞ error norms for tests with an analytic solution (manufac-

tured in complex cases). For time-evolving problems energy conservation is a

useful measure, because it has a strong connection to numerical stability and

physical correctness of the result. These tests will be used in future reports to

test elliptic solver implementations.
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