
T/NA086/20

Code structure and coordination

Report 2047358-TN-03

Evaluation of Approaches to Performance

Portability

Steven Wright, Ben Dudson, Peter Hill, and David Dickinson

University of York

Gihan Mudalige

University of Warwick

December 8, 2021

Contents

1 Introduction 2

1.1 Method of Evaluation . 3

2 Application Evaluations 6

2.1 TeaLeaf . 6

2.1.1 Performance . 6

2.1.2 Portability . 7

2.2 miniFE . 11

2.2.1 Performance . 11

2.2.2 Portability . 12

2.3 Laghos . 14

2.3.1 Performance . 15

2.3.2 Portability . 15

2.4 CabanaPIC . 17

2.4.1 Performance . 17

2.5 VPIC . 18

2.5.1 Performance . 18

2.5.2 Portability . 19

2.6 EMPIRE-PIC . 21

2.6.1 Performance . 21

2.6.2 Portability . 22

3 Conclusions 26

3.1 Limitations . 28

References 29

1

1 Introduction

The focus of the code structure and coordination work package is to establish a

series of “best practices” on how to develop simulation applications for Exascale

systems that are able to obtain high performance on each architecture (i.e. are

performance portable) without significant manual porting efforts.

In the past decade, a large number of approaches to developing performance

portable code have been developed. In this report we will begin to report on

our evaluation of some of these approaches through the execution of a small

number of mini-applications that implement methods similar to those likely to

be required in NEPTUNE.

These applications are detailed in report 2047358-TN-02, but are summarised

below for convenience:

TeaLeaf

A finite difference mini-app that solves the linear heat conduction equation

on a regular grid using a 5-point stencil1.

miniFE

A finite element mini-app, and part of the Mantevo benchmark suite2.

Laghos

A high-order curvilinear finite element scheme on an unstructured mesh3.

CabanaPIC

A structured PIC code built using the CoPA Cabana library for particle-

based simulations4.

VPIC/VPIC 2.0

A general purpose PIC code for modelling kinetic plasmas in one, two or

three dimensions, developed at Los Alamos National Laboratory5.

EMPIRE-PIC

An unstructured PIC code that uses the finite-element method.

1http://uk-mac.github.io/TeaLeaf/
2https://github.com/Mantevo/miniFE
3https://github.com/CEED/Laghos
4https://github.com/ECP-copa/CabanaPIC
5https://github.com/lanl/vpic

2

http://uk-mac.github.io/TeaLeaf/
https://github.com/Mantevo/miniFE
https://github.com/CEED/Laghos
https://github.com/ECP-copa/CabanaPIC
https://github.com/lanl/vpic

The selected applications broadly represent the algorithms of interest for the

NEPTUNE project and fall in to two categories – fluid-methods and particle-

methods. Within the fluid-method tranche, the applications are available im-

plemented in a wide range of programming models, allowing us a good op-

portunity to evaluate the effect of programming model on the performance,

and importantly the performance portability of that particular approach to ap-

plication development. There are a relatively small number of particle-in-cell

mini-applications available, and thus the selected particle-methods applications

are only available implemented using Kokkos. However, this still allows us an

opportunity to evaluate the appropriateness of Kokkos as a programming model

for performance portable application development.

1.1 Method of Evaluation

As stated previously, we will evaluate the performance portability of these ap-

plications using the metric introduced by Pennycook et al. [1], and use the

visualisation techniques outlined by Sewall et al. [2]. The Pennycook metric

allows us to calculate the performance portability of an application according to

Equation (1).

PP(a, p,H) =

|H|
∑

i∈H

1

ei(a, p)

if i is supported ∀i ∈ H

0 otherwise

(1)

In the equation, the performance portability (PP) of an application a, solving

problem p, on a given set of platforms H, is calculated by finding the harmonic

mean of an application’s performance efficiency (ei(a, p)). The performance ef-

ficiency for each platform can be calculated by comparing achieved performance

against the best recorded (possibly non-portable) performance on each individ-

ual target platform (i.e. the application efficiency, or by comparing the achieved

performance against the theoretical maximum performance achievable on each

individual platform (i.e. the architectural efficiency). Should the application

fail to run on one of the target platforms, a performance portability score of 0

is awarded.

While Equation (1) provides a formal definition for performance portability,

3

this single value metric may not answer all questions a developer might have

about their application. In recognising this, in this report we use two visuali-

sation techniques introduced by Sewall et al. [2]. These visualisations are best

explained with an example.

Figure 1 presents a simple synthetic data set for six implementations of an appli-

cation running across 10 platforms. These implementations are: unportable

with high performance on a single platform, but not portable to any other

platform; single target with high performance on a single platform, but low

performance on all others; multi target achieving high performance on some

platforms, and low performance on others; inconsistent showing a range of

performance across all platforms; and consistent showing consistent low (30%)

or high (70%) performance across all platforms.

un
po

rta
ble

sin
gle

tar
ge

t

mult
i ta

rge
t

co
nsi

ste
nt

(30
%)

inc
on

sis
ten

t

co
nsi

ste
nt

(70
%)

A
B
C
D
E
F
G
H
I
J

100%
0%
0%
0%
0%
0%
0%
0%
0%
0%

100%
10%
10%
10%
10%
10%
10%
10%
10%
10%

100%
10%

100%
10%

100%
10%

100%
10%

100%
10%

30%
30%
30%
30%
30%
30%
30%
30%
30%
30%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

70%
70%
70%
70%
70%
70%
70%
70%
70%
70%

Higher is better

20

40

60

80

100

Fig. 1: Heatmap of synthetic application efficiencies.

a distinct efficiency distribution that could realistically arise
during application development; taken together, these data sets
can be used as a litmus test for the intuition gained from
different metrics and visualizations. We believe that synthetic
distributions like these could serve a similar role to mathemat-
ical basis functions or classifiers in the space of performance
efficiency distributions, but leave this investigation to future
work. A detailed description of each data set is given below.

Unportable: Applications in this class are written to support
only a single target platform, possibly using a proprietary
programming model that excludes some classes of platforms.
This is represented by an efficiency of zero on one or more
platforms (where the application does not run).

Single Target: Applications may be written in a portable
model but with significant optimization efforts applied to a
limited set of platforms. For example, if an application is
only ever expected to run on one platform, that platform will
be the development team’s optimization focus. However, the
application remains capable of achieving non-zero efficiencies
(i.e. it will run correctly) on the remaining platforms.

Multi-Target: A multi-target application shares many sim-
ilarities with one targeting a single platform, but expands the
target to a larger set of platforms. For example, the application
might be optimized specifically for one class of architectures
(such as GPUs). The result is often a bimodal distribution of
efficiencies, with two distinct groups: one high and one low.

Consistent: Some applications achieve similar performance
efficiencies on all platforms. This may result from the nature
of the application (e.g. a micro-benchmark intended to stress
a particular architectural feature) or project goals (e.g. a desire
for a code to attain similarly high levels of performance across
all platforms [17]). We use two distributions to represent
such applications, separating cases where the efficiency is
consistently low (30%) and high (70%), to determine whether
the approaches tested can differentiate between them.

Inconsistent: An application that prioritizes portability over

TABLE II: “Averages” of synthetic efficiency data.

Unportable Single Multi Consistent Inconsistent Consistent
Target Target (30%) (70%)

Minimum 0.0 10.00 10.00 30.0 10.00 70.0
Arith. Mean 10.0 19.00 55.00 30.0 55.00 70.0
Geo. Mean 0.0 12.59 31.62 30.0 45.29 70.0
Har. Mean NaN 10.99 18.18 30.0 34.14 70.0
Median 0.0 10.00 55.00 30.0 55.00 70.0
PP 0.0 10.99 18.18 30.0 34.14 70.0

performance is unlikely to achieve consistent levels of per-
formance efficiency. Such applications may be continually
adapted as they move between platforms and developers add
new features, resulting in wide-ranging results with high vari-
ance. We represent this as a linearly increasing performance
efficiency, but could have drawn these numbers from a uniform
distribution.

III. SINGLE NUMBER METRICS

Representing the performance portability of an application
using a single numeric value is highly desirable, providing
a simple way to compare the distributions of performance
efficiency results across applications.

When confronted with a slew of data, it is tempting to reach
for familiar statistical measures (e.g. average and standard
deviation); Question 2 and Question 3 may be answered di-
rectly, with Question 1 answered by defining a value (or range
of values) representing a sufficiently performance portable
application. However, as we will see, common statistical tools
may not provide the insight we’re looking for. It is also highly
unlikely that any single number could answer all three of
these questions simultaneously; combining multiple metrics
– or using different metrics for different analyses – may be
necessary.

A. Average Performance Efficiency

Table II compares several “averages” computed for our syn-
thetic data set. In addition to standard statistical averages
(arithmetic mean, geometric mean, harmonic mean, median),
we include the minimum value and the value of the perfor-
mance portability metric from [1], [2], calculated as:

PP(a, p, H) =

8
>><
>>:

|H|
P

i2H

1

ei(a, p)

if i is supported 8i 2 H

0 otherwise

that is, the harmonic mean of application a’s performance
efficiency e(a, p) when executing problem p on a set of
platforms H . PP differs from the harmonic mean only in that
the latter is not defined if the input data contains a zero (since
it would require the computation of 1/0).

The ranking of the synthetic data sets according to the
performance portability metric is the most aligned with the
authors’ intuition of which hypothetical application is the most
performance portable (from least to most): 1) unportable;

Figure 1: Synthetic data set for six implementations running across 10 platforms
taken from Sewall et al. [2]

We could simply apply the performance portability metric in Equation (1) to

this synthetic data but this may mean that we lose some information about

how the performance portability is spread across platforms, and how the metric

changes as we add and remove platforms from the evaluation set.

Figure 2(a) addresses this first concern, showing not only the median efficiency of

an application, but also the spread of efficiencies (and any outliers). The second

concern is addressed in the cascade plot in Figure 2(b), where the applications

performance portability and efficiency are plotted as platforms are added to the

4

evaluation set in descending order of efficiency. A more in-depth analysis of

these visualisation techniques can be found in Sewall et al. [2].

Fig. 2: Box plots of synthetic performance data.

together and compared; and is simple enough for developers to
intuit the performance portability of an application at a glance.
Such visualizations would enable developers to quickly (albeit
subjectively) answer Question 1, Question 2 and Question 3.

A. Box Plots

Box plots are a common, well-understood figure showing
the spread of data around the median, and are an obvious
candidate for summarizing the distribution of performance
efficiency data. The graph consists of a box formed by the
lower and upper quartiles, which is divided by the median.
Many software packages produce box plots with whiskers at
1.5 times the interquartile range from the box edge, and plot
outliers beyond this range as circles.

Figure 2 shows box plots for the synthetic data introduced in
Section II-C. This data is intended to stress test the approaches,
and we can clearly see that the box plots fail to show useful
information for many of these data sets. In the multi-target
case, the fact that the data has two clusters is not represented
in any way. The large box shows that the data is spread far
from the median, but doesn’t provide insight into the amount
of data around these points. Likewise, the inconsistent data
shows a fairly large box and a similar median value to the
multi-target data, as we found in Table II. The data is evenly
spread throughout the entire range, but this is not represented.
The consistent data sets do not utilize the visible space on
the graph well, but the lack of visible boxes conveys that the
data is highly clustered around the median. Additionally, the
difference in absolute performance between the two consistent
data sets (30% and 70%) is clearly represented. For the
unportable and single target data sets, the lack of boxes
reflects the clustering around the low performance efficiency
values. The single platforms with high performance efficiency
are represented as outliers, reflecting that these results are not
characteristic of this application – however, it is important to
note that the decision to label these results as outliers is under
user control, and therefore subject to abuse.

Figure 3 shows box plots for the real-world applications
described in Section II-C. Each chart in the figure pertains

to one code, with different box plots for each application
(programming model). The first two box plots for BabelStream
show clearly that much of the efficiency data is consistently
high; however, it is easy to miss that some platforms did not
run (represented by the outliers at zero), and the number of
unsupported platforms is obscured (by nature of all outliers
being at the same point). The other plots for this code do
not yield much information as to the quality of performance
portability; the boxes all cover the complete range [0, 100],
and we are left only with the median to make comparisons.
Many of the box plots shown draw the median line at zero:
most of the efficiency results are classified as not portable (i.e.
most applications did not run on most platforms). It is difficult
to see results where the data is non-zero.

When performance efficiencies are clustered around the
median, box plots intuitively represent the extent of that clus-
tering. However, in more general cases it can be challenging
to understand the number and effect of outliers. In particu-
lar, bimodal distributions (like multi-target) appear severely
distorted and indistinguishable from other distributions. Box
plots therefore suffer from many of the same problems as the
metrics discussed in Section III, and do not provide a clear
way to intuit a ranking of applications.

B. Histograms

Another classic way to visualize the distribution of data is to
produce a histogram. Data are grouped into categories (bins)
and plotted as a bar chart showing the number of items in
each bin, highlighting which bins are highly populated. A
histogram also shows all the data directly (albeit smoothed
into categories), preserving outliers and intermediate values
occurring between regions of high density.

In selecting the bins, it is important to remember the
meaning that we have ascribed to 0% performance efficiency
(i.e. that an application did not run or produced an incorrect
result). This is distinct from (0 + ✏)%, which indicates that
an application ran correctly, but with very low efficiency. As
such, we recommend separating “did not run” results into
their own bin, so as to distinguish them from low efficiencies.
This is a special case of a common problem in constructing
histograms: using too few bins hides useful information; but
using too many bins does nothing to summarize the data. The
significance of being in one bin or another is also open to
interpretation: one might feel that efficiencies of 69% and 71%
are equivalent, yet these results may fall into distinct bins.

Histograms for the synthetic data are shown in Figure 4a.
We show all the data sets on the same graph for brevity also
to allow direct comparison between them. Given the limited
range of the data, it is important to plot the different data
sets as independent bars side-by-side on the chart; in practice,
overlaying them almost always obscures data points.

These histograms capture the characteristics of the data sets
effectively. The two consistent data sets show strong peaks in
the bins corresponding to 30% and 70% efficiency, and the two
peaks of the multi-target data set are similarly intuitive. The
presence of many low frequency bins for the inconsistent data

(a) Box plot
Fig. 7: Efficiency cascade plot for synthetic data sets, along
with platform chart.

minimum efficiency in E0; we record this min E0 and the
cardinality of H0, then remove any one platform among
those with the minimum efficiency to construct a new set
of platforms H1 with corresponding efficiencies E1. We
continue for n = |H0| steps in this fashion until we obtain
Hn = ;. We then plot |Hn�1|, |Hn�2|, . . . , |H0| against
min En�1, min En�2, . . . , min H0 (i.e. increasing number of
platforms vs. minimum efficiencies among each subset) to
obtain a visualization of how precipitously an application’s
support for various platforms degrades.

This is necessarily non-increasing, and so we designate
these plots as efficiency cascade plots. It is trivial to compute
PP using Ei for each |Hi| and to superimpose this with the

efficiency cascade. Multiple applications/problems may be
aggregated onto a single efficiency cascade plot by winnowing
the platform sets as described above individually; the Hi at
each tick on the x-axis will not necessarily be the same across
applications, but the plotted cardinalities are shared. Figure 7
demonstrates such a plot for the synthetic data sets, with solid
and dashed lines representing the minimum efficiency and PP
values respectively.

Efficiency cascade plots may be easily constructed by
individually sorting each application’s efficiencies across all
platforms in decreasing order, then plotting them piecewise-
linear against the sequence number of the platform in this
ordering. Reading a platform number from the x-axis and
consulting the plotted efficiency (for a specific application)
gives the number of platforms with at least that level of
efficiency. Conversely, reading right from an efficiency or PP
value on the y-axis to where it intercepts a plotted value gives
the number of platforms that have an efficiency or PP greater
than the chosen y value.

Because the platform sets for each application are sorted
separately, we must resist the temptation to draw any conclu-
sions about specific comparative platform performance across
applications in efficiency cascade plots. The exception is for
the rightmost point for each application, which shows the
minimum efficiency and PP calculated across all platforms.

Platform Charts It is possible to include information about
the Hi chosen by adding a row of color-coded boxes for each
application for each |Hi| plotted on an efficiency cascade; this
we term a platform chart. Where an application does not run
on a platform, the space is left blank. Due to the construction
of efficiency cascades, we can always expect the blank areas
for any given application to be contiguous and on the right-
hand side of the plot.

When application efficiency is used and the data set is
“closed” (i.e. the peak efficiency for each platform is contained
in the shown data, as in the data used here) we expect the effi-
ciency cascade to begin with a series of peak efficiency values.
Similarly, we can expect that the leftmost appearance(s) of a
platform in a platform chart contains the peak efficiency for
that platform among the data.

By nature of the harmonic mean, the PP for an application
on a given set of platforms is never lower than the minimum
efficiency. For the consistent data sets, the PP and efficiency
as seen in Figure 7 are identical. The bimodal nature of the
single target and multi-target data sets are also reflected
in the efficiency cascade, with clear transitions between two
levels of support marked by sharp drops in efficiency.

Figure 8 shows efficiency cascade plots for the real-world
data. There are numerous distinct patterns that help to quickly
assess application (i.e. language/framework) behavior. The
number of supported platforms is marked by a drop to zero ef-
ficiency. There are some applications that show high efficiency
for a subset of platforms after which efficiency precipitously
drops, reminiscent of the single target data set.

Other observations are notable for requiring subjective
evaluation. In all data sets, OpenMP leads or ties all other
applications through most of the platforms. In some cases,
Kokkos supports more platforms, or supports latter platforms
with higher efficiency than OpenMP. For additional discourse
on this subject, we refer the reader to the study of Deakin
et al. [17]. It is an interesting exercise for the developer or
application user to consider whether they prefer performance
or portability; in some cases, it is most important that as many
platforms be supported as possible; while in other cases, the
higher efficiency may be more desirable.

By choosing colors in the platform chart that convey mean-
ingful groupings, we can gain insight into how individual
applications handle different types of platforms. In Figure 8,
we have chosen distinct color families for GPUs and CPUs,
highlighting that CUDA supports only GPUs, while both
OpenCL and OpenACC have weak support for CPUs in the
data presented.

It is reasonable to wonder how the data presented in an
efficiency cascade plot coincides (or does not) with one’s idea
of performance portability, quantitative or qualitative. Since PP
is featured in the plots, these questions are simple to answer:
the highest point in the rightmost column is the application
with the highest PP across all platforms in H0. Comparing
points to the left can be misleading, since the Hi at each of
these points is not necessarily the same across applications.

Insights into the qualitative question are readily available in

(b) Cascade plot

Figure 2: Example plots for the synthetic data provided in Figure 1

Where possible, performance data has been taken from previously published

works. Where no data exists, the data has been collected from the UK’s Tier-

2 platforms, in particular Isambard’s Multi-Architecture Comparison System

(MACS), ThunderX2 system and A64FX system.

As many of the applications, libraries and programming models used in this re-

port are under active development, the data presented here is subject to change.

New data is being collected all the time and analysed, and will be updated in

the future where necessary. This document should therefore be considered a liv-

ing document, reflecting the current state of performance portable application

development focused on applications of interest for the simulation of plasma

physics.

5

2 Application Evaluations

In this section we present performance data for a number of mini-applications,

across a range of architectural platforms, using a range of different approaches

to performance portability.

The applications chosen in each case are broadly representative of some of the

algorithms of interest to NEPTUNE. In particular, the fluid-method based mini-

apps implement algorithms that range from finite-difference (like Bout++ [3])

to high-order finite element or spectral element (like Nektar++ [4]). Similarly,

the particle-methods mini-apps all implement the particle-in-cell method (like

EPOCH [5]).

2.1 TeaLeaf

TeaLeaf is a finite difference mini-app that solves the linear heat conduction

equation on a regular grid using a 5-point stencil, developed as part of the

UK-MAC (UK Mini-App Consortium) project.

It has been used extensively in studying performance portability already [6, 7,

8, 9], and is available implemented using CUDA, OpenACC, OPS, RAJA, and

Kokkos, among others6. The results in this section are extracted from two of

these studies, namely one by Kirk et al. [7] and one by Deakin et al. [6].

In both studies, the largest test problem size (tea bm 5.in) is used, a 4000×4000

grid.

2.1.1 Performance

The study by Kirk et al. shows the execution of 8 different implementations/-

configurations of TeaLeaf across 3 platforms, a dual Intel Broadwell system, an

Intel KNL system and an NVIDIA P100 system. The runtime for each imple-

mentation/configuration is presented in Figure 37. Note that in the study, some

results are missing due to incompatibility (e.g. CUDA on Broadwell/KNL).

6http://uk-mac.github.io/TeaLeaf/
7Hybrid represents the best performing configuration of a MPI/OpenMP hybrid execution

6

http://uk-mac.github.io/TeaLeaf/

Broadwell KNL P100

500

1,000

1,500

Platform

R
u

n
ti

m
e

(s
)

OpenMP MPI Hybrid CUDA
OpenACC OPS Kokkos RAJA

Figure 3: TeaLeaf runtime data from Kirk et al. [7]

The study by Deakin et al. is more recent, using a C-based implementation

of TeaLeaf as its base. It consequently evaluates fewer programming models,

but over a wider range of hardware, including a dual Intel Skylake system,

both NVIDIA P100 and V100 systems, AMDs Naples CPU, and the Arm-based

ThunderX2 platform. Runtime results are provided in Figure 4.

2.1.2 Portability

Both studies evaluate some portable and non-portable implementations. In most

cases, there is a non-portable implementation that achieves the lowest runtime,

however this places a restriction on the hardware that it can target.

For study by Kirk et al. [7], Figures 5 and 6 allow us to visualise the per-

formance portability of each approach to application development. Figure 5

shows a clear divide between the non-portable approaches (CUDA, OpenMP,

MPI, Hybrid and OpenACC), and the portable approaches (Kokkos, OPS and

RAJA), whereby each of the non-portable approaches span the full range from

0.0 efficiency up to 1.0 efficiency, while the three portable approaches each span

7

Skylake Naples Power9 TX2 KNL P100 V100

200

400

600

800

Platform

R
u

n
ti

m
e

(s
)

OpenMP CUDA
OpenACC Kokkos

Figure 4: TeaLeaf runtime data from Deakin et al. [6]

a much smaller range of efficiencies.

The cascade plot in Figure 6 better shows how the performance portability of

each implementation changes as new platforms are added to the evaluation set.

Almost all approaches (except OpenMP) achieve more than 80% application

efficiency on at least one platform, and in the case of RAJA and OPS, per-

formance above 60% application efficiency is maintained across the three plat-

forms. Referring back to Figure 3, we can see that on the Intel KNL system, the

Kokkos performance is double that of other performance portable approaches,

and thus skews its portability calculation. It is likely that this is the result an

unidentified issue in TeaLeaf or Kokkos at the time of evaluation. Otherwise,

these three programming models each achieve similar levels of performance and,

importantly, portability across different architectures.

Figures 7 and 8 show the same visualisations for the data from Deakin et al. [6].

Again, the non-portable programming model (CUDA) achieves the highest per-

formance on its target architecture. For CPU architectures OpenMP produces

the highest result, and using offload directives, portability is available to GPU

devices. It should be noted that to support the use of GPU devices, there are

8

CUDA

Ope
nM

P
MPI

Hyb
rid

Ope
nA

CC

Kok
ko

s
OPS

RAJA

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

nc
y

Figure 5: Box plot visualisation of performance portability from Kirk et al. [7]

1 2 3
of platforms

0.0

0.2

0.4

0.6

0.8

1.0

Ap
p

PP
 (d

as
he

d)
/e

ff
ic

ie
nc

y
(s

ol
id

)

CUDA eff.
CUDA PP
OpenMP eff.
OpenMP PP
MPI eff.
MPI PP
Hybrid eff.
Hybrid PP

OpenACC eff.
OpenACC PP
Kokkos eff.
Kokkos PP
OPS eff.
OPS PP
RAJA eff.
RAJA PP

Broadwell
KNL

P100

Figure 6: Cascade visualisation of performance portability from Kirk et al. [7]

9

CUDA

Ope
nA

CC

Kok
ko

s

Ope
nM

P

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

nc
y

Figure 7: Box plot visualisation of performance portability from Deakin et al. [6]

1 2 3 4 5 6 7
of platforms

0.0

0.2

0.4

0.6

0.8

1.0

Ap
p

PP
 (d

as
he

d)
/e

ff
ic

ie
nc

y
(s

ol
id

)

CUDA eff.
CUDA PP
OpenACC eff.
OpenACC PP
Kokkos eff.
Kokkos PP
OpenMP eff.
OpenMP PP

Skylake
Naples
Power9

TX2
KNL

P100
V100

Figure 8: Cascade visualisation of performance portability from Deakin et al. [6]

10

two OpenMP implementations that must be maintained (with and without of-

fload directives), though these results are presented together here. Much like

in the previous study, the performance portability of Kokkos is affected by an

anomalous result on the Intel KNL platform.

2.2 miniFE

miniFE is a finite element mini-app, and part of the Mantevo benchmark suite

[10, 11, 12, 13]. It implements an unstructured implicit finite element method

and has versions available in CUDA, Kokkos, OpenMP (3.0+ and 4.5+) and

SYCL8.

While there are a number of data sources for miniFE data, many of these are

limited in scope, and so to ensure consistency, all data presented in this section

has been newly gathered. In all cases, a 256× 256× 256 problem size has been

used, and all runs have been conducted on the platforms available on Isambard.

2.2.1 Performance

The raw runtime results for these runs can be seen in Figure 9. In many of the

miniFE ports available, only the conjugate solver has been parallelised effec-

tively, so the results presented here represent only the timing from this kernel.

It should be noted that the SYCL data is gathered from a miniFE port that can

be found as part of the oneAPI-DirectProgramming github repository9; this port

has been generated using Intel’s DPC++ Compatibility tool, which translates

CUDA to DPC++, and is compiled using hipSYCL and GCC. Results have not

yet been collected for the ARM-based system with SYCL, due to the unavail-

ability of an appropriate compiler. The OpenMP with offload variant of miniFE

runs successfully on both AMD Rome and Cavium ThunderX2 platforms, but

the runtimes are several orders of magnitude greater than all other platforms

(likely due to an bug in the compiled code), and so have been removed.

Figure 9 shows that SYCL performance on the KNL and Rome platforms is far

8https://github.com/Mantevo/miniFE
9https://github.com/zjin-lcf/oneAPI-DirectProgramming/tree/master/miniFE-sycl

11

https://github.com/Mantevo/miniFE
https://github.com/zjin-lcf/oneAPI-DirectProgramming/tree/master/miniFE-sycl

CSL KNL Rome TX2 A64FX P100 V100

20

40

60

80

Platform

R
u

n
ti

m
e

(s
)

MPI OpenMP

OpenMP w/ Offload CUDA

Kokkos SYCL

Figure 9: miniFE runtime data

in excess of any other execution (with the exception of OpenMP w/ Offload on

Rome which is not shown), and on the GPU platforms the SYCL runtime is

on par with OpenMP w/ offload. This is likely due to the hipSYCL compiler

generating OpenMP w/ Offload syntax for the SYCL code, and so it is unsur-

prising that performance is similar. Otherwise, the fastest performance on most

CPU-based platforms comes from the native MPI variant of miniFE, and the

fastest performance on the GPU-based platforms comes from CUDA.

2.2.2 Portability

Figures 10 and 11 present visualisations of the performance portability of miniFE,

through various approaches.

The highest median performance comes from the non-portable MPI approach,

since it is the best (or near best) performing implementation on all of the CPU

platforms; however, it is not portable to the two GPU systems. Conversely,

Figure 10 shows that CUDA has the worst lowest median performance, because

12

CUDA
MPI

Ope
nM

P

Ope
nM

P w
/ O

ffl
oa

d
SYC

L

Kok
ko

s

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

nc
y

Figure 10: Box plot visualisation of performance portability of miniFE

1 2 3 4 5 6 7
of platforms

0.0

0.2

0.4

0.6

0.8

1.0

Ap
p

PP
 (d

as
he

d)
/e

ff
ic

ie
nc

y
(s

ol
id

)

CUDA eff.
CUDA PP
MPI eff.
MPI PP
OpenMP eff.
OpenMP PP
OpenMP w/ Offload eff.
OpenMP w/ Offload PP
SYCL eff.
SYCL PP
Kokkos eff.
Kokkos PP

CascadeLake
KNL
Rome

Volta
Pascal

ThunderX2
A64FX

Figure 11: Cascade visualisation of performance portability of miniFE

13

it only runs on the two GPU systems, but is the best performing on each.

The boxplots for both OpenMP w/ Offload and SYCL are very similar, and

this is likely an artefact of SYCL being translated to OpenMP w/ Offload at

compile-time by hipSYCL. The only programming model to run across all plat-

forms currently is Kokkos, but on some platforms this may mean sacraficing a

significant proportion of performance.

Figure 11 better shows how the performance portability of miniFE evolves as

more platforms are added for each programming model.

For CUDA, MPI, OpenMP and Kokkos, there are at least two platforms where

they achieve over 80% efficiency, and in the case of MPI and OpenMP, this effi-

ciency holds up until we reach the GPU platforms, while CUDA does the inverse

of showing the best efficiency on the GPU platforms. SYCL and OpenMP w/

offload offer poor performance in our current data, and hence achieve less than

40% of peak application performance across all platforms; this is likely due to

the use of the hipSYCL compiler and lack of platform specific optimisations. As

Kokkos is the only programming model we have full data for, it is the only pro-

gramming model that spans all platforms; however, the performance efficiency

decreases as more platforms are added to the evaluation set. While it is clearly

a portable approach, it is not clear whether it is performance portable at this

time.

2.3 Laghos

Laghos is a mini-app that is part of the ECP Proxy Applications suite [14, 15,

13]. It implements a high-order curvilinear finite element scheme on an unstruc-

tured mesh. The majority of the computation is performed by the HYPRE and

MFEM libraries, and can thus use any programming model that is available for

these libraries10.

The results presented below have all been collected from the Isambard platform.

10https://github.com/CEED/Laghos

14

https://github.com/CEED/Laghos

2.3.1 Performance

Figure 12 shows the runtime for Laghos, running problem #1 (Sedov blast

wave), in three dimensions, up to 1.0 second of simulated time, using partial

assembly (i.e., ./laghos -p 1 -dim 3 -rs 2 -tf 1.0 -pa -f).

Across the six platforms evaluated, RAJA performance is typically in line with

the fastest non-portable approach (MPI and CUDA). Since the parallelisation

in Laghos is in the MFEM and HYPRE shared libraries, that were developed

at LLNL alongside RAJA, that these routines are well optimised in RAJA is

perhaps not surprising.

CSL KNL Rome A64FX P100 V100

20

40

60

80

100

120

Platform

R
u

n
ti

m
e

(s
)

MPI OpenMP
CUDA RAJA

Figure 12: Laghos runtime data

2.3.2 Portability

Portability visualisations of each implementation of Laghos are provided in Fig-

ures 13 and 14.

Figure 13 demonstrates the remarkable efficiency of the RAJA MFEM and

HYPRE implementations, showing consistently above 80% performance effi-

15

CUDA
MPI

Ope
nM

P
RAJA

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

nc
y

Figure 13: Box plot visualisation of performance portability of Laghos

1 2 3 4 5 6
of platforms

0.0

0.2

0.4

0.6

0.8

1.0

Ap
p

PP
 (d

as
he

d)
/e

ff
ic

ie
nc

y
(s

ol
id

)

CUDA eff.
CUDA PP
MPI eff.
MPI PP
OpenMP eff.
OpenMP PP
RAJA eff.
RAJA PP

CascadeLake
KNL

Rome
A64FX

Pascal
Volta

Figure 14: Cascade visualisation of performance portability of Laghos

16

ciency. In contrast to some of our previous results, OpenMP performs poorly

across most platforms (except KNL). The difference between OpenMP and

RAJA on the CPU platforms suggests that either the RAJA parallelisation on

these systems is achieved through SIMD and Thread Building Blocks (TBB),

or that there are performance issues in the OpenMP implementation. On the

GPU platforms, CUDA does marginally outperform RAJA, but this is perhaps

to be expected, given the potential overhead in using a third party performance

library.

2.4 CabanaPIC

CabanaPIC is a structured PIC demonstrator application built using the Co-

PA/Cabana library for particle-based simulations [13]. CoPA/Cabana provides

algorithms and data structures for particle data, while the remainder of the ap-

plication is built using Kokkos as its programming model for on-node parallelism

and GPU use, and MPI for off-node parallelism11.

2.4.1 Performance

Since there is only a single implementation of CabanaPIC, it is not possible for

us to evaluate how the programming model affects its performance portability,

however, we can show how the performance changes between architectures.

Figure 15 shows the achieved runtime for CabanaPIC across four of Isambard’s

platforms, running a simple 1D 2-stream problem with 6.4 million particles.

Approximately equivalent performance can be seen on the CascadeLake, Rome

and V100 systems. Similar to our TeaLeaf Kokkos results on KNL, the run-

time is significantly worse than expected, possibly indicating a Kokkos bug,

or a configuration issue. Otherwise performance is similar on all platforms in

terms of the raw runtime. Given the significantly higher peak performance of

the NVIDIA V100 system, it is perhaps surprising that its performance is not

significantly better. This may be due to serialisation caused by atomics, or

significant data movement between the host and the accelerator; further inves-

tigation is necessary to identify this loss of efficiency.

11https://github.com/ECP-copa/CabanaPIC

17

https://github.com/ECP-copa/CabanaPIC

CSL KNL Rome V100

100

200

300

Platform

R
u

n
ti

m
e

(s
)

Kokkos

Figure 15: CabanaPIC data

2.5 VPIC

Vector Particle-in-Cell (VPIC) is a general purpose PIC code for modelling ki-

netic plasmas in one, two or three dimensions, developed at Los Alamos National

Laboratory [16]. VPIC is parallelised on-core using vector intrinsics and on-node

through a choice of pthreads or OpenMP. It can additionally be executed across

a cluster using MPI12.

Recently, VPIC 2.0 [17] has been developed that adds support for heterogeneity

by using Kokkos to optimise the data layout and allow execution on accelerator

devices.

2.5.1 Performance

Figure 16 shows the runtime for the three variants of the VPIC code running on

seven platforms13. This data is taken from the VPIC 2.0 study, comparing the

non-vectorised, vectorised and Kokkos variants of the VPIC code. In each case,

12https://github.com/lanl/vpic
13https://globalcomputing.group/assets/pdf/sc19/SC19_flier_VPIC.pptx.pdf

18

https://github.com/lanl/vpic
https://globalcomputing.group/assets/pdf/sc19/SC19_flier_VPIC.pptx.pdf

the runtime is the time taken for 500 time steps, with 66 millions particles.

Skylake KNL TX2 Naples Rome Power9 V100

100

200

300

Platform

R
u

n
ti

m
e

(s
)

Original SIMD

Kokkos

Figure 16: VPIC runtime data from Bird et al. [17]

In Figure 16 we can observe that the SIMD vectorised implementations are al-

ways the fastest for each platform, however it should be noted that each of these

are hand-optimised for each individual instruction set (i.e. every implementation

is platform specific). This means that, alongside the additional coding effort of

writing an implementation for each platform, potential additions or fixes must

also be applied to all implementation individually, harming not only the perfor-

mance portability, but also the productivity. While the Kokkos implementation

is typically the slowest on each platform, performance is usually in-line with the

unvectorised original VPIC application, suggesting that the slowdown is caused

by the inability of the compiler to autovectorise.

2.5.2 Portability

In terms of the performance portability of VPIC, we can see that the original

and vectorised variants are only viable on the CPU architectures. Figures 17

and 18 visualise how the performance portability varies as more platforms are

evaluated.

19

SIM
D Ref

Kok
ko

s

0.0

0.2

0.4

0.6

0.8

1.0

E
ff

ic
ie

nc
y

Figure 17: Box plot visualisation of performance portability of VPIC

1 2 3 4 5 6 7
of platforms

0.0

0.2

0.4

0.6

0.8

1.0

Ap
p

PP
 (d

as
he

d)
/e

ff
ic

ie
nc

y
(s

ol
id

)

SIMD eff.
SIMD PP
Ref eff.
Ref PP
Kokkos eff.
Kokkos PP

Skylake
KNL
TX2
Naples

Rome
Power9
V100

Figure 18: Cascade visualisation of performance portability of VPIC

20

The highest performance on each of the CPU platforms comes from the vec-

torised variant of VPIC, as it achieves the best performance on all CPU plat-

forms (except the ThunderX2, where no data is provided). However, Figure 17,

when evaluating the entire set of platforms, its performance portability would

be 0, due to non-execution on the V100 platform.

Figure 18 shows that while Kokkos performs worse than the vectorised imple-

mentation, its performance is similar the non-vectorised variant, but is also

capable of execution on the V100 platform.

It should be noted that this data is from a study based on the initial implemen-

tation of VPIC using Kokkos. It is likely that these performance figures will be

improved in future, potentially closing the performance gap on the vectorised

implementation, while maintaining portability to heterogeneous architectures.

2.6 EMPIRE-PIC

EMPIRE-PIC is the particle-in-cell solver central the the ElectroMagnetic Plasma

In Realistic Environments (EMPIRE) project [18]. It solves Maxwell’s equa-

tions on an unstructured grid using a finite-element method, and implements

the Boris push for particle movement. EMPIRE-PIC makes extensive use of

the Trilinos library, and subsequently uses Kokkos as its parallel programming

model [19, 20].

2.6.1 Performance

The EMPIRE-PIC application is export controlled, and thus the results in this

section come from the study by Bettencourt et al. [19], looking specifically at

the particle kernels within EMPIRE-PIC.

Figure 19 shows the runtime of the Accelerate, Weight Fields, Move and Sort

kernels within EMPIRE-PIC for an electromagnetic problem with 16 million

particles (8 million H+, 8 million e-). The geometry for this problem is the tet

mesh that can be seen in Figure 7 in Bettencourt et al. [19].

21

Accelerate Weight Fields Move Sort
0

10

20

30

Kernel

R
u

n
ti

m
e

(s
)

BDW CSL KNL TX2 P100 V100

Figure 19: EMPIRE-PIC runtime data

2.6.2 Portability

While there is only a single programming model implementation of EMPIRE-

PIC, we can use the equations given in Table 2 of Bettencourt et al. [19] to

calculate the FLOP/s achieved and compare this to each machines maximum

floating-point performance, thus calculating the architectural efficiency. The

equations presented assume the best case performance, whereby particles are

evenly distributed across the domain, there is no particle migration throughout

the simulation, and they are sorted at the start of the simulation. Nevertheless,

they provide a useful opportunity to analyse the performance portability of

Kokkos for particle-based kernels.

Figures 20 and 21 provide visualisations of EMPIRE-PIC’s performance porta-

bility across six platforms14.

It is important to note that although Figure 20 shows incredibly low efficiency,

this is compared to each platform’s peak performance, where a vectorised fused-

multiply-add instruction must be executed each clock cycle. Achieving less than

14Please note that the y-axis in each of these Figures has been scaled, since the architectural
efficiency is very low.

22

Sor
t

Weig
ht

 Fiel
ds

Acc
ele

ra
te

Mov
e

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

E
ff

ic
ie

nc
y

Figure 20: Box plot visualisation of performance portability for four particle
kernels in EMPIRE-PIC

1 2 3 4 5 6
of platforms

0.00

0.01

0.02

0.03

0.04

0.05

Ap
p

PP
 (d

as
he

d)
/e

ff
ic

ie
nc

y
(s

ol
id

)

Sort eff.
Sort PP
Weight Fields eff.
Weight Fields PP
Accelerate eff.
Accelerate PP
Move eff.
Move PP

BDW
CSL
KNL

TX2
P100
V100

Figure 21: Cascade visualisation of performance portability for four particle
kernels in EMPIRE-PIC

23

10% of this peak performance is not unusual for a real application. In the case

of the Sort kernel, the efficiency is lower still, as this is not a kernel that is

bound by floating point performance.

What is clear from Figures 20 and 21 is that the variance in achieved efficiency

between platforms is not large, indicating that Kokkos is able to achieve a

similar portion of the available performance for EMPIRE-PIC’s particle kernels.

Achieved efficiency is higher on the ThunderX2 and Broadwell systems, due to

less reliance on well vectorised code, and a lower available peak performance.

The data suggests that EMPIRE-PIC is not able to fully exploit the on-core

parallelism available through vectorisation. Figure 22 shows roofline models for

four of these platforms, with the four particle kernels plotted according to their

arithmetic intensity and achieved FLOP/s.

In all cases, we can see that the application is not successfully using vectorisation

(and this is confirmed by compiler reports). As stated in Bettencourt et al. [19],

the control flow required to handle particles crossing element boundaries leads to

warp divergence on GPUs and makes achieving vectorisation difficult on CPUs.

Nonetheless, on the Cascade Lake and ThunderX2 platforms, we are within an

order of magnitude of the non-vectorised peak performance for the three main

kernels, and the sort kernel (with low arithmetic intensity) is heavily affected

by main memory bandwidth. For the two many-core architectures (KNL and

V100), floating-point performance is further from the peak, and the performance

of each kernel is further hindered by the DRAM/HBM bandwidth.

Roofline analyses, like Figure 22, are effective at demonstrating how vital to

performance it is to balance efficient memory accesses with arithmetic intensity.

This is especially important in PIC codes, where some of the kernels are rela-

tively low in arithmetic intensity when compared to the amount of bytes that

need to be moved to and from main memory (e.g. the Boris push algorithm

requires many data accesses, but performs relatively few mathematical opera-

tions). An alternative approach to the FEM-PIC method has been explored

using EMPIRE-PIC by Brown et al. [20], whereby complex particle shapes are

supported using virtual particles based on quadrature rules. Using virtual parti-

cles in this manner increases the arithmetic intensity of particle kernels without

requiring significantly more data to be moved from and to main memory.

24

0.01 0.1 1 10 100
1

10

100

1000

10000

2968.8 GF/s (Max)

371.1 GF/s (No Vec)

185.6 GF/s (No Vec/FMA)L1
:
89
79
.2
G
B
/s

L2
:
32
87
.6
G
B
/s

D
R
A
M
:
23
0.
1
G
B
/s

Accelerate
Weight FieldsMove

Sort

FLOPs/Byte

G
F
L
O
P
/
se
c

(a) Cascade Lake

0.01 0.1 1 10 100
1

10

100

1000

10000

953.0 GF/s (Max)

285.0 GF/s (No Vec)

D
R
A
M
:
23
5
G
B
/s

LL
C
:
11
45

G
B
/s

L1
:
35
20

G
B
/s

Accelerate
Weight Fields

Move

Sort

FLOPs/Byte

(b) ThunderX2

0.01 0.1 1 10 100
1

10

100

1000

10000

2274.0 GF/s (Max)

284.3 GF/s (No Vec)

142.1 GF/s (No Vec/FMA)
L1
:
47
35
.6
G
B
/s

L2
:
17
69
.9
G
B
/s

D
R
A
M
:
63
.4
G
B
/s Accelerate

Weight FieldsMove

Sort

FLOPs/Byte

G
F
L
O
P
s/

se
c

(c) Knights Landing

0.01 0.1 1 10 100
1

10

100

1000

10000

3915.0 GF/s (No FMA)

7830.0 GF/s (Max)

H
B
M
:
77
9
G
B
/s

L2
:
33
50

G
B
/s

L1
:
14
33
6
G
B
/s

Accelerate

Weight FieldsMove

Sort

FLOPs/Byte

(d) V100

Figure 22: Roofline plots on four platforms, gathered using the Empirical
Roofline Toolkit [21]

25

3 Conclusions

This report serves as a living document of the performance of applications that

implement algorithms of interest to the NEPTUNE project. For each of the ap-

plications in this report, there are typically a number of alternative implemen-

tations, solving the same algorithm but using a different parallel programming

model. This allows us an opportunity to assess these programming models and

their appropriateness for the NEPTUNE project, with the goal of creating a

set of best practices to developing plasma physics applications that are both

performant and portable.

The results presented in the previous section show that in many cases, OpenMP

and/or MPI provide the best performance on CPU platforms, while CUDA

typically provides the best performance on NVIDIA GPUs. However, these

programming models significantly affect the portability of these applications,

with the former unable to use accelerators, and the latter unable to use host

platforms. Developing an application that can exploit all available parallelism

that is likely to be present on post-Exascale systems would therefore require

developers to maintain multiple implementations of a code – potentially one for

each class/generation of host or accelerator platforms.

For fluid codes, there are a number of domain specific languages (DSLs) that

provide abstractions for grid-based algorithms. OPS is one such DSL targeted

at structured mesh applications, and capable of code generation targeting MPI,

OpenMP, OpenACC, CUDA and HIP. Our study with TeaLeaf shows that it is

able to provide performance that in many cases is on par with native OpenMP

and MPI, and within 2× native CUDA performance on a P100. However, such

DSLs often reduce the flexibility afforded to a developer.

Besides code generation from a higher-level abstraction, GPUs can be targeted

using pragma-based language extensions such as OpenMP 4.5 and OpenACC.

Both offer similar functionality, but only OpenMP 4.5 allows portability between

accelerator and non-accelerator platforms. However, our evaluation has shown

that although OpenMP 4.5 allows us to target GPUs, different pragmas are

often required to achieve sufficient performance on accelerators when compared

to host systems, meaning that multiple implementations would likely need to

be maintained. This is well demonstrated by our miniFE results, where the

26

OpenMP with offload code does successfully execute on the CPU architectures

but offers significantly worse performance than OpenMP itself.

The template libraries, Kokkos and RAJA are both capable of providing full

portability across all architectures, and in most cases offer good performance.

The significant exception from our results is for the Intel Knights Landing plat-

form, where Kokkos performance is typically poor. This performance gap is

likely the result of a bug or memory configuration issue, but will not be inves-

tigated further due to the discontinuation of the KNL architecture. Regardless,

where we are able to compare Kokkos or RAJA to a native programming model,

they are typically able to achieve a runtime that is no more than 20% greater

than the native programming model on CPUs and no more than 50% greater

than the native programming model on GPUs, but from a single code base.

Another approach that is gaining traction is that of SYCL/DPC++. In our cur-

rent benchmark set, only a single application is available implemented in SYCL

(miniFE), and that implementation has been generated using Intel’s DPC++

Compatibility Toolkit. The resulting application is portable across platforms

but in most cases has performance that is only slightly better than the available

OpenMP 4.5 implementation. This warrants additional exploration to account

for this performance difference; for such an immature programming model, it

is likely that choice of compiler, and some very simple optimisations will bring

performance more in line with other approaches to portability. As this project

progresses, hopefully more applications will be available for evaluation, and

compiler support will evolve.

For the particle methods tranche of applications, they are predominantly avail-

able using Kokkos as a parallel programming model. This does allow portable

execution across all available platforms, but makes it difficult to compare per-

formance against native implementations. In the case of VPIC, we can see

that Kokkos provides performance that is in line with the original, unvectorised

implementation on all platforms, and allows us to extend our platform set to

include GPU devices. However, the greatest performance comes from using

non-portable vector intrinsics, which in this case means maintaining an imple-

mentation for each set of vector instructions (i.e. SSE, AVX, AVX-2, Altivec,

etc.).

27

3.1 Limitations

The work presented in this report represents our initial evaluation of approaches

to performance portability. We intend that this document is continually updated

as new data becomes available, and as applications and implementations are

developed. Currently, the data in this report contains a few limitations that we

aim to rectify in future.

Firstly, due to its immaturity relative to other approaches, there are a lack of rel-

evant fluid and particle-in-cell applications available that use the SYCL/DPC++

programming model. This means that with the exception of miniFE, it is dif-

ficult to assess its appropriateness as an approach to performance portable ap-

plication development. A recent study by Reguly et al. has shown that for a

computational fluid dynamic application SYCL may be able to achieve compa-

rable performance, though this may require different code paths for different

hardware [22].

Secondly, the PIC codes assessed in this report all use the Kokkos programming

model. Again, this limits our ability to reason about the appropriateness of

this approach for PIC codes, but we can use the VPIC data to show that while

we cannot match native, hand-vectorised performance, it can provide perfor-

mance that is similar to the original implementation, and can be extended to

heterogeneous architectures.

Finally, we have not currently evaluated performance on any AMD Radeon

Instinct or Intel Xe hardware, due to availability of test platforms. We aim

to add these platforms in the near future, when available, either through the

COSMA8 system at Durham University, or through Amazon EC2 instances.

28

References

[1] S.J. Pennycook, J.D. Sewall, and V.W. Lee. Implications of a metric for

performance portability. Future Generation Computer Systems, 92:947 –

958, 2019.

[2] Jason Sewall, S. John Pennycook, Douglas Jacobsen, Tom Deakin, and

Simon McIntosh-Smith. Interpreting and visualizing performance portabil-

ity metrics. In 2020 IEEE/ACM International Workshop on Performance,

Portability and Productivity in HPC (P3HPC), pages 14–24, 2020.

[3] B D Dudson, M V Umansky, X Q Xu, P B Snyder, and H R Wilson.

BOUT++: A framework for parallel plasma fluid simulations. Computer

Physics Communications, 180:1467–1480, 2009.

[4] C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo,

D. De Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu,

Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R.M. Kirby, and

S.J. Sherwin. Nektar++: An open-source spectral/hp element framework.

Computer Physics Communications, 192:205–219, 2015.

[5] T D Arber, K Bennett, C S Brady, A Lawrence-Douglas, M G Ramsay, N J

Sircombe, P Gillies, R G Evans, H Schmitz, A R Bell, and C P Ridgers.

Contemporary particle-in-cell approach to laser-plasma modelling. Plasma

Physics and Controlled Fusion, 57(11):113001, sep 2015.

[6] Tom Deakin, Simon McIntosh-Smith, James Price, Andrei Poenaru,

Patrick Atkinson, Codrin Popa, and Justin Salmon. Performance porta-

bility across diverse computer architectures. In 2019 IEEE/ACM Inter-

national Workshop on Performance, Portability and Productivity in HPC

(P3HPC), pages 1–13, 2019.

[7] R. O. Kirk, G. R. Mudalige, I. Z. Reguly, S. A. Wright, M. J. Martineau,

and S. A. Jarvis. Achieving Performance Portability for a Heat Conduction

Solver Mini-Application on Modern Multi-core Systems. In 2017 IEEE

International Conference on Cluster Computing (CLUSTER), pages 834–

841, Sep. 2017.

[8] Matthew Martineau, Simon McIntosh-Smith, and Wayne Gaudin. Assess-

ing the performance portability of modern parallel programming models

29

using tealeaf. Concurrency and Computation: Practice and Experience,

29(15):e4117, 2017.

[9] Simon McIntosh-Smith, Matthew Martineau, Tom Deakin, Grzegorz

Pawelczak, Wayne Gaudin, Paul Garrett, Wei Liu, Richard Smedley-

Stevenson, and David Beckingsale. TeaLeaf: A Mini-Application to Enable

Design-Space Explorations for Iterative Sparse Linear Solvers. In 2017

IEEE International Conference on Cluster Computing (CLUSTER), pages

842–849, 2017.

[10] Richard Frederick Barrett, Li Tang, and Sharon X. Hu. Performance and

Energy Implications for Heterogeneous Computing Systems: A MiniFE

Case Study. 12 2014.

[11] Alan B. Williams. Cuda/GPU version of miniFE mini-application. 2 2012.

[12] Meng Wu, Can Yang, Taoran Xiang, and Daning Cheng. The research and

optimization of parallel finite element algorithm based on minife. CoRR,

abs/1505.08023, 2015.

[13] David F. Richards, Yuri Alexeev, Xavier Andrade, Ramesh Balakrishnan,

Hal Finkel, Graham Fletcher, Cameron Ibrahim, Wei Jiang, Christoph

Junghans, Jeremy Logan, Amanda Lund, Danylo Lykov, Robert Pavel,

Vinay Ramakrishnaiah, et al. FY20 Proxy App Suite Release. Technical

Report LLNL-TR-815174, Exascale Computing Project, September 2020.

[14] J. C. Camier. Laghos summary for CTS2 benchmark. Technical Report

LLNL-TR-770220, Lawrence Livermore National Laboratory, March 2019.

[15] Robert Anderson, Julian Andrej, Andrew Barker, Jamie Bramwell, Jean-

Sylvain Camier, Jakub Cerveny, Veselin Dobrev, Yohann Dudouit, Aaron

Fisher, Tzanio Kolev, Will Pazner, Mark Stowell, Vladimir Tomov, Ido

Akkerman, Johann Dahm, David Medina, and Stefano Zampini. Mfem: A

modular finite element methods library. Computers & Mathematics with

Applications, 81:42–74, 2021. Development and Application of Open-source

Software for Problems with Numerical PDEs.

[16] K. J. Bowers, B. J. Albright, B. Bergen, L. Yin, K. J. Barker, and D. J.

Kerbyson. 0.374 Pflop/s Trillion-Particle Kinetic Modeling of Laser Plasma

Interaction on Roadrunner. In Proceedings of the 2008 ACM/IEEE Con-

ference on Supercomputing, SC ’08. IEEE Press, 2008.

30

[17] Robert Bird, Nigel Tan, Scott V Luedtke, Stephen Harrell, Michela Taufer,

and Brian Albright. VPIC 2.0: Next Generation Particle-in-Cell Simula-

tions. IEEE Transactions on Parallel and Distributed Systems, pages 1–1,

2021.

[18] Matthew T. Bettencourt and Sidney Shields. EMPIRE Sandia’s Next Gen-

eration Plasma Tool. Technical Report SAND2019-3233PE, Sandia Na-

tional Laboratories, March 2019.

[19] Matthew T. Bettencourt, Dominic A. S. Brown, Keith L. Cartwright,

Eric C. Cyr, Christian A. Glusa, Paul T. Lin, Stan G. Moore, Duncan A. O.

McGregor, Roger P. Pawlowski, Edward G. Phillips, Nathan V. Roberts,

Steven A. Wright, Satheesh Maheswaran, John P. Jones, and Stephen A.

Jarvis. EMPIRE-PIC: A Performance Portable Unstructured Particle-in-

Cell Code. Communications in Computational Physics, x(x):1–37, March

2021.

[20] Dominic A.S. Brown, Matthew T. Bettencourt, Steven A. Wright, Satheesh

Maheswaran, John P. Jones, and Stephen A. Jarvis. Higher-order particle

representation for particle-in-cell simulations. Journal of Computational

Physics, 435:110255, 2021.

[21] Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J. Ligocki,

Matthew J. Cordery, Nicholas J. Wright, Mary W. Hall, and Leonid Oliker.

Roofline Model Toolkit: A Practical Tool for Architectural and Program

Analysis. In Stephen A. Jarvis, Steven A. Wright, and Simon D. Ham-

mond, editors, High Performance Computing Systems. Performance Model-

ing, Benchmarking, and Simulation, pages 129–148. Springer International

Publishing, 2015.

[22] Istvan Z. Reguly, Andrew M. B. Owenson, Archie Powell, Stephen A.

Jarvis, and Gihan R. Mudalige. Under the Hood of SYCL – An Initial

Performance Analysis with An Unstructured-Mesh CFD Application. In

Bradford L. Chamberlain, Ana-Lucia Varbanescu, Hatem Ltaief, and Piotr

Luszczek, editors, High Performance Computing, pages 391–410. Springer

International Publishing, 2021.

31

	Introduction
	Method of Evaluation

	Application Evaluations
	TeaLeaf
	Performance
	Portability

	miniFE
	Performance
	Portability

	Laghos
	Performance
	Portability

	CabanaPIC
	Performance

	VPIC
	Performance
	Portability

	EMPIRE-PIC
	Performance
	Portability

	Conclusions
	Limitations

	References

