
T/AW087/21

Support and Coordination

Report 2057699-TN-03-02

Progress on Development of an FEM-PIC Miniapp

Steven Wright and Edward Higgins

University of York

Gihan Mudalige, Ben McMillan, and Tom Goffrey

University of Warwick

February 9, 2023

warter
Sticky Note
should be TN-03-03



Changelog

January 2023

• Made all corrections from Nov 2022 (see attached ‘Corrections’ document).

• Included an updated performance section to represent the current state of the application’s perfor-

mance.

September 2022

• Updated design and implementation section to include details of the mini-app developed so far.

• Added some initial performance results to be iterated on later.

i



1 Executive Summary

The goal of the NEPTUNE project (NEutrals & Plasma TUrbulence Numerics for the Exascale) is the

development a new code for the simulation of a next generation fusion reactor. The initial focus of NEPTUNE

is in the simulation of the edge region of a tokamak and the “exhaust”, or “divertor”, region. Modelling this

edge region likely requires the use of both fluid-based and particle-based models working in tandem.

Consequently, Project NEPTUNE is based around four work streams, where FM-WP2 (plasma multiphysics

model) is focused on fluid models and FM-WP3 (neutral gas & impurity model) is focused on particle-based

methods. Some of the work in these packages has been based around Bout++, Nektar++ and EPOCH.

Bout++ and Nektar++ are both fluid models based on finite differencing and a spectral element method,

respectively, while EPOCH is a particle-in-cell (PIC) application.

This work package (FM-WP4 (code structure and coordination)) is in concerned with establishing “best

practices” when engineering of a simulation code combining elements of these applications with a focus on

performance and portability, in particular to heterogeneous Exascale-class architectures.

In our previous project (T/NA086/20) we evaluated a number of mini-applications in order to assess the per-

formance portability of various approaches to developing Exascale-ready software. We evaluated a number

of codes that implement a fluid model, using a variety of methodologies, and did so in a number of program-

ming models. This has provided valuable insight into the performance portability of various approaches to

heterogeneous software development for fluid-based applications.

However, our initial investigation of particle-methods was based on a limited set of applications, with each

only implemented in the Kokkos performance portability layer. While there are a number of PIC codes

available for evaluation (e.g. EPOCH, PICSAR, WarpX, EMPIRE-PIC), these are typically very large

codes, implemented in only a single programming language. Assessing performance portable approaches to

programming PIC codes is therefore difficult with these codebases.

This work package therefore seeks to develop a new PIC mini-application that is small enough that it can be

used for evaluation, but complex enough to be somewhat representative of the PIC element of NEPTUNE –

in particular the particle pushing kernels. Since NEPTUNE will likely require the use of complex geometries,

our PIC code will be based on an unstructured grid approach, and thus will necessitate indirect memory

access patterns.

This report documents our progress towards the development of this mini-application. The mini-application

is available for evaluation here: https://github.com/ejh516/mini-pic1

1We will move this repository to the ExCALIBUR-NEPTUNE github organisation when licensing issues are resolved. It will
then move to: https://github.com/ExCALIBUR-NEPTUNE/mini-fem-pic

1

https://github.com/ejh516/mini-pic
https://github.com/ExCALIBUR-NEPTUNE/mini-fem-pic


2 Requirements

The mini-application that will be developed as part of this work package will be based on the Particle-in-

Cell (PIC) method, using a Finite-Element Method (FEM) field solver. This is similar to the EMPIRE-PIC

application [1], but miniaturised to allow rapid evaluation of performance portable programming models.

2.1 The Particle-in-Cell Method

The PIC method is a well established procedure for modelling the behaviour of charged particles in the

presence of electric and magnetic fields [2, 3]. Discrete particles are tracked in a Lagrangian frame, while

the electric and magnetic fields are stored on stationary points on a fixed Eulerian mesh.

The electric and magnetic fields evolve according to Maxwell’s equations (Equations (1)-(4)).

∇ · E⃗ =
ρ

ϵ0
(1)

∇ · B⃗ = 0 (2)

∂B⃗

∂t
= −∇× E⃗ (3)

∂E⃗

∂t
=

1

µ0ϵ0
∇× B⃗ − 1

ϵ0
J⃗ (4)

While the force experienced by a particle is calculated according to the Lorentz force (Equation (5)).

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
(5)

A typical PIC method can be thought of as two coupled solvers where one is responsible for updating the

electric and magnetic fields according the Maxwell’s equations, while another calculates the movement of

particles according to the Lorentz force. These are referred to as the field solver and the particle mover

(sometimes called the particle pusher), respectively.

The main time loop of the core PIC algorithm consists of: solving the field values on the computational

mesh; weighting these values to determine the fields at particle locations; updating the particle velocities

and positions; and depositing the particle charge/current back to the mesh. The algorithm is summarised

in Figure 1.

2



Figure 1: Flow chart summarising the key components of the PIC algorithm

2.2 The Finite Element Method

Many PIC codes rely on the finite-difference time-domain (FDTD) method devised by Yee in 1966 [4]. In

these codes, the time-dependent PDEs are solved using a fixed, staggered grid in a leapfrog manner. EPOCH

and VPIC are both examples of this, where particles are tracked on a structured square or cubic grid [5, 6].

For complex geometries (i.e. angled and curved) a regular structured grid approach requires a mesh with

high spatial resolution and significant approximation, leading to increased computational intensity and a loss

of accuracy. Instead, for these geometries alternative methods may be required. Bout++ uses a curvilinear

coordinate system to more accurately represent curved geometries [7], while Nektar++ can use a high-

order finite-element scheme with spectral element basis functions to more closely fit a mesh to complex

geometries [8].

In the standard PIC method, before calculating the movement of particles, the value of the electric and

magnetic fields must be calculated at each particle position. For the structured case, this may be a simple

interpolation based on the distance from each edge of the containing cell. For the unstructured case, this

may represent a significant computational undertaking.

One approach to updating the electric and magnetic fields for an unstructured grid is the finite element

method. This involves splitting the simulation region up into discrete cells and approximating the values of

the fields from the values of the fields at particular points within these cells. There are a number of different

methods for discretising space into finite elements and storing the field values on element edges and faces.

The EMPIRE-PIC code, developed at Sandia National Laboratories, is an example of an FEM-PIC code,

solving the electric and magnetic fields on a tetrahedral mesh [1]. In EMPIRE-PIC, the particle kernels

(weighting of the fields to particles, the weighting of charge/current to the grid and the movement of particles)

represents a greater proportion of the execution time than the linear solve on most platforms. Evaluating

particle-based methods on a structured code is likely to partially obfuscate the computational cost of these

particle kernels.

3



In order to provide a more realistic view of the likely performance and performance portability of approaches

to these particle methods therefore requires a more representative mini-application.

2.3 Requirements for an FEM-PIC mini-application

Our previous evaluation of approaches to performance portability was primarily concerned with fluid-based

simulations, due to a lack of available PIC mini-applications. The PIC applications that were evaluated

were only available in a single programming model each, and in some cases were not representative of the

NEPTUNE use-case.

Therefore the remainder of this report details the development of a simple FEM-PIC mini-application to facil-

itate the exploration of performance portable approaches to Exascale software development for unstructured-

mesh, particle-based codes.

The guiding principles for this mini-application are:

1. A simple, understandable implementation of the a basic FEM solver and appropriate particle kernels.

2. At most 5,000 lines of C/C++ code (and preferably less than 3,000), to facilitate rapid redeployment.

3. Concise and appropriate diagnostic information, with timing/performance information relating to each

of the key particle kernels.

4



3 Design and Implementation

In the previous iteration of this report (2057699-TN-03-01), we reviewed a number of potential base ap-

plications for the mini-application. We have since discovered an existing PIC code written in C++ that is

relatively simple (fewer than 1500 lines of code) and uses unstructured grids, as is required for this project [9].

This will serve as the base for our mini-application.

The base application implements the electrostatic PIC method (i.e. it assumes that ∂B⃗
∂t = 0). Since the

inclusion of magnetic fields adds complexity to the codebase without changing the performance profile

significantly, we shall continue in the electrostatic regime for our mini-application.

The base application is only set up to simulate a single system: ion flow past a charged sphere. As such,

the code will be modified to allow a range of systems to be studied. This will allow us to explore algorithm

performance across a range of system sizes and configurations.

Figure 2 provides an overview of the mini-application, demonstrating the three key kernels identified in the

previous iteration of this report.

Start

Read in mesh data

Initialise finite
element field solver

Inject new ions

Push the particles 1○

Deposit charge back
onto the grid 2○

Solve ∇2ϕ = −ρ 3○

Calculate
E⃗f = −∇ϕ 3○

Calculate
E⃗f = −∇ϕ 3○

Finished simulation? Stop

no

yes

Figure 2: Program flow of the mini-application, identifying the three key computational kernels: 1) particle
pushing, 2) depositing charge and 3) calculating fields.

5



3.1 Computational Kernels

3.1.1 Pushing Particles

In the previous iteration of this report, there were discussions around how the particles were stored in

memory. For this mini-application, the particles are currently stored as an Array-of-structs (AoS), as shown

in Figure 3. As was previously discussed, this is likely better than storing the particles in a linked list, as

1 /* particle class */

2 struct particle {

3 double pos [3];

4 double vel [3];

5 double lc[4]; /* particle ’s weights */

6 int cell_index; /*last cell known to contain this particle */

7 };

8

9 /* species class*/

10 class Species {

11 public:

12 std::vector <particle > particles;

13 double mass;

14 double charge;

15 // etc...

16 };

Figure 3: The structure of a species of particles in the mini-application.

is the case in EPOCH [5]. It is not entirely clear whether it is better using structs-of-arrays or arrays-of-

structs [10], or whether particles should be stored in a global list, or in a list per-cell (and indeed whether

different approaches suit different hardware). These are considerations we can rapidly investigate using this

mini-application.

Since we are neglecting the magnetic field, a full electromagnetic integrator that takes into account the

magnetic field, such as the Boris method [11], is not required. Instead a simpler leapfrog algorithm should

be sufficient [12]. This works by storing the positions and velocities offset from one another by half a time

step, as described below:

v⃗ − 1
2
= v⃗ 0 −

qE⃗ 0

2m
∆t (6)

x⃗ n+1 = x⃗ n + v⃗n+ 1
2
∆t (7)

v⃗ n+ 1
2
= v⃗ n− 1

2
+

qE⃗ n

m
∆t (8)

While higher order time integration algorithms do exist, it is not necessary to investigate them in this project.

This is because for the full electrodynamic case that is of interest, the Boris method is known to work well.

6



3.1.2 Depositing Charge

Once the particles have been moved, the charge density needs to be updated. This is done by first finding

which cell each particle is in, and then distributing that particle across the nodes of that cell.

In order to calculate which cell an existing particle is in, a neighbour search is performed. This is done by

first looking in the cell that the particle was last in, then searching recursively its neighbours in the direction

indicated by the cell functions. The process for doing this is described in reference [9].

New particles are created with random positions on a set of user-specified “inlet” faces. In this case, the cell

that the particle is in is already known, so there is no cost involved with calculating it.

3.1.3 Calculating Fields

When the charge density has been evaluated, the ϕ and E⃗ fields can be calculated. This is done using the

finite element method (FEM) [13]. Fundamentally, ϕ needs to be calculated by solving the linear Poisson

equation:

∇2ϕ = −ρ (9)

This can be reformulated to the matrix equation:

Kd = F (10)

where K is the stiffness matrix which contains information about the finite element discretisation, d is the

solution vector which relates to the values of ϕ on the nodes and F is the force vector whose elements contain

the negative of the inner product of the density with the basis functions.

The vector d can be calculated by solving Equation (10). In the mini-app, this equation may be solved

using one of two methods. This code implements both a simple Gauss-Seidel linear solver and an interface

to the LAPACK library routine DGSEV2. The LAPACK routine has the advantage that, for a sufficiently

optimised library, the performance should be near-optimal for any particular architecture. It also often has

features like multi-threading available “out of the box”. However if no LAPACK library is available, or if an

un-optimised library is provided, the Gauss-Seidel function is able to provide the same functionality. Having

the routine explicitly coded in the program also allows for manual optimisation and parallelisation, targeting

specific hardware.

The electric field E⃗ can now be calculated by finding the gradient of ϕ:

E⃗ = −∇ϕ (11)

2Since the Jacobian matrix should be symmetrical, the DSYSV routine would likely be more efficient, and require only half of
the Jacobian to be required. This will be investigated further in the future.

7



3.2 Performance Profiling

In order to assess the performance of the mini-application, a simple function tracer/profiler was added,

inspired by timing routines taken from the CASTEP [14] materials modelling code. This works by recording

the time that each function is entered or exited, and aggregating the times over the function names. The

results of this aggregation are stored in an object that can later be queried to get profiling information.

As each function of interest is called, a TraceCaller object is created and the constructor records the current

wall time. At the end of the function, as this object leaves scope, its destructor records the time again and

records the time elapsed between the two. These operations call enter() and exit() methods on the object

that holds the profiling information. Figure 4 demonstrates how a function can be traced and the results

stored in the trace::current object.

1 #define TRACE_ME TraceCaller _TRACE_OBJECT(__func__);

2

3 TraceCaller(std:: string name_) : name(std::move(name_)) {

4 trace:: current.enter(name);

5 }

6

7 ~TraceCaller () {

8 trace:: current.exit(name);

9 }

10

11 void someInterestingFunc { TRACE_ME;

12 ...

13 }

Figure 4: An example of how a function’s performance is profiled.

When considering parallel programs, it is important to think about how this will behave. In terms of

traditional MPI workloads, each process can generate its own profile which the user can aggregate themselves

after the application has run. Similarly, libraries such as OpenMP do not have a problem as routines are

generally entered together. In this case sensible decisions can be made, such as recording the time only on

the master thread. When it comes to more complicated parallel workflows however, some thought will have

to go into how to record and aggregate this information.

8



4 Performance

Figure 5: Mesh for the test system: Deuterium flow through a pipe.

The mini-application is run on a test system, consisting of Deuterium ion flow through a pipe, as shown in

Figure 5. The pipe is 4 mm in length with a 1 mm radius, and is divided up into 9337 elements with an

average edge length of ∼0.2 mm. Faces on one end of the pipe are designated as inlet faces and the outer

wall is fixed at a higher potential to retain the ions within the pipe.

The plasma is fixed at 2× 108K and the ions are injected with an input velocity of 1× 108m/s. In order to

evaluate how the code scales as the number of ions change, 10 calculations are run for a range of ion densities

between 2 × 1015 ions/m3 and 2 × 1016 ions/m3. This equates to around 10-130 particles per element on

average, or around 120,000 to 1,200,000 particles in total.

The system is run on a single core of the Viking cluster at York, which contains Intel(R) Xeon(R) Gold 6138

CPUs. The application is compiled with both the GNU C++ 11.3.0 and the Intel OneAPI C++ compiler

version 2022.1.0 and the results are compared.

Figures 6(a) and 6(b) show the performance breakdown of the key routines in the mini-pic proxy app. In

the case of this system, the majority of the time is spent in the MoveParticles routine for any more than

around 20 ions per element. This time continues to grow approximately linearly with the number of particles

in each element. As expected, the cost of ComputePhi does not vary significantly, as this only depends on the

number of elements in the simulation. Compared to previous versions of the program, the cost of injecting

new particles each iteration is now significantly smaller than the cost of moving the particles, also growing

linearly with the number of particles being injected.

9



0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140

Ti
m

e
 (

s)

Particles/Element

total-time
move-particles

compute-phi
inject-ions

(a) GNU compilers

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140

Ti
m

e
 (

s)

Particles/Element

total-time
move-particles

compute-phi
inject-ions

(b) Intel compilers

Figure 6: Timing breakdown of the key routines in the mini-pic application, for both the Intel and GNU
compilers running on the Viking cluster.

10



References

[1] Matthew T. Bettencourt, Dominic A. S. Brown, Keith L. Cartwright, Eric C. Cyr, Christian A. Glusa,

Paul T. Lin, Stan G. Moore, Duncan A. O. McGregor, Roger P. Pawlowski, Edward G. Phillips,

Nathan V. Roberts, Steven A. Wright, Satheesh Maheswaran, John P. Jones, and Stephen A. Jarvis.

EMPIRE-PIC: A Performance Portable Unstructured Particle-in-Cell Code. Communications in Com-

putational Physics, x(x):1–37, March 2021.

[2] C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation. Plasma Physics Series.

Institute of Physics Publishing, Bristol BS1 6BE, UK, 1991.

[3] John M. Dawson. Particle Simulation of Plasmas. Reviews of Modern Physics, 55:403–447, Apr 1983.

[4] Kane S. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in

Isotropic Media. IEEE Transactions on Antennas and Propagation, pages 302–307, 1966.

[5] T D Arber, K Bennett, C S Brady, A Lawrence-Douglas, M G Ramsay, N J Sircombe, P Gillies, R G

Evans, H Schmitz, A R Bell, and C P Ridgers. Contemporary particle-in-cell approach to laser-plasma

modelling. Plasma Physics and Controlled Fusion, 57(11):113001, sep 2015.

[6] Robert Bird, Nigel Tan, Scott V Luedtke, Stephen Harrell, Michela Taufer, and Brian Albright. VPIC

2.0: Next Generation Particle-in-Cell Simulations. IEEE Transactions on Parallel and Distributed

Systems, pages 1–1, 2021.

[7] Benjamin Daniel Dudson, Peter Alec Hill, David Dickinson, Joseph Parker, Adam Dempsey, Andrew

Allen, Arka Bokshi, Brendan Shanahan, Brett Friedman, Chenhao Ma, David Schwörer, Dmitry Mey-

erson, Eric Grinaker, George Breyiannia, Hasan Muhammed, Haruki Seto, Hong Zhang, Ilon Joseph,

Jarrod Leddy, Jed Brown, Jens Madsen, John Omotani, Joshua Sauppe, Kevin Savage, Licheng Wang,

Luke Easy, Marta Estarellas, Matt Thomas, Maxim Umansky, Michael Løiten, Minwoo Kim, M Leconte,

Nicholas Walkden, Olivier Izacard, Pengwei Xi, Peter Naylor, Fabio Riva, Sanat Tiwari, Sean Farley,

Simon Myers, Tianyang Xia, Tongnyeol Rhee, Xiang Liu, Xueqiao Xu, and Zhanhui Wang. BOUT++,

10 2020.

[8] C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia, S. Yakovlev,

J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto,

R.M. Kirby, and S.J. Sherwin. Nektar++: An open-source spectral/hp element framework. Computer

Physics Communications, 192:205–219, 2015.

[9] Particle In Cell Consulting LLC. Finite Element Particle in Cell (FEM-PIC). https://www.

particleincell.com/2015/fem-pic/ (accessed October 10, 2022), 2015.

[10] Robert F Bird, Patrick Gillies, Michael R Bareford, Andy Herdman, and Stephen Jarvis. Performance

Optimisation of Inertial Confinement Fusion Codes using Mini-applications. The International Journal

of High Performance Computing Applications, 32(4):570–581, 2018.

11

https://www.particleincell.com/2015/fem-pic/
https://www.particleincell.com/2015/fem-pic/


[11] J Boris. Relativistic Plasma Simulation: Optimization of a Hybrid Code. In Proceedings of the Fourth

Conference on Numerical Simulation of Plasmas, pages 3–68, Naval Research Laboratory, Washington,

D.C, July 1971.

[12] Toshiki Tajima. Computational Plasma Physics: With Applications to Fusion and Astrophysics. CRC

press, 2018.

[13] Thomas JR Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.

Courier Corporation, 2012.

[14] Stewart J. Clark, Matthew D. Segall, Chris J. Pickard, Phil J. Hasnip, Matt I. J. Probert, Keith

Refson, and Mike C. Payne. First principles methods using CASTEP. Zeitschrift für Kristallographie -

Crystalline Materials, 220(5-6):567–570, 2005.

12


	Executive Summary
	Requirements
	The Particle-in-Cell Method
	The Finite Element Method
	Requirements for an FEM-PIC mini-application

	Design and Implementation
	Computational Kernels
	Pushing Particles
	Depositing Charge
	Calculating Fields

	Performance Profiling

	Performance
	References

