
T/AW088/22

Software Support Procurement

Report 2067270-TN-03-01

D2.1 – Progress Towards DSL Adoption

Revision 1.0

Steven Wright, Edward Higgins, and Christopher Ridgers

University of York

Gihan Mudalige and Zaman Lantra

University of Warwick

May 19, 2023



Changelog

1



1 Summary

Project NEPTUNE (NEutrals & Plasma TUrbulence Numerics for the Exascale) is concerned with the

development a new code for the simulation of a next generation fusion reactor. Both fluid and particle

models will be required by such a complex simulation code, along with methods of coupling the two models.

In NEPTUNE, the fluid model is likely to take the form of a high-order finite element method, while the

particle model will necessarily be particle-in-cell (PIC).

In our previous report (2057699-TN-04-01) we proposed a domain specific language (DSL) for particle-in-cell

simulations, providing the API calls specific to these simulations. The DSL that we propose right now is

a loop-level abstraction, specialising code generation for the hardware. A higher-level abstraction allowing

developers to specify problems in terms of mathematical equations can be built on top of this, targeting the

DSL as the backend.

This report documents our progress towards developing a DSL that can be used for PIC methods and

presents performance results for an application developed using the proposed DSL.

1.1 The Particle-in-Cell Method

The PIC method is a well established procedure for modelling the behaviour of charged particles in the

presence of electric and magnetic fields [1, 2]. Discrete particles are tracked in a Lagrangian frame, while

the electric and magnetic fields are stored on stationary points on a fixed Eulerian mesh.

The electric and magnetic fields evolve according to Maxwell’s equations (Equations (1)-(4)).

∇ · E⃗ =
ρ

ϵ0
(1)

∇ · B⃗ = 0 (2)

∂B⃗

∂t
= −∇× E⃗ (3)

∂E⃗

∂t
=

1

µ0ϵ0
∇× B⃗ − 1

ϵ0
J⃗ (4)

While the force experienced by a particle is calculated according to the Lorentz force (Equation (5)).

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
(5)

A typical PIC method can be thought of as two coupled solvers where one is responsible for updating the

electric and magnetic fields according the Maxwell’s equations, while another calculates the movement of

particles according to the Lorentz force. These are referred to as the field solver and the particle mover

(sometimes called the particle pusher), respectively.

The main time loop of the core PIC algorithm consists of: solving the field values on the computational

2



mesh; weighting these values to determine the fields at particle locations; updating the particle velocities

and positions; and depositing the particle charge/current back to grid points. The algorithm is summarised

in Figure 1.

Figure 1: Flow chart summarising the key components of the PIC algorithm

Since the field solve acts upon a grid or a mesh, it can easily be implemented using numerous DSLs that

have been developed for such simulations (for example, OP2 or OPS). The goal of this work is to develop a

DSL extension that allows us to implement the particle mover within the same framework.

3



2 Developing a PIC Domain Specific Language

Domain Specific Languages (DSLs) allow us to bridge the gap between domain scientists and application

developers by allowing the domain specialists to write their calculations using high level abstractions specific

to their domain. These abstractions typically take the form an API (Application Programming Interface)

embedded in a host language such as C/C++ or Fortran.

A DSL and its associated parser(s)/compiler(s) can then translate this high level abstraction into various low-

level parallelisations such as OpenMP, MPI, CUDA, HIP, etc., introducing optimisations to the code using

compiler techniques such as source-to-source code translation and code generation. The lower-level imple-

mentation focuses on how the computation can be executed in the most efficient way on the given hardware

platform, extracting and analysing the computation, data access/communication and synchronisation.

The DSL that we propose right now is a loop-level abstraction, specialising code generation for the hardware.

A higher-level abstraction allowing developers to specify problems in terms of mathematical equations can

be built on top of this. Similar high-level abstractions have been developed with OpenSBLI1 (generating

OPS loop-level DSL [3]) and Firedrake2 (generating PyOP2 [4]). Such a higher level abstraction could be

developed targeting the OP-PIC DSL as the backend, however we have not focused on this at this time. We

will need a better understanding of specifying the problem at a mathematical level for this.

We have identified numerous DSLs for developing structured and unstructured mesh computations (e.g.

OP2 [5, 6], OPS [7, 3], Bout++ [8, 9], PATUS [10], UFL [11], PSyclone [12], etc.), but none that include

support for particle-in-cell methods. In this report, we detail our progress towards developing a new DSL

with a focus on implementing PIC methods. We focus on OP2’s loop-level abstraction as a first step towards

a proposal for a high-level DSL, like that found in Firedrake [11].

2.1 OP2: A DSL for Unstructured Mesh Computations

OP2 [5] is a high-level abstraction and active library targeting parallel execution of Unstructured mesh ap-

plications. It has the capability of auto-generating code for OpenMP, MPI, CUDA, OpenACC and OpenCL,

using source-to-source translation. It has a well defined API and the execution algorithm can be divided in

to four distinct parts:

(1) Defining sets

(2) Defining connectivity (or mapping) between the sets

(3) Defining data on sets

(4) Operations over sets

1https://opensbli.github.io/
2https://www.firedrakeproject.org

4

https://opensbli.github.io/
https://www.firedrakeproject.org


For example, a set could be of cells, nodes, edges and/or faces of the mesh; data on sets could be the current

over an edge; connectivity could be the mapping between an edge to its connected two nodes; and the

operations could be the kernel calculations (solving partial differential equations) by iterating over edges.

Unstructured mesh applications inherently have indirect data accesses, and the main challenges in developing

an application will be on data locality, data layout in memory, data dependencies and data conflicts. OP2

handles some of these issues by colouring of the mesh, using atomics (hardware dependent) and partitioning

with halo regions. Since the PIC DSL that is to be developed during this research is unstructured mesh, the

new development could be inspired by OP2.

2.2 OP-PIC: Unstructured Mesh Particle-in-Cell DSL Design

As stated in Section 1.1, the main loop of a standard PIC algorithm involves four key steps:

(1) Solve Electric and Magnetic Fields (Field Solver)

(2) Weight fields to particles

(3) Push/Move particles

(4) Weight particles to mesh

In many codes, additional routines may also be interleaved, for example, injecting particles or computing

particle collisions. In all of these routines the computations typically involves iterating over particles or mesh

points (i.e., cells, nodes, edges etc.) and solves mathematical equations such as partial differential equations.

Figure 2: An example unstructured mesh with cells and nodes

Similar to the OP2 execution algorithm (briefly described in Section 2.1), the proposed DSL comprises of

the same four distinct parts. Here we give an overview of the API for particle movement within a simple 2D

quadrilateral unstructured mesh.

5



2.2.1 Defining Sets

The mesh in Figure 2 can be defined as a collection of cells (quadrilaterals) and nodes. There are 6 cells and

12 nodes, which can be declared using opp decl set.

1 int n_nodes = 12; int n_cells = 6;

2

3 opp_set nodes_set = opp_decl_set(n_nodes , "mesh_nodes");

4 opp_set cells_set = opp_decl_set(n_cells , "mesh_cells");

The particle sets can be declared with opp decl particle set allowing multiple particle sets to be defined

if there are more than one particle species.

1 opp_set particles_set = opp_decl_particle_set("x particles", cells_set);

The above will create an empty particle set, assuming that particles will be injected during the main loop.

However, if the initial particle size is known, it could be set when defining the particle set with the API call

below.

1 opp_set opp_decl_particle_set(int size , char const *name , opp_set cells_set);

2.2.2 Defining Connectivity (or Mapping) Between the Sets

The connectivity is declared through mappings between sets, using opp decl map. Considering the mesh in

Figure 2, there could be cell to node mappings as well as cell to cell mappings.

1 int NODES_PER_CELL = 4; int NEIGHBOUR_CELLS = 4;

2

3 int* cell_to_nodes = {1,2,5,6, 2,3,7,6, 3,4,7,8, 5,6,9,10, 6,7,10,11, 7,8,11,12};

4 int* cell_to_cells = {2,4,-1,-1, 1,3,5,-1, 2,6,-1,-1, 1,5,-1,-1, 2,4,6,-1, 3,5,-1,-1};

5

6 opp_map cell_to_nodes_map = opp_decl_map(cells_set , nodes_set , NODES_PER_CELL ,

7 cell_to_nodes , "cell_to_nodes_map");

8

9 opp_map cell_to_cells_map = opp_decl_map(cells_set , cells_set , NEIGHBOUR_CELLS ,

10 cell_to_cells , "cell_to_cell_map");

Each cell belonging to cells set is mapped to 4 nodes (NODES PER CELL) in nodes set. Hence, the map

declaration cell to nodes map has a dimension of 4, thus its indices 0-3 relates to the first cell (C1) mapping

its connected { N1, N2, N5, N6 } nodes, indices 4-7 relates to second cell (C2) mapping its connected { N2,

N3, N7, N6 } nodes and so on. As shown in int* cell to cells, we define -1 as a mapping indicating that

there is no element on that direction.

Moreover, since the mapping between particles and cells is dynamic (particles can be injected/removed and

they move between cells), we will keep cell index mapping per particle as data (only the static mesh

mappings will be in opp map).

6



2.2.3 Defining Data on Sets

Once the sets and its connectivities are defined, the mesh data can be associated with cells set and

nodes set through the opp decl dat API call. Note that in the below example, node dat1 is declared with

dimension 2, allowing to it store { X, Y } coordinates, while cell dat1 stores a single double-precision value

per set element.

1 int DIM = 2;

2 double* d_cell1 = {cd1 , cd2 , cd3 , cd4 , cd5 , cd6};

3 double* d_node1 = {x1,y1, x2,y2, x3,y3 , x4,y4, x5 ,y5, x6,y6, x7,y7, x8,y8 , x9,y9,

4 x10 ,y10 , x11 ,y11 , x12 ,y12};

5

6 opp_dat cell_dat1 = opp_decl_dat(cells_set , 1, OPP_REAL , (char*)d_cell1 , "cell field");

7

8 opp_dat node_dat1 = opp_decl_dat(nodes_set , DIM , OPP_REAL , (char*)d_node1 , "node field");

The particle dats should be created with opp decl particle dat and the arguments will be similar to

opp decl dat, except when defining the cell index dat. Here an additional argument “true” should be

provided indicating that it will be the cell index used to map the particle to its containing cell.

1 opp_dat part_dat1 = opp_decl_particle_dat(particles_set , 1, OPP_REAL , nullptr ,

2 "part field");

3

4 opp_dat part_cell_index = opp_decl_particle_dat(particles_set , 1, OPP_INT , nullptr ,

5 "part cell index", true);

The above will create an empty particle dat, assuming that particles will be injected during the main loop.

However, if the initial particle size is known and if the set is created by providing it, the corresponding data

could be provided as an array (instead of nullptr) using the same API call. This will be helpful when an

initial particle distribution is known prior start of the simulation.

1 opp_dat opp_decl_particle_dat(opp_set set , int dim , opp_data_type dtype , char *data ,

2 char const *name , bool cell_index = false);

2.2.4 Operations Over Sets

All of the numerically intensive operations in a PIC application can be described as computations over sets,

accessing data though the mappings (if indirection exists).

API: opp par loop

1 template <typename ... T, typename ... OPARG >

2 void opp_par_loop(void (* kernel)(T *...), char const *name , opp_set set ,

3 opp_iterate_type iter_type , OPARG ... arguments);

Consider the following sequential loop, that demonstrates direct and indirect mappings. This uses all of the

structures and declarations defined in Sections 2.2.1, 2.2.2 and 2.2.3; however it assumes there are particles

7



in particles set.

1 void example_seq_loop(int nparticles , int* cell_to_node , int* cell_idx ,

2 double* cell_dat , double* node_dat , double* part_dat) {

3 for (int i = 0; i < nparticles; i++) {

4 int cell_index = cell_idx[i];

5

6 int node0_mapping = cell_to_node[NODES_PER_CELL * cell_index + 0];

7 int node1_mapping = cell_to_node[NODES_PER_CELL * cell_index + 1];

8 int node2_mapping = cell_to_node[NODES_PER_CELL * cell_index + 2];

9 int node3_mapping = cell_to_node[NODES_PER_CELL * cell_index + 3];

10

11 double inc_value = (part_dat[i] + cell_dat[cell_index ]);

12

13 // Assume only X value of node data need to increment

14 node_dat[DIM * node0_mapping + 0] += inc_value;

15 node_dat[DIM * node1_mapping + 0] += inc_value;

16 node_dat[DIM * node2_mapping + 0] += inc_value;

17 node_dat[DIM * node3_mapping + 0] += inc_value;

18

19 part_dat[i] = 0.0;

20 }

21 }

The sequential example loop above iterates over all the particles, computes the sum of the particle dat and

its corresponding cell dat, and increments all 4 connected node dats (only X values) with the sum calculated.

Finally the particle dat is assigned with a new value (0.0). Here the particle should map to its containing cell

though its cell index and maps all four nodes connected to that cell, to compute the reduction operation

(SUM).

Even though the sequential code looks simple, it would be quite complex if the computation is to be done in

parallel (OpenMP, MPI and/or GPUs), due to race conditions (to be considered when executing increments

to shared nodes) and data dependencies. However, together with the below API calls and code-to-code

translation, the proposed DSL removes all of the development complexities from the domain specialist and

will provide an optimised code to run on their intended platform.

1 void example_kernel(double* part_data , const double* cell_data , double* node0_data ,

2 double* node1_data , double* node2_data , double* node3_data) {

3 double inc_value = (* part_data + *cell_data);

4

5 // Assume only X value of node data need to increment

6 node0_data [0] += inc_value;

7 node1_data [0] += inc_value;

8 node2_data [0] += inc_value;

9 node3_data [0] += inc_value;

10

11 *part_data = 0.0;

12 }

13

14 opp_par_loop(example_kernel , "example_op_par_loop",

15 particles_set , OPP_ITERATE_ALL ,

8



16 opp_arg_dat(part_dat1 , OPP_RW),

17 opp_arg_dat(cell_dat1 , OPP_READ , OPP_Map_from_Mesh_Rel),

18 opp_arg_dat(node_dat1 , 0, cell_to_nodes_map , OPP_INC , OPP_Map_from_Mesh_Rel),

19 opp_arg_dat(node_dat1 , 1, cell_to_nodes_map , OPP_INC , OPP_Map_from_Mesh_Rel),

20 opp_arg_dat(node_dat1 , 2, cell_to_nodes_map , OPP_INC , OPP_Map_from_Mesh_Rel),

21 opp_arg_dat(node_dat1 , 3, cell_to_nodes_map , OPP_INC , OPP_Map_from_Mesh_Rel)

22 );

An application developer could write the elemental kernel function example kernel and the opp par loop

declaration as above. Declaring the set and OPP ITERATE ALL enables the DSL to iterate all elements of that

given set.

In this case, the elemental kernel function takes 6 arguments and the loop declaration requires the access

method of the data (e.g. OPP READ, OPP WRITE, OPP INC). After the access specifier, opp mapping flag

(OPP Map from Mesh Rel) should be provided to all opp arg dats that need mapping through the particle

cell index. In addition, the mapping offset (0,1,2,3) and the opp map mapping should be provided to access

the correct node connected to the cell (for the indirectly mapped arguments). Not specifying opp mapping

flag and/or a mapping through an opp map indicates that this data should be directly mapped.

API: opp par loop particle

1 template <typename ... T, typename ... OPARG >

2 void opp_par_loop_particle(void (* kernel)(T *...), char const *name , opp_set set ,

3 opp_iterate_type iter_type , OPARG ... arguments);

Although most of PIC equations can be written as opp par loop API calls over particle set, cells set

or nodes set, particle movement (including handling the change of cell index of a particle, during inter

cell movement) has a different communication pattern. To cater to that requirement, a new API call

opp par loop particle is introduced to the API.

Similar to opp par loop, the application developer should implement opp par loop particle declarations

with similar constructs, however it will only loop over a particle set created using opp decl particle set.

Nevertheless, the elemental function should always have an opp move var reference provided as the first

argument, which handles the movement routine per particle.

1 struct opp_move_var

2 {

3 bool OPP_iteration_one;

4 opp_move_status OPP_move_status;

5 };

OPP move status = OPP NEED REMOVE

The particle will be removed from the particle set.

OPP move status = OPP MOVE DONE

The final cell index assigned in the kernel will be set to the particle and the necessary communication

of the particle will be handled by the DSL.

9



OPP move status = OPP NEED MOVE

The same elemental kernel will be called again iteratively with the data corresponding to the new

cell index set during the previous elemental function call to the same particle.

The elemental kernel provided to opp par loop particle will be iterated until OPP move status is set to

OPP NEED MOVE. The application developer should compute whether the particle is residing inside the current

cell or not, and set the OPP move status flag accordingly. In addition, the developer could write compute

logic specific to iteration one inside a block as stated in the below example.

1 void example2_kernel(opp_move_var& m, ...)

2 {

3 if (m.OPP_iteration_one) {

4 // Any computations specific to iteration one

5 }

6

7 {

8 // Compute logic involving particle and mesh data

9 }

10

11 if (is_inside_the_cell) {

12 m.OPP_move_status = OPP_MOVE_DONE;

13 // Any computate logic , like charge diposition to the final cell or connected nodes

14 }

15 else if (need_to_remove_from_mesh) {

16 m.OPP_move_status = OPP_NEED_REMOVE;

17 }

18 else { // need_to_search_a_different_cell_in_the_mesh

19 m.OPP_move_status = OPP_NEED_MOVE;

20 (* cell_index) = calculated_adjoining_cell_index_to_move;

21 // Any computate logic , like charge diposition to the passing by cell

22 }

23 }

2.2.5 OP-PIC’s Other APIs and Utilities

API: opp increase particle count

In order to add particles to the simulation, the particle count of the set should be increased, hence the

application developer should use the below API call.

1 void opp_increase_particle_count(opp_set particles_set , int num_particles_to_insert);

Afterwards, both the opp par loop and opp par loop particle declarations can be used to iterate over the

new particles by changing opp iterate type to OPP ITERATE INJECTED.

API: opp particle sort

10



To gain better particle locality during kernel calls and in applications where double indirection is present

(e.g., particle→cell→node), sorting particles according to its residing cell index will be beneficial (after

particle injections and particle movements).

1 void opp_particle_sort(opp_set set);

However, after calling opp particle sort, the OPP ITERATE INJECTED will not iterate any particles at all,

since the added particles are no longer considered new to the simulation.

Sorting particles can improve cache usage, but it also introduces overhead. Therefore, it is important to

carefully consider when to use it. The user can implement periodic particle sorting using the API provided

(we hope to provide the functionality of periodic sorting using a configuration at a later stage). This approach

can help achieve the performance benefits of sorting, while minimising the associated overhead costs.

API: opp decl const

There may be instances where simulation specific constant values are required at elemental kernels (e.g.

plasma density). The below API provide flexibility to access these variables at elemental kernels (with the

variable name equal to const name in the API), given that they are set after initialising the OP-PIC runtime.

1 template <typename T>

2 void opp_decl_const(int dim , T* data , const char* const_name);

API: opp reset dat

During the simulation there could be occasions where a opp dat needs to reset into a default value (e.g. to

zero). The below API call simplifies this by setting the entire opp dat to the val provided. For example, an

opp dat of dimension 2, will need a char* val with data length equal to 2 × size of data type of the opp dat

and that will be copied to the entire opp dat.

1 void opp_reset_dat(opp_dat dat , char* val);

opp::Params

Configuring an OP-PIC simulation is done through a param file, that is essential when running the same

simulation with different configuration (example given below). At this stage, only STRING, REAL (double),

INT and BOOL data types are supported.

1 # Simulation parameters

2 REAL plasma_den = 1e16

3 REAL ion_velocity = 1e8

4 REAL electron_temperature = 2e8

5 REAL wall_potential = 100000

6 STRING plasma_species = Duterium

7 REAL spwt = 2e2

8 INT max_iter = 250

9 REAL dt = 1e-12

10 STRING fesolver_method = petsc

11

11



12 # Input files

13 STRING global_mesh = /ext -home/zl/coarse/mesh.dat

14 STRING inlet_mesh = /ext -home/zl/coarse/inlet.dat

15 STRING wall_mesh = /ext -home/zl/coarse/wall.dat

16

17 # op-pic lib parameters

18 BOOL opp_auto_sort = false

19 INT opp_allocation_multiple = 1

20 INT opp_threads_per_block = 64

The data can be accessed in the simulation using params.get<T>(string key) construct, as given below.

1 std:: string mesh_name = params.get <STRING >("global_mesh");

2 double ion_velocity = params.get <REAL >("ion_velocity");

3 bool auto_sort = params.get <BOOL >("opp_auto_sort");

4 int iteration_count = params.get <INT >("max_iter");

12



3 Porting PIC Applications to OP-PIC DSL

Despite not having a complete unstructured mesh 3D electromagnetic FEM PIC code available to demon-

strate the proposed PIC DSL functionality, we have converted three PIC codes to to exhibit the use of API

calls and design, with unstructured type indirect data mappings. They are namely,

• SimPIC, an electrostatic 1D FDTD structured mesh PIC code

• CabanaPIC, an electromagnetic 3D FDTD structured mesh PIC code

• Mini-FEM-PIC, an electrostatic 3D FEM unstructured mesh PIC code

The current application implementations for the library can be found at the OP-PIC DSL repository 3). At

this stage, implementations are single node parallelised and do not include MPI parallelisation.

For both SimPIC and CabanaPIC, the structured stencil type computations were converted to unstructured

type indirect data mappings (which is loaded from a file prior simulation). The new SimPIC and CabanaPIC

codes are serial implementations written in C++ (without MPI) and the calculated particle data and grid

point data are verified to be equal to its original implementation.

Mini-FEM-PIC is a sequential electrostatic 3D unstructured mesh FEM PIC example code written in C++

as a part of an online course4), that contains an inject particles routine as an addition to the usual PIC

algorithm. The DSL converted Mini-FEM-PIC code is based on the optimised Fem-PIC developed as part

of this project (see Report 2057699-TN-03-03).

3.1 Porting Mini-FEM-PIC MiniApp to OP-PIC DSL

Mini-FEM-PIC is originally unstructured and the three new implementations (sequential, OpenMP, and

CUDA) are written in C++, utilising PETSc 5 (sparse matrix linear solvers) inside the PIC Field Solver,

instead of the DSL API calls (the node potential solving calculations need to be broken down to kernels to

call the APIs, which will be the focus of future work).

Below, we summarise the steps that should be followed when implementing a PIC application using the

OP-PIC DSL. In the main C++ function,

(1) Create a opp::Params object passing the path to the configuration file.

(2) Load the data from the mesh files (the files can be of user defined type) into C++ arrays.

(3) Initialise the OP-PIC runtime using opp init passing command-line arguments and the param object.

3https://github.com/OP-DSL/OP-PIC
4https://www.particleincell.com/2015/fem-pic/
5https://petsc.org/release/overview/

13

https://github.com/OP-DSL/OP-PIC
https://www.particleincell.com/2015/fem-pic/
https://petsc.org/release/overview/


(4) Define the sets; for Mini-FEM-PIC, cells, nodes, inlet faces and particle sets are required.

(5) Define the mapping between the sets; for Mini-FEM-PIC, inlet face to cell, cell to nodes, and

cell to cells mappings are required.

(6) Define data on sets; create opp dats for cells, nodes and inlet face sets, passing the data pointers created

during the data load-up (OP-PIC will create its own data copy, hence the developer is responsible for

cleaning the loaded mesh data). In Mini-FEM-PIC, particles will be injected during the simulations;

hence, create particle dats by passing null pointers.

(7) Make all the constant declarations (using opp decl const) required at the elemental kernels (e.g.

ion velocity).

(8) Start the main loop; start a std::chrono::system clock if runtime of the main loop is needed. Call

the API calls for parallel loops and any other computations inside the main loop.

(9) Use opp exit at the end of the simulation. This will ensure all the OP-PIC generated data structures

are destroyed and the connections are properly closed.

14



4 OP-PIC: Mini-FEM-PIC Performance

The test configuration consists of ion flow through a duct. The duct is 2 × 2 × 4 mm3 in volume, and is

divided up into 7,511 elements (in this case, first-order tetrahedrons). Faces on one end of the duct are

designated as inlet faces and the outer wall is fixed at a higher potential (set at 100, 000V ) to retain the ions

within the duct.

The plasma is fixed at 2 × 108K and the ions are injected with an input velocity of 1 × 108m/s. The

simulation performs 250 iterations, and particles are weighted back to the grid using a simplistic volume-

weighting method. From the start, the ion particle count increases and become steady at around 40 iterations

(the ions injected from one end have reached the other end and leave the simulation domain). Five simulation

setups are created by changing the ion densities to 1× 1016, 1× 1017, 2× 1017, 4× 1017 and 7× 1017 ions/m3.

This equates to a final ion count of approximately 0.6M, 6M, 12M, 24M and 42M and approximately 15k,

156k, 312k, 624k and 1,092k ions injected per loop, respectively.

The single node CPU runtime is collected from an internal server at the University of Warwick comprising 2

× Intel Xeon Gold 6252 (Cascade Lake) 2.1GHz 24-core CPUs. The runtime of the 42M final particle count

setup has additionally been executed on the Sulis system at Warwick, which contains 2 × AMD EPYC 7742

(Rome) 2.25 GHz 64-core CPUs per node. To test the GPU performance, we use a single NVIDIA P100,

NVIDIA V100 or a NVIDIA A100 GPU.

0.6Mil-Intel

0

10

20

30

R
u
n
ti
m
e
(s
)

6Mil-Intel

0

50

100

150

200

250

12Mil-Intel

0

100

200

300

400

500

24Mil-Intel

0

200

400

600

800

42Mil-Intel

0

500

1,000

1,500

42Mil-AMD

0

500

1,000

1,500

Op-PIC Sequential Op-PIC Best OMP MiniApp Sequential MiniApp Best OMP

Figure 3: CPU Sequential and Best OpenMP Runtime of OP-PIC DSL and Mini-FEM-PIC MiniApp

According to Figure 3, we can clearly see that the OP PIC best OpenMP is 4× to 15× faster compared with

the OP PIC sequential version and in most of the cases, the OP PIC best OpenMP speed-up is around 6×
compared with the best OpenMP result of the optimised Mini-FEM-PIC version. In addition, the Mini-

FEM-PIC sequential version takes more than twice the runtime of the sequential version of OP PIC, which

is unusual (runtimes in seconds can be found in Table 1).

This performance difference may be caused due to more optimised computation pattern in the DSL; these

15



include:

• Data structure layout, we use a Structure-of-Arrays and Mini-FEM-PIC uses an Array-of-Structures

data arrangement;

• Data locality and cache usage, we have a different internal logic to handle particle movement/injection

(pre-allocating/hole filling/particle sorting);

• Mini-FEM-PIC has OpenMP atomics inside the particle mover, while we use a Kokkos6 style scatter/-

gather method;

• The DSL field solver is running on the PETSc library7 (this saves a constant time of around 5 seconds

for 250 iterations and this is not the dominating factor of the performance difference).

0.6Mil 6Mil 12Mil 24Mil 42Mil
0

5

10

15

20

25

30

R
u
n
ti
m
e
(s
)

NVIDIA P100 NVIDIA V100 NVIDIA A100

Figure 4: GPU Runtime of OP-PIC DSL

Figure 4 shows the GPU runtime of the OP-PIC DSL converted Mini-FEM-PIC application (there is no

GPU support in the Mini-FEM-PIC Mini-App). These results demonstrate that the best GPU results are

obtained in an NVIDIA A100 GPU. It is also worth noting that the GPU has great performance improvement

compared to CPUs.

6https://kokkos.org/about/
7https://petsc.org/release/overview/

16

https://kokkos.org/about/
https://petsc.org/release/overview/


Final Particle count 0.6M 6M 12M 24M 42M
Inject per loop 15k 156k 312k 624k 1,092k

Mini-FEM-PIC Seq Intel Xeon Gold 6252 CPU 32.5 243.7 471.7 926.150 1,673.8
Mini-FEM-PIC best OMP Intel Xeon Gold 6252 CPU 14.1 71.0 129.5 238.845 409.8

OP-PIC SEQ Intel Xeon Gold 6252 CPU 12.7 107.8 213.6 426.811 737.2
OP-PIC best OMP Intel Xeon Gold 6252 CPU 3.2 10.9 21.1 39.513 67.5

Mini-FEM-PIC SEQ AMD EPYC 7742 64-Core CPU 1,591.8
Mini-FEM-PIC best OMP AMD EPYC 7742 64-Core CPU 238.5

OP-PIC SEQ AMD EPYC 7742 64-Core CPU 701.2
OP-PIC best OMP AMD EPYC 7742 64-Core CPU 45.4

OP-PIC CUDA P100 with setup time 2.5 5.7 9.5 18.5 33.5
OP-PIC CUDA P100 without setup time 2.4 4.9 8.1 15.7 28.6

OP-PIC CUDA V100 with setup time 2.0 3.9 6.4 11.8 20.8
OP-PIC CUDA V100 without setup time 1.9 3.3 5.1 9.2 16.2

OP-PIC CUDA A100 with setup time 1.9 3.8 5.8 10.0 17.3
OP-PIC CUDA A100 without setup time 1.9 3.1 4.3 7.3 12.6

Table 1: Single node best runtime (in seconds) of OP-PIC DSL and Mini-FEM-PIC MiniApp

17



References

[1] C. K. Birdsall and A. B. Langdon. Plasma Physics via Computer Simulation. Plasma Physics Series.

Institute of Physics Publishing, Bristol BS1 6BE, UK, 1991.

[2] John M. Dawson. Particle Simulation of Plasmas. Reviews of Modern Physics, 55:403–447, Apr 1983.

[3] István Z Reguly, Gihan R Mudalige, Michael B Giles, Dan Curran, and Simon McIntosh-Smith. The ops

domain specific abstraction for multi-block structured grid computations. In 2014 Fourth International

Workshop on Domain-Specific Languages and High-Level Frameworks for High Performance Computing,

pages 58–67. IEEE, 2014.

[4] Florian Rathgeber, Graham R Markall, Lawrence Mitchell, Nicolas Loriant, David A Ham, Carlo

Bertolli, and Paul HJ Kelly. PyOP2: A high-level framework for performance-portable simulations

on unstructured meshes. In 2012 SC Companion: High Performance Computing, Networking Storage

and Analysis, pages 1116–1123. IEEE, 2012.

[5] G. R. Mudalige, M. B. Giles, I. Reguly, C. Bertolli, and P. H. J. Kelly. OP2: An active library framework

for solving unstructured mesh-based applications on multi-core and many-core architectures. In 2012

Innovative Parallel Computing (InPar), pages 1–12, May 2012.

[6] Gihan R Mudalige, Mike B Giles, I Reguly, Carlo Bertolli, and Paul HJ Kelly. Op2: An active library

framework for solving unstructured mesh-based applications on multi-core and many-core architectures.

In 2012 Innovative Parallel Computing (InPar), pages 1–12. IEEE, 2012.

[7] István Z. Reguly, Gihan R. Mudalige, Michael B. Giles, Dan Curran, and Simon McIntosh-Smith. The

OPS Domain Specific Abstraction for Multi-block Structured Grid Computations. In Proceedings of

the 2014 Fourth International Workshop on Domain-Specific Languages and High-Level Frameworks

for High Performance Computing, WOLFHPC ’14, pages 58–67, Washington, DC, USA, 2014. IEEE

Computer Society.

[8] B D Dudson, M V Umansky, X Q Xu, P B Snyder, and H R Wilson. BOUT++: a framework for

parallel plasma fluid simulations. arXiv, physics.plasm-ph:0810.5757, Nov 2008.

[9] Benjamin Daniel Dudson, Peter Alec Hill, David Dickinson, Joseph Parker, Adam Dempsey, Andrew

Allen, Arka Bokshi, Brendan Shanahan, Brett Friedman, Chenhao Ma, David Schwörer, Dmitry Mey-

erson, Eric Grinaker, George Breyiannia, Hasan Muhammed, Haruki Seto, Hong Zhang, Ilon Joseph,

Jarrod Leddy, Jed Brown, Jens Madsen, John Omotani, Joshua Sauppe, Kevin Savage, Licheng Wang,

Luke Easy, Marta Estarellas, Matt Thomas, Maxim Umansky, Michael Løiten, Minwoo Kim, M Leconte,

Nicholas Walkden, Olivier Izacard, Pengwei Xi, Peter Naylor, Fabio Riva, Sanat Tiwari, Sean Farley,

Simon Myers, Tianyang Xia, Tongnyeol Rhee, Xiang Liu, Xueqiao Xu, and Zhanhui Wang. BOUT++,

10 2020.

[10] Matthias Christen, Olaf Schenk, and Helmar Burkhart. Patus: A code generation and autotuning

framework for parallel iterative stencil computations on modern microarchitectures. In 2011 IEEE

International Parallel & Distributed Processing Symposium, pages 676–687. IEEE, 2011.

18



[11] Florian Rathgeber, David A. Ham, Lawrence Mitchell, Michael Lange, Fabio Luporini, Andrew T. T.

Mcrae, Gheorghe-Teodor Bercea, Graham R. Markall, and Paul H. J. Kelly. Firedrake: Automating

the Finite Element Method by Composing Abstractions. ACM Trans. Math. Softw., 43(3):24:1–24:27,

December 2016.

[12] PSyclone Project, 2018. http://psyclone.readthedocs.io/.

19

http://psyclone.readthedocs.io/

	Summary
	The Particle-in-Cell Method

	Developing a PIC Domain Specific Language
	OP2: A DSL for Unstructured Mesh Computations
	OP-PIC: Unstructured Mesh Particle-in-Cell DSL Design
	Defining Sets
	Defining Connectivity (or Mapping) Between the Sets
	Defining Data on Sets
	Operations Over Sets
	OP-PIC's Other APIs and Utilities


	Porting PIC Applications to OP-PIC DSL
	Porting Mini-FEM-PIC MiniApp to OP-PIC DSL

	OP-PIC: Mini-FEM-PIC Performance
	References

