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1. Introduction

Calculation of the electrostatic potential is a challenge within the drift kinetic

approximation. This is because, without further manipulation of the drift kinetic system

of equations, there is no explicit equation to be solved for the potential: Instead, it

appears as a parameter in the drift kinetic equations for both electrons and ions, which

are then related to one another via quasineutrality. In report 2047357-TN-09-01 [1],

we showed how the electrostatic potential could be calculated for a 2D drift kinetic

model with a helical magnetic field and with periodic boundary conditions appropriate

for closed field lines. Considerable care had to be taken to obtain an expression for

the electrostatic potential. In particular, we showed that one has to retain higher order

terms in the drift kinetic expansion parameter and thus solve a mixed, integral and

partial differential equation for the potential at the domain’s parallel boundary.

Thus far we have side-stepped the issue of calculating the potential in our

ProxyApps by using a Boltzmann response for the electron dynamics so that no electron

equations need to be solved at all. In this report, we outline a collisional model for

electron dynamics. The purpose of this model is not to be physically accurate, but

to bridge the complexity between the fully kinetic treatment and the relatively crude

electron model employed thus far. Importantly, the collisional model for electrons will

require the calculation of the potential as laid out in the aforementioned report, but will

do so within a fluid framework that should be easier to test numerically.

To begin we will provide a brief overview of the physical system we aim to model,

before presenting an overview of the recipe for obtaining the potential derived in earlier

reports. We will then go on to provide a collisional model for electron dynamics, which
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follows from the original derivation of Braginskii [2].

2. Magnetic geometry and orderings

We consider a plasma consisting of a single ion species of charge e and mass mi and

electrons with charge −e and mass me. Because we are focusing on the closed-field-line

region of the plasma where the neutral density is low, we neglect neutrals here. The

plasma is immersed in a helical magnetic field of the form

B(r, ζ) = Bz(r)ẑ+Bζ(r)ζ̂(ζ), (1)

where {r, z, ζ} are cylindrical coordinates, and ẑ and ζ̂ are unit vectors in the direction

of ∇z and ∇ζ, respectively. We assume that the plasma is electrostatic and does not

vary in the symmetry direction ζ̂. Note that ζ is meant to be the analogue of the

toroidal direction in a tokamak.

The spatial domain we consider is r ∈ [r0, r0 + Lr] and z ∈ [0, Lz], with a periodic

boundary condition in z. The characteristic length along a field line between two walls

is

L∥ ∼
B

Bz

Lz. (2)

The characteristic time it takes for ions to stream along the field line from one end of

z to the other is L∥/vth,i ∼ (B/Bz)(Lz/vth,i), where vth,i
.
=
√

2Ti/mi is the ion thermal

speed and Ti is the ion temperature.

The radial E×B drift speed is

vEr
.
= −Bζ

B2

∂ϕ

∂z
∼ ρi

Lz

vth,i, (3)

where ρi
.
= vth,i/Ωi is the thermal ion gyroradius, Ωi

.
= eB/mi is the ion gyrofrequency,

and we have ordered the electrostatic potential energy comparable to the thermal energy:

eϕ ∼ Ti. We order the times for ions to cross the domain in the radial and vertical

directions to be comparable, giving

Lr ∼
B

Bz

ρi. (4)

Taking the drift kinetic limit, we then have

ρi
Lr

∼ Bz

B
∼ Bz

Bζ

≪ 1. (5)

3. Drift kinetic system of equations

The drift kinetic equations describing the evolution of the particle distribution fs for

the ions and electrons are

∂fi
∂t

− 1

B

∂ϕ

∂z

∂fi
∂r

+

(
v∥
Bz

B
+

1

B

∂ϕ

∂r

)
∂fi
∂z

− eBz

miB

∂ϕ

∂z

∂fi
∂v∥

= Cii[fi] + Cie[fi, fe] + Si,

(6)
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and

∂fe
∂t

− 1

B

∂ϕ

∂z

∂fe
∂r

+

(
v∥
Bz

B
+

1

B

∂ϕ

∂r

)
∂fe
∂z

+
eBz

meB

∂ϕ

∂z

∂fe
∂v∥

= Cee[fe] + Cei[fe, fi] + Se,

(7)

where v∥ is the parallel component of the particle velocity v, Css′ accounts for the effect

on species s of collisions with species s′, Ss is a source accounting for, e.g., heating and

fueling, and angle brackets denote an average over particle gyroangle.

The distribution functions fi and fe are related via quasineutrality,∑
s

Zsens =
∑
s

Zse

∫
d3vfs = 0, (8)

where Zi = 1 = −Ze. One of the main challenges in solving this system of equations is

that there is no explicit equation for the electrostatic potential. If one were to try,

e.g., to solve Eqs. (6) and (7) using an explicit time advance algorithm with ϕ at

the previous time level as an input, then in general the solutions for fi and fe so

obtained would not satisfy Eq. (8). This procedure could be iterated, with ϕ varied

until quasineutrality were satisfied, or one could develop an approach that guarantees

satisfaction of quasineutrality from the outset. We have presented two such approaches

in previous reports: The first assumes a Boltzmann electron response and thus avoids

entirely the need to solve the electron dynamics, while the second requires the inclusion

of higher order corrections in the drift kinetic expansion parameter. The former may not

be sufficiently accurate, while the latter introduces significant complication in numerical

solution. In the following sections we provide a means by which the accuracy of the

Boltzmann response approximation can be estimated (and somewhat improved) and a

fluid model that should make implementation and testing of the higher-order approach

easier.

We will assume in this report that fi can be obtained once ϕ is known, either via

direct solution of the above drift kinetic equation or via the moment-kinetic approach

derived in report 2047357-TN-09-01 [1]. Our focus here will be on obtaining simplified

models for electron dynamics.

4. Extended Boltzmann response model

Thus far we have modelled the electrons as having a Boltzmann response in the closed-

field-line region of the plasma. This means their density is given by

ne = N0 exp

(
eϕ

Te

)
= ni, (9)

where the latter equality is a consequence of quasineutrality. If a solution of this form

is expected, one could expand the electron distribution function about it and solve for

the difference:

fe = fMB + δfe, (10)
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with

fMB
.
= N0

(
me

2πTe

)3/2

exp

(
−mev

2

2Te

)
exp

(
eϕ

Te

)
. (11)

Taking the density moment of Eq (10) then gives

ne = N0 exp

(
eϕ

Te

)
+ δne, (12)

with

δne
.
=

∫
d3vδfe. (13)

We can rearrange Eq. (12) to solve for the electrostatic potential:

ϕ = ϕ0 + ϕ1, (14)

with
eϕ0

Te

.
= ln

ni

N0

(15)

and
eϕ1

Te

.
= ln

(
1− δne

ni

)
, (16)

where we have used quasineutrality to replace ne with ni.

Substituting the assumed form of fe from Eq. (10) into the electron drift kinetic

equation (7) gives

∂δfe
∂t

− 1

B

∂ϕ

∂z

∂δfe
∂r

+

(
v∥
Bz

B
+

1

B

∂ϕ

∂r

)
∂δfe
∂z

+
eBz

meB

∂ϕ

∂z

∂δfe
∂v∥

= (Cee[fe]− Cee[fMB]) + Cei[δfe, fi] + Se[fe]−
∂fMB

∂t
,

(17)

where

∂fMB

∂t
= fMB

(
∂ lnTe

∂t

(
mv2

2Te

− 3

2

)
+

∂

∂t
ln

ni

N0

+
∂

∂t
ln

(
1− δne

ni

))
. (18)

The time derivatives of Te and ni above can be eliminated by using the ion and electron

continuity equations, but there is no equivalent, closed-form equation for δne. This

makes it difficult to use an explicit time advance scheme to evolve δfe.

To overcome this, we can assume that δne ≪ ne; i.e., we assume that the electron

response is close to Boltzmann. With this assumption, we have

eϕ1

Te

≈ −δne

ni

≪ eϕ0

Te

, (19)

and

v∥
Bz

B

∂δfe
∂z

+
eBz

meB

∂ϕ0

∂z

∂δfe
∂v∥

= C(ℓ)
ee [δfe] + Cei[δfe, fi] + Se[fMB]

− fMB

(
∂ lnTe

∂t

(
mv2

2Te

− 3

2

)
+

∂

∂t
ln

ni

N0

)
,

(20)
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where C
(ℓ)
ee is the linearized electron-electron collision operator, we have used the

maximal ordering for collisions (νee ∼ vth,e/L∥), and we have kept only the lowest

order terms in
√

me/mi. Upon solving this equation for δfe, the corresponding density

δne could be compared to ni to check if the Boltzmann approximation is valid. If not,

one could use the alternative approach for computing ϕ that was proposed in report

2047357-TN-09-01 [1]. We outline this approach below and suggest a simple fluid model

(first derived by Braginskii [2]) that could be used to test it.

5. Electron fluid equations

Electron fluid equations are obtained by taking the appropriate velocity moments of

Eq. (7). The current conservation equation, obtained by combining the electron and ion

continuity equations and enforcing quasineutrality, is

Bz

B

∂

∂z
(ne (ui − ue)) = 0, (21)

where us is the parallel flow of species s. We have assumed
∫
d3v (Si − Se) is small to

obtain the above result. The electron parallel momentum equation is

−Bz

B

∂p∥,e
∂z

+ ene
Bz

B

∂ϕ

∂z
+ F∥[fe, fi] = 0, (22)

where p∥,e is the electron parallel pressure, and

F∥[fe, fi](z, t)
.
=

∫
d3v mev∥Cei[fe, fi] (23)

is the parallel friction force between electrons and ions. The term proportional to Se

has been neglected in (22) as small in me/mi because we order Se ∼ fevth,i/L∥.

Finally, the electron energy equation is

3

2
ne

(
∂Te

∂t
− 1

B

∂ϕ

∂z

∂Te

∂r
+

(
ue

Bz

B
+

1

B

∂ϕ

∂r

)
∂Te

∂z

)
= −Bz

B

(
∂q∥,e
∂z

+ p∥,e
∂ue

∂z

)
+

3nemeνei
mi

(Ti − Te) + F∥[fe, fi] (ui − ue) +

∫
d3v

(
me

2
|v − ueẑ|2 −

3

2
Te

)
Se,

(24)

where q∥,e is the electron parallel heat flux,

q∥,e
.
=

∫
d3wmsw

3
∥fe. (25)

Eqs. (21) and (22) can be solved for ue(r, z, t) and ϕ(r, z, t), respectively, provided

the boundary values ue(r, 0, t) and ϕ(r, 0, t) are given. The boundary value for the

parallel flow is obtained by dividing Eq. (22) by ne and integrating in z:∫ Lz

0

dz

(
− 1

ne

Bz

B

∂p∥,e
∂z

+
F∥[fe, fi]

ne

)
= 0, (26)
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where it should be noted that F∥[fe, fi] will depend on ue. An equation for ϕ(r, 0, t)

is obtained by going to higher order in the current conservation equation (for details,

see [1]:

∂

∂r

(
− ∂

∂t

∫ Lz

0

dz Fr +
1

B

∂

∂r

∫ Lz

0

dz
∂ϕ

∂z
Fr +

1

B

∫ Lz

0

dz Fext · ẑ

)
= 0, (27)

where Fext is the external force applied to the plasma and

Fr
.
=

mini

B2

(
∂ϕ

∂r
+

1

eni

∂p⊥,i

∂r

)
. (28)

Once the distribution fi is provided, we can close this set of equations if q∥,e can

be expressed in terms of the other low-order fluid moments of fe. This is made possible

when the plasma is sufficiently collisional by performing a Chapman-Enskog expansion

in short collisional mean-free-path. The resulting set of fluid equations are the drift-

reduced Braginskii equations [2]: We provide a brief outline of their derivation next.

6. Drift-reduced Braginskii equations

Our starting point is the electron drift kinetic equation (7). We first change variables

from particle velocity to peculiar velocity w
.
= v − ueb̂, with b̂ the unit vector in the

direction of B:

∂fe
∂t

− 1

B

∂ϕ

∂z

∂fe
∂r

+

((
w∥ + ue

) Bz

B
+

1

B

∂ϕ

∂r

)
∂fe
∂z

+
eBz

meB

∂ϕ

∂z

∂fe
∂w∥

−
(
∂ue

∂t
− 1

B

∂ϕ

∂r

∂ue

∂r
+

((
w∥ + ue

) Bz

B
+

1

B

∂ϕ

∂r

)
∂ue

∂z

)
∂fe
∂w∥

= Cee[fe] + Cei[fe, fi] + Se,

(29)

We make the subsidiary expansion λee/L∥ ∼ λei/L∥ ∼
√
me/mi so that collisions

between electrons are faster than any other process in Eq. (7). Defining ϵ =
√
me/mi

and expanding fe = fe0+fe1+..., with fe1/fe0 ∼ ϵ, the lowest order drift kinetic equation

for electrons is

Cee[fe0] + Cei[fe0, fi] = 0. (30)

Multiplying Eq. (30) by ln fe0 and integrating over velocity space, Boltzmann’s H-

Theorem indicates that fe0 is an isotropic Maxwellian; i.e.,

fe0 =
ne

π3/2v3th,e
exp

(
− w2

v2th,e

)
. (31)

It is worth noting a couple of things about this solution. First, the density, temperature

and parallel flow appearing inside it are defined to be the exact values. This means that

the corresponding moments of fe1 must vanish. Second, the isotropy of fe0 constrains

p∥,e = pe.
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At next order, the electron drift kinetic equation becomes

C(ℓ)
ee [fe1] + L[fe1 −

mew∥ (ui − ue)

Te

fe0]

= w∥
Bz

B

∂fe0
∂z

+
eBz

meB

∂ϕ

∂z

∂fe0
∂w∥

,
(32)

with C
(ℓ)
ee the linearized electron-electron collision operator and Lei the Lorentz operator.

We use the electron momentum equation (22) to eliminate ϕ and substitute

∂fe0
∂z

=

(
∂ ln pe
∂z

+

(
mew

2

2Te

− 5

2

)
∂ lnTe

∂z

)
fe0, (33)

∂fe0
∂w∥

= −
2w∥

v2th,e
fe0, (34)

and

L
[
mew∥ (ui − ue)

Te

fe0

]
= −3

√
π

4

(
2Te

mew2

)3/2 meνei (ui − ue)w∥

Te

fe0 (35)

into Eq. (32) to obtain

C(ℓ)
ee [fe1] + Lei[fe1]

=

(
− 3

√
π

4

(
2Te

mew2

)3/2 meνei (ui − ue)w∥

Te

−
2w∥

v2th,e

1

mene

(
Bz

B

∂p∥,e
∂z

− F∥[fe0, fi]

)
+ w∥

Bz

B

(
∂ lnne

∂z
+

∂ lnTe

∂z

(
mew

2

2Te

− 3

2

)))
fe0,

(36)

with the parallel friction force

F∥[fe0, fi] = −neνei (ue − ui) . (37)

Substituting Eq. (37) into Eq. (36):

C(ℓ)
ee [fe1] + Lei[fe1] +

2γeinif0e
mepe

w∥

∫
d3w

w∥

(w′)3
fe1

=

((
1− 3

√
π

4

(
2Te

mew2

)3/2
)

meνei (ui − ue)

Te

+
Bz

B

(
∂ lnTe

∂z

(
mew

2

2Te

− 5

2

)))
w∥fe0

(38)

This form of the drift kinetic equation can be solved by expanding fe1 in terms of

generalized Laguerre polynomials:

fe1 =
∞∑
k=1

f̂kL
(3/2)
k

(
w2

v2th,e

)
. (39)
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The sum starts at k = 1 because there is no flow contained in fe1 by construction.

In practice we keep only the first two terms in the above expansion. Using the above

expansion and taking the generalized Laguerre transform of the lefthand side of Eq. (38)

gives

LHS = −neνee

( √
2 + 13

4
3
√
2

4
+ 69

16
3
√
2

4
+ 69

16
45

√
2

16
+ 433

64

)(
f̂1
f̂2

)
. (40)

Transforming the righthand side yields∫
d3w w2

∥fe0L
(3/2)
k (x)

(
Bz

B

(
w2

v2th,e
− 5

2

)
∂ lnTe

∂z
+

(
1− 3

√
π

4

(vth,e
w

)3) meνei (ui − ue)

Te

)

= −5

2

pe
me

Bz

B

∂Te

∂z
δk1 − neνei (ui − ue)

(
3

2
δk1 +

15

8
δk2

)
.

(41)

Equating the two sides of the equation, we can solve for f̂1 and f̂2. The result is

fe1 = w∥fe0

(
1

νei

Bz

B

∂ lnTe

∂z

(
c1L

(3/2)
1 + c2L

(3/2)
2

)
+

me (ui − ue)

Te

(
c3L

(3/2)
1 + c4L

(3/2)
2

))
(42)

with c1 = 1.265, c2 = −0.6325, c3 = 0.284 and c4 = 0.032.

Using the solution for fe1 in Eq. (25) gives the classic Braginskii result for the

parallel electron heat flux,

q∥,e = −3.16
pe

meνei

Bz

B

∂Te

∂z
− 0.71pe (ui − ue) . (43)

7. Discussion

We have proposed two models for electron dynamics to enable the calculation of

the electrostatic potential. The first model assumes the electron response is almost

Boltzmann and calculates the correction as a means of testing the assumption. If the

obtained correction is large enough to invalidate the Boltzmann assumption, there are

(at least) two options left: use an iterative method to find self-consistent solutions for fi,

fe and ϕ (either by varying ϕ in the original drift kinetic equations or by varying, e.g.,

∂δne/∂t in Eq. (17); or use current conservation at higher order via Eq. (27) to obtain

ϕ. For the latter approach, it will be useful to use a simple fluid model for electron

dynamics to facilitate implementation and testing. We proposed here the Braginskii

fluid model composed of Eqs. (21), (22), (24), (26), (27), (37) and (43).
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