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1 Introduction

Exascale targeted plasma modelling will require the efficient and accurate solution of systems of hyperbolic
partial differential equations (PDEs), along with corresponding elliptic problems, in the presence of highly
anisotropic dynamics. Furthermore, the techniques used must scale with the computing power available,
and be robust enough to be portable to any emerging hardware that arises in the future. We are
anticipating that high order finite elements/spectral elements will be used to discretize the equations,
and we focus on methods amenable to such problems.

In Section 2, we investigate the current state of the art in time advance techniques, while in Section 3,
we turn our attention to the state of the art for preconditioners of elliptic systems. We give a high level
summary of our findings at the end of each section.

2 State-of-the-art time stepping techniques for hyperbolic PDEs

We consider the solution of hyperbolic systems of the form

∂u

∂t
= A(u, t),

together with appropriate initial and boundary conditions. Stability requirements mean that explicit
methods (such as forward Euler) would require an unfeasibly small temporal step size. This problem,
which is compounded by the fact that the step size for the entire domain is restricted by the finest mesh
patch or wave velocity, generally makes explicit methods unsuitable for anisotropic hyperbolic equations.

We can make use of larger time steps with an implicit (or semi-implicit) method. While such schemes
may be unconditionally stable, even in this case we must still restrict the size of the time step with a
CFL-like condition to ensure that the solution is sufficiently accurate. Also, with any implicit method,
there is the requirement to solve a large system of equations at each time step, and we must do this
carefully to ensure performance on modern HPC systems.

2.1 Fully Implicit Methods

The Method of Lines [49] is a technique to transform a PDE into system of ordinary differential equations
(ODEs) by applying a pre-determined discretization strategy to the spatial dimensions of the PDE. We
may then solve the resulting ODE with an appropriate temporal scheme to the required accuracy.
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In the linear case, and without algebraic constraints, the ODE system takes the form

Mu′(t) = Lu+ f̂(t) in (0, T ], u(0) = 0, (1)

where M ∈ Rn×n is a mass matrix, L ∈ Rn×n is a discrete linear operator, and f̂(t) a time-dependent
forcing function.

One may solve the ODE (1) by applying an s-stage Runge–Kutta scheme:

un+1 = un + δt

s∑
i=1

biki, (2)

Mki = L

(
un + δt

s∑
i=1

aijkj

)
+ f(tn + δtci). (3)

Such schemes are commonly expressed in terms of a Runge–Kutta matrix A = {aij} ∈ Rs×s, weight
vector bT = (b1, . . . , bs)

T , and quadrature nodes c = (c1, . . . , cs), often presented in a Butcher tableau:

c A

bT
.

The stage vectors {ki} are the solution of the block linear system,
M . . .

M

− δt

a11L · · · a1sL
...

. . .
...

as1L · · · assL



k1...
ks

 =

f1...
fs

 , (4)

where fi := f̂(tn + δtci)+L(tn + δtci)un. The difficulty in applying fully implicit Runge–Kutta methods
lies in solving the ns× ns block linear system (4).

The solution of nonlinear systems requires solves with the form (4), but with L now being a linearized
operator as determined by, say, a Newton or Picard iteration [82, 48].

We may also incorporate constraints (such as incompressibility): if the ‘Method of Lines’ applied to
a PDE gives the differential algebraic equation (DAE)

Mu′(t) = N (u,w, t)

0 = G(u,w, t),

then an s-stage Runge–Kutta method applied to this gives iterates of the form[
un+1

wn+1

]
=

[
un

wn

]
+ δt

s∑
i=1

bi

[
ki
ℓi

]
.

In the linear case we obtain the stage vectors ki and ℓi by solving the system of equations



[
M

0

]
. . . [

M
0

]
− δt


a11

[
Nu Nw

Gu Gw

]
· · · a1s

[
Nu Nw

Gu Gw

]
...

. . .
...

as1

[
Nu Nw

Gu Gw

]
· · · ass

[
Nu Nw

Gu Gw

]





k1
ℓ1
...
ks
ℓs

 =


f1
g1
...
fs
gs

 . (5)

Again, the nonlinear case is also possible, and results in a series of linearized systems of the form (5). For
more details, see e.g., [9, Section 10.1.3], [82, Section 6]. In the following, for simplicity of exposition, we
consider only the linear case without constraints (unless we state otherwise), but the ideas can also be
applied in the more general case.

For general properties of such methods, we refer the reader to Ascher and Petzold [9, Section 4]. In
the specific case that interests us, the algebraic block is very large and ill conditioned, being the spatial
discretization of a partial differential equation. We can expect standard implementations of algorithms
for solving ODEs to fail, as direct methods would struggle to solve even a single system with L. Below
we describe the state of the art.
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2.1.1 Diagonally-implicit Runge–Kutta (DIRK) methods

Diagonally-implicit Runge–Kutta (DIRK) methods have a lower triangular Runge–Kutta matrix, A. This
simplifies the solution of (4) considerably, as the implicit solve requires only a series of n × n systems,
rather than one ns×ns system solve. Kennedy and Carpenter [45] performed a comprehensive survey of
DIRK methods for NASA, followed up by the development of several new methods [46]. We recommend
these papers, and the references therein, for more detail on this class of methods.

DIRK methods can be further divided into a series of subclasses: SDIRK methods are DIRK methods
where A has a constant diagonal; EDIRK methods are DIRK methods with an explicit first stage (so
a1,1 = 0); ESDIRK methods [50] are EDIRK methods where the non-zeros on the diagonal are constant.
Nektar++ implements SDIRK with two and three stages, and an ESDIRK method with six stages; Yan
et al. [90] gives a preliminary comparison of the performance of these methods against each other and
against explicit methods.

Pan et al. [66] point out that one must be careful when choosing the time step, as making a naive
choice may lead to extra work without any gain in accuracy (see, e.g., [62]). They observe that, when
solving Navier–Stokes equations using a Discontinuous Galerkin discretization in the spatial domain, an
ESDIRK method in temporal domain, and solving the nonlinear system using a Jacobian Free-Newton
Krylov method (JFNK) [48], then the error in one time step is the sum of the local temporal error
(from ESDIRK), and the averaged spatial error (from DG) and the averaged algebraic JFNK error (from
preconditioned GMRES). They therefore propose a system, implemented in Nektar++ [90], which uses
explicit formulae for the spatial truncation error and temporal error to estimate the errors in these
components. These are then used to choose a priori a time step and a Newton tolerance such that the
temporal and iterative errors are smaller than the spatial errors, thus ensuring that the accuracy is enough
to ensure sufficient convergence, but not too much to waste CPU time. Since this method is based on
local errors, there is no guarantee on the global errors; however, it suggests a reasonable heuristic which
has been shown to be effective on the isentropic vortex, Taylor-Green vortex, flat plate boundary layer,
and turbulent flow over a cylinder model problems. While this approach provides an upper bound for
the time step, this may not be enough to maintain stability for challenging problems, yet the method is
a promising approach for automatic simulation pipelines.

2.1.2 High order implicit Runge–Kutta (IRK) method

While DIRK schemes are attractive, since they simplify the structure of the linear systems, they come
with a number of drawbacks, as outlined in [45]. For a DIRK method with formal integration order p and
stage-order q, the order of accuracy observed in practice for stiff nonlinear PDEs or DAEs is approximately
min{p, q + 1}. Stable DIRK methods have a maximum order of p = s + 1, and the stage-order, q, is
usually 1, although can be 2 for DIRK methods with an explicit first stage. However, DIRK methods
cannot have a stage-order larger than 2. Symplectic DIRK methods can be at most 4th order, and have
the additional restriction that documented methods above order two have Runge–Kutta matrices with
negatives on the diagonal, which usually leads to more difficult linear systems to solve. Overall, DIRK
methods have limited accuracy and, while this is often good enough for the application at hand, it can
be an issue for difficult modelling problems.

Fully implicit Runge–Kutta (IRK) methods, in contrast, can have high-order accuracy, since they
may have any stage-order: an s-stage IRK method may have accuracy of order 2s. However, the linear
system solved at each step (4) is formidable, and is intractable for realistic sized problems without careful
handling of the linear algebra. Common IRK methods include the Gauss–Legendre, Gauss–Lobatto
and Gauss–Radau families, which contain classical techniques such as backward Euler (RadauIIA), and
Crank–Nicolson (LobattoIIIA).

Farrell et al. [30] have developed a high-level library called Irksome for manipulating UFL (Unified
Form Language) expressions of semidiscrete variational forms to obtain UFL expressions for the coupled
Runge–Kutta stage equations (3) at each time step. Irksome works with the Firedrake package to enable
the efficient solution of the resulting coupled algebraic systems, which are solved matrix-free. Irksome
solves the matrix (4) using a Krylov method with preconditioner

blkdiag (M − a1,1δtL, · · · ,M − as,sδtL) ,

which has been shown [55] to be a good preconditioner for parabolic problems.
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The system (4) can be re-written in Kronecker product form as

(I ⊗M − δtA⊗ L)k = f, (6)

which is the Sylvester matrix equation. Such systems arise commonly in model order reduction and
control applications, and we refer the reader to Simoncini’s survey [80] on techniques for solving matrix
equations. This connection has led to a number of interesting approaches for the solution of (4) using
fully-implicit IRK methods over the past few years [83, 82, 42, 56, 71].

Southworth et al. introduce a theoretical and algorithmic preconditioning framework for solving (4) in
the linear [83] and nonlinear [82] setting. This framework also naturally applies to discontinuous Galerkin
discretizations in time. Under quite general assumptions on the spatial discretization that yield stable
time integration, they prove that the preconditioned operator has a condition number bounded by a small,
order-one constant, independent of the spatial mesh and time-step size, and with only weak dependence
on number of stages/polynomial order; for example, the preconditioned operator for 10th-order Gauss
IRK has a condition number less than two, independent of the spatial discretization and time step.

The proposed method can be used with arbitrary existing preconditioners for backward Euler-type
time-stepping schemes and is amenable to the use of three-term recursion Krylov methods when the un-
derlying spatial discretization is symmetric. In [83], the authors apply their method to various high-order
finite difference and finite element discretizations of linear parabolic and hyperbolic problems, demon-
strating fast, scalable solution with up to 10th-order accuracy. The proposed method, in several cases,
can achieve 4th-order accuracy using Gauss integration with roughly half the number of preconditioner
applications and wall-clock time than as is required using standard DIRK methods. In [82] the authors
treat the nonlinear case along with the problem of DAEs, applying the method to the nonlinear Navier–
Stokes equation. Again, the method only requires an efficient preconditioner for matrices arising from
the classical backward Euler scheme.

The numerical experiments in [83, 82] used the software MFEM [8], and employs multigrid precondi-
tioners that are available within HYPRE (see Section 3). We highlight that Masud et al. [56] presented
a similar approach to that of Southworth et al., treating the parabolic case.

Common to all the approaches described here are fast methods for the solution of a sequence of linear
systems of the form

(αiM − L)x = fi or

[
αiM − L BT

B C

] [
x1

x2

]
=

[
fi1
fi2

]
, (7)

depending on if constraints are present or not, where M is a mass matrix, L is a linear differential
operator, and B, BT and C represent the differential algebraic constraints. The parameters αi depend
on the values in the Runge–Kutta matrix A and can be assumed to be positive. The symmetry and
definiteness of (7) therefore depends on the linear differential operator L. We point to Section 3 for a
description of recent advances in preconditioning (7) for both the symmetric and nonsymmetric case.

2.2 Linear Multistep Methods

Linear multistep time integration techniques applied to (1) take the form

0∑
j=−k

αk+jMui+j = δt

0∑
j=−k

βk+j (L(ui+j) + f(ti+j)) ,

for a given set of αi and βj . Methods with βk = 0 are explicit, for example the Adams–Bashforth (AB)
family, while non-zero βk give implicit methods, for example the Adams–Moulton (AM) and backward
differentiation formulae (BDF) families).

There are, however, a number of drawbacks which limit their application to hyperbolic PDEs. Al-
though they do not suffer from the same accuracy issues of DIRK methods, there are no implicit multistep
methods which are A-stable and of order greater than two. There are also no generally symplectic mul-
tistep methods. By the nature of multistep methods, which build approximations to the solution using
solutions at previous points in time, multistep methods are more memory intensive than Runge–Kutta
methods and so may not be so applicable for large simulations at exascale.
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2.3 Implicit–Explicit (IMEX) methods

It is often the case that time-dependent PDEs take the form

∂u

∂t
= B(u, t) + C(u, t),

where the operators B(u, t) and C(u, t) model phenomena present at different time-scales; examples
include a non-stationary convection–diffusion equation where we follow the convected time-scale, where
B(u, t) and C(u, t) may represent the diffusive and convective terms, respectively, or coupled multi-physics
problems, where mixed fluids may have different behaviours.

The presence of the fast term precludes the use of fully explicit integrators, as we would require a
prohibitively small time-step to ensure convergence. On the other hand, using a fully implicit method
may ask too much of the linear (or nonlinear) solvers. Implicit–Explicit (IMEX) time integration schemes
exploit the structure of the problem by solving for the slow term explicitly, where we may safely take
larger time steps, and solving for the fast term implicitly. The split between the two different regimes is
not always clear, and schemes may leak stiffness. IMEX methods also may suffer from accuracy issues,
and fully implicit methods may need to be used if a tight tolerance is required.

A number of IMEX schemes have recently been proposed for general hyperbolic problems[38, 20, 67],
for multi-physics problems (see [47, Section 3.2.2] and the references therein), and for plasma modelling
[59]. Nektar++ implements a scheme by Karniadakis et al.[43] for thermal convection problems[41]; we
note that Nektar++ uses an equivalence between IMEX methods and general linear methods to ease the
switch between various implicit, explicit and IMEX methods [87]. The PETSc TS package [12, Section
6] provides interfaces to the IMEX methods proposed in [10, 20, 37, 44, 67] (mostly using an SDIRK
implicit solver). We would like to highlight that IMEX methods (together with bespoke preconditioners
for the implicit solves) have recently been successfully applied at scale as the integrator in the Unified
Model [57, 16].

2.4 Parallel-in-time

As the parallel performance of spatial solvers has become saturated, there has been an increasing interest
in parallel in time (PinT) methods; see the survey by Gander [32]. The development of the parareal
method by Lions, Maday and Turinici in 2001 [51] was the catalyst for much of this activity. The
parareal algorithm combines two solvers; a cheap, global ‘coarse’ solver, and a more accurate ‘fine’ solver.
The basic concept is simple: we employ a fine solver in parallel, which constitutes the bulk of the
computational effort, and then combine the results into a global solution using the coarse solver. While
most results in the literature apply this method to fairly simple model problems and, in particular, those
of a diffusive nature, there has been some success in applying the parareal paradigm to real scientific
applications with a hyperbolic PDE, most notably in the work of Samaddar et al. on tokamak edge plasma
simulations [79, 78, 77, 15, 75, 27, 74, 76]. Key in this work is the selection of an appropriate coarse
grid solver, and unfortunately there is currently little (if any) theoretical guidance on which schemes may
prove successful for other problems. Nevertheless, these studies report a speed up of roughly a factor of
ten by using parareal over conventional time-stepping techniques.

An alternative approach to parareal is multigrid reduction in time (MGRIT) [29], a method built
on the equivalence between a traditional time integration method and a block lower triangular system
of equations. The parareal method is equivalent to a two grid (in time) multigrid method [33] and
MGRIT is, in some ways, the natural extension, considering a hierarchy of grids. XBraid software [1]
is an implementation of MGRIT, and has been shown to give speed-ups of up to a factor of fifty over
sequential time-stepping.

Both parareal and MGRIT struggle on hyperbolic problems. Southworth et al. [81] recently pro-
vided a convergence analysis detailing whether or not parareal or two-level MGRIT will converge on a
given problem, as well as what spatial or temporal discretizations are applicable with MGRIT. Recent
work by Wathen and collaborators [58, 24] and Gander et al. [34], based on the development of block
preconditioners for the large block lower-triangular time-stepping matrix, has potential to overcome this
limitation.

We highlight there is an ExCALIBUR project to compare the performance of parallel in time methods
for exascale use, the findings of which will be relevant here. https://excalibur.ac.uk/projects/

exposing-parallelism-parallel-in-time/
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Summary

� DIRK time-stepping methods, where applicable, are well developed and the review [45] provides
a nice summary.

� Fully implicit Runge–Kutta methods were largely dismissed as impractical for hyperbolic prob-
lems, but recent advances in preconditioning techniques may mean this is no-longer the case;
Southworth et al. [83, 82] describes (and advances) the state of the art here.

� The theory of IMEX methods is also well developed and should be used where appropriate.

� Recent work on parallel-in-time methods may help break the inherently sequential nature of
traditional time integration algorithms, which rely exclusively on the solution of the spatial
discretization for parallelism.

� All approaches for solving implicit time-stepping problems require good methods for solving
(variations of) the stationary system; see Section 3.

3 State-of-the-art approaches for preconditioning elliptic prob-
lems discretized with high-order methods

Existing and emerging computing architectures suffer from an exponentially growing gap between the
time necessary to perform a floating point operation and the time to move data across the network on
a distributed memory environment. High-order numerical methods provide higher accuracy with fewer
degrees of freedom, at the cost of more arithmetic operations performed per degree of freedom. Because of
their high arithmetic intensity, high-order methods are promising candidates to get the best performance
on exascale systems.

A finite element or discontinuous Galerkin method of polynomial degree p in d spatial dimensions will
haveO(pd) degrees of freedom per element, and hence the system matrix will haveO(p2d) non-zero entries.
For this reason it is often the case that the coefficient matrix is not assembled and associated operations
are carried out in a matrix-free fashion. A matrix-free method reduces the memory requirements to O(pd)
and, making use of sum factorization techniques, the cost of a matrix–vector product can be reduced to
O(dpd+1)[65].

The condition number of the discretized matrix increases quadratically with the polynomial degree.
Due to the large bandwidth, direct methods for solving linear systems are not an option. We therefore
must turn to iterative solvers and it is vital that we pair the Krylov subspace solver with an appropriate
preconditioner to get good performance.

In this section, we summarize the state-of-the-art in techniques proposed to precondition linear systems
arising from the discretization of elliptic PDEs with high-order methods. We point the reader to the
NEPTUNE report [7] for an overview of general-purpose preconditioners, as well as the excellent review
by Wathen[88].

3.1 Preconditioning high order finite element matrices

There is a good body of work on preconditioners for low- to moderate-order finite elements and there
are some excellent implementations of algorithms which have been used in a wide variety of practical
situations; see Section 3.2. However, it has been observed that such methods often give less than desirable
performance when applied to high-order discretization (however, see Heys et al. [40], who show that AMG
can be applied successfully—albeit with a mild p-dependence—through minor modifications).

One technique that has proved successful, first proposed by Orszag in 1980 [65], is to exploit the
spectral equivalence between low-order and high-order operators, known as FEM–SEM equivalence; see
the review by Canuto, Gervasio and Quarteroni[22] and the references therein. This approach allows us
to use a low-order discretization to precondition the high-order problem, allowing the use of methods
outlined in Section 3.2 as a fast approximation to this ‘ideal’, low-order, preconditioner.
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In practice, the tensor-product of the Gauss–Lobatto–Legendre points used to generate the grid for
spectral element methods result in anisotropic finite element meshes, which challenge basic multigrid and
domain decomposition methods[52]. Nevertheless, there has been considerable success in the development
of such methods in recent years: Pazner and Kolev [69, 70] develop a multigrid preconditioner for high-
order continuous and discontinuous Galerkin methods with hp-refinement; Chalmers and Warburton[23]
and Olson[63] apply this idea to simplexes in two and three dimensions; Bello-Maldonado and Fischer[14]
create a scheme that uses a preconditioner based on P1-elements, using a meshing technique for rect-
angular and hexahedral elements; Pazner, Dohrmann and Kolev [72, 25] show this can be applied to
finite element problems on H(curl) and H(div) spaces (using Nédélec and Raivart–Thomas elements,
respectively). These methods are typically independent of the polynomial degree, mesh size and, for DG
methods, the penalty parameter. A comparison by Sundar, Stadler and Biros [85] concludes that this
approach is more advantageous than h- or p-multigrid.

We particularly highlight the work of Pazner, Dohrmann and Kolev [72], who present numerical
experiments using the finite element library MFEM, with which the construction of such preconditioners
requires only one or two lines of code. These tests corroborate the theoretical properties of the proposed
preconditioners, and demonstrate the flexibility and scalability of the method on a range of challenging
three-dimensional problems. These new solvers are flexible and easy to use; any black-box preconditioner
for low-order problems can be used to create an effective and efficient preconditioner for the corresponding
high-order problem. The lor_solvers miniapp, and its parallel counterpart plor_solvers, illustrate
the construction of low-order-refined (LOR) discretizations and solvers, and come distributed within the
MFEM source code, available at https://github.com/mfem/mfem.

An alternative approach is to use the observation of Pavarino[68] that additive Schwartz, together
with an additive coarse space of order one and a vertex-centred space decomposition, is robust with
respect to both p and h for symmetric and coercive problems. The local solves for such problems are
dense and solved with a direct method. Furthermore, the coarse-grid operator is also fairly dense and can
quickly become expensive. However, in recent years good methods for solving this system have become
available; see, e.g., Lottes and Fischer[52].

Recently Brubeck and Farrell[21] introduced a p-robust preconditioner which uses the additive Schwarz
method with vertex patches combined with a low-order coarse space as a solver for symmetric and coercive
problems. By constructing a tensor product basis that diagonalizes the blocks in the stiffness matrix for
the internal degrees of freedom of each individual cell, they show that the patch problem is as sparse as a
low-order finite difference discretization and having a sparse Cholesky factorization allows them to scale
to large polynomial degree p and afford the assembly and factorization of the matrices in the vertex-patch
problems. They successfully apply their method to the Poisson equation and the mixed formulation of
linear elasticity both with constant coefficient problems and claim that the theory of [11] suggests that it
would remain effective for spatially varying coefficients. In their conclusion, they state that the downsides
of their approach: (1) its narrow applicability: it will not be effective on more general problems (tested
on Poisson and mixed formulation of linear elasticity), especially for those where the dominant terms
include mixed derivatives and mixed vector components; (2) their method relies on having a good quality
mesh, with the performance depending on the minimal angle.

Finally, we highlight that even explicit time integration methods require the solution of a mass matrix
at each time step. While this is trivial for low-order discretization, it is less obviously the case for high-
order problems, as the condition number of the mass matrix grows algebraically with the polynomial
order. Ainsworth and Jiang[2, 3] describe an efficient preconditioner for the mass matrix, independent of
h and p, based on a specific choice of hierarchical basis, which involves only diagonal solves.

3.2 Preconditioners for low order problems

The methods described above depend on a robust and efficient linear solver for low-order finite ele-
ment systems. Outside of basic PDEs on uniform grids, where fast multipole methods and fast Fourier
transforms may be applied successfully[36], the main choice is between multigrid methods and domain
decomposition methods.
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3.2.1 Multigrid methods

Multigrid (MG) methods[86] are split into algebraic (AMG) and geometric (GMG) variants. AMG
methods use the algebraic properties of the assembled matrix to restrict to coarser grids, whereas GMG
solvers use information about the underlying mesh connectivity. GMG solvers can be over an order of
magnitude faster than the best AMG solvers [36], since they can be used matrix-free, and operators
can be modified on different levels, which can be advantageous when solving, e.g., advection–diffusion
problems[73], or when needing to accommodate non-standard boundary conditions. However, there
are excellent robust AMG implementations available which work well off-the-shelf for a wide range of
problems, which we describe below, and AMG solvers and preconditioners are some of the fastest black-
box numerical methods to solve linear systems.

The convergence of AMG solvers is well established for symmetric positive definite (SPD) linear
systems resulting from the discretization of general elliptic PDEs or the spatial discretization of parabolic
PDEs. Hyperbolic PDEs remain a challenge for AMG, as well as other fast linear solvers, in part because
the resulting linear systems are often highly nonsymmetric. Nevertheless, modern AMG implementations
can perform well on a wide range of problems.

The HYPRE library[28], originating from the Lawrence Livermore National Laboratories, contains
a number of high quality implementations of multigrid preconditioners. BoomerAMG [39] is a paral-
lel implementation of the classical Ruge and Stüben AMG method, and offers a range of coarsening,
interpolation, and smoothing options.

The ML preconditioner within Trilinos [35], developed by Sandia National Laboratory, is another
fully featured algebraic multigrid implementation, offering a range of multilevel schemes, smoothers, and
coarse solvers.

The GAMG preconditioner within PETSc [12, Section 4.4.5] uses a smoothed aggregation coarsening
strategy, and offers a reference implementation of the classical Ruge and Stüben method. It also provides
unsmoothed aggregation, which can be useful for nonsymmetric problems. Note that both HYPRE and
ML are also available via the PETSc interface.

The AGMG method of Notay [61, 60] is another aggregation-based algebraic multigrid method which
can be applied to any system matrix that has positive diagonal entries. The implementation can use
MPI, multithreading, or both.

A variety of multigrid relaxation methods, based on a topological construction, are incorporated into
a unifying software abstraction called PCPATCH [31], implemented in PETSc. This allows a range
of schemes to be available through simple manipulation of solver options at runtime and so enables
ready exploration of suitable multigrid methods for challenging problems. Various parameter-robust
preconditioners for physical applications are discussed which fit within this framework and a Firedrake
example code is provided.

It is well known that AMG methods do not perform well ‘out-of-the-box’ for anisotropic problems,
and may require some problem-specific tuning; the PETSc documentation [12, Section 4.4.5] gives some
advice for this.

Manteuffel et al. [53] present a new variation on classical AMG for nonsymmetric matrices (denoted
ℓ-AIR), based on a local approximation to the ideal restriction operator, coupled with F-relaxation. They
demonstrate the efficacy of the proposed preconditioner on systems arising from the discrete form of the
advection–diffusion–reaction equation. The ℓ-AIR approach is shown to be a robust solver for various
discretizations of the advection–diffusion–reaction equation, including time-dependent and steady-state,
from purely advective to purely diffusive. Convergence is robust for discretizations on unstructured
meshes and using higher-order finite elements, and is particularly effective on upwind discontinuous
Galerkin discretizations. We note that ℓ-AIR is available in PyAMG [64], and an implementation through
HYPRE is underway.

In a related work, Manteuffel et al.[54] present a reduction-based AMG method developed for up-
wind discretizations of hyperbolic PDEs, based on the concept of a Neumann approximation to ideal
restriction (n-AIR). The n-AIR approach can be seen as a variation of local AIR (ℓ-AIR) specifically
targeting matrices with triangular structure. Although less versatile than ℓ-AIR, setup times for n-AIR
can be substantially faster for problems with high connectivity. The n-AIR algorithm is shown to be
an effective and scalable solver of steady state transport for discontinuous, upwind discretizations, with
unstructured meshes, and up to 6th-order finite elements, offering a significant improvement over existing
AMG methods. It is also shown to be effective on several classes of nearly triangular matrices resulting
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from curvilinear finite elements and artificial diffusion.
In a very recent preprint, Wimmer et al. [89] propose a solver for anisotropic heat flux tailored

towards applications in magnetic confinement fusion plasmas where there is strong anisotropy. This
is a combination of a new finite element discretization of the problem, using a discontinuous Galerkin
approach on a mixed formulation which introduces heat flux, and an algebraic multigrid method based on
the AIR paradigm. They show fast convergence even in the highly anisotropic case where diffusion-based
AMG methods typically struggle.

3.2.2 Domain decomposition methods

Domain decomposition methods are among the most efficient for solving sparse linear systems of equations
on massively parallel architectures; see, e.g., the book by Dolean, Jolivet and Nataf [26] for a recent
overview of the field. Their effectiveness relies on a judiciously chosen coarse space. Spillane et al.
introduced GenEO, a spectral coarse space, in [84]. GenEO proved to be very attractive as it can be
constructed efficiently and adapts to the difficulties posed in the underlying problem with a minimum
amount of effort from the user perspective. This method is theoretically proved to be efficient and robust
with respect to the problem size, mesh, discretization type, and order for elliptic PDEs [4, 13], along
with any problem parameters. That is, the preconditioner can be constructed efficiently such that the
condition number of the preconditioned matrix is bounded from above by a user defined number.

Further, a theory has recently been developed to analyse a GenEO-type coarse space for indefinite
and non-self-adjoint problems [18], in particular considering the convection–diffusion–reaction equation.
A related approach is also shown to be effective for heterogeneous Helmholtz problems at moderately
high frequencies [17, 19].

Al Daas et al. [6] have recently extended GenEO to be applicable as a black-box method to precon-
dition general sparse linear system. They assessed the efficiency and scalability of the algebraic GenEO
method using a variety of very challenging problems arising from a wide range of applications and in-
cluding highly nonsymmetric problems such as the advection dominated advection–diffusion equation.
Comparisons against state-of-the-art multigrid preconditioners illustrated the robustness and efficiency
of algebraic GenEO.

Al Daas et al. [5] recently introduced an algebraic extension of GenEO for the diagonally weighted
normal equation matrix. Their motivation was to precondition iterative methods for solving linear least-
squares problems. The weighted normal equation matrix also arises in block preconditioning where a
preconditioner is required for the (approximate) Schur complement matrix. The preconditioner proposed
in [5] can be directly employed within a block preconditioner resulting in a robust, efficient and scalable
preconditioner for the (approximate) Schur complement matrix.

Implementations of the algebraic GenEO methods proposed in [6, 5] are available through the PETSc
preconditioner PCHPDDM, and only require the coefficient matrix.

Summary

� The most promising method for solving matrices stemming from high-order elliptic PDEs is
to precondition with a low-order finite element operator; low-order solvers have become robust
enough to solve the resulting (challenging) linear systems [72].

� Multigrid and domain decomposition based preconditioners are the leading contenders for
performant parallel iterative solves on anisotropic elliptic problems of low order.

� There are several excellent algebraic multigrid packages available that are highly parallel.
However, to get good performance it is vital to tune the parameters for a given problem. A
well-implemented geometric multigrid method would give superior performance to an algebraic
multigrid.

� The GenEO method [84] is the domain decomposition method with most promise, with a good
trade-off between performance and ease of setup; the recent development of fully algebraic
variants [6, 5] make this even more the case.
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