
Implicit-factorization preconditioners for

NEPTUNE Programme

Technical Report 2047353-TN-03

Maksims Abaļenkovs∗ Vassil Alexandrov∗ Anton Lebedev∗ Emre Sahin∗

Sue Thorne∗∗

July 2021

1 Introduction

In simulations relating to plasma physics, and more generally, the dominate component in terms of
simulation time is normally the time to solve the underlying linear systems

Ax = b.

In this report, we will assume that A ∈ Rn×n is non-singular, the right-hand side b ∈ Rn is provided
and we wish to compute an (approximate) solution x ∈ Rn. These systems are usually solved via an
iterative method such a Krylov subspace method. Typically, the nature of these systems mean that a
large number of iterations are required to reach the desired level of accuracy. To reduce the number of
iterations, we aim to choose a preconditioner P ∈ Rn×n such that applying the iterative method to the
equivalent system

P−1Ax = P−1b

results in a reduction in the number of iterations and the time to set-up P and to solve with P during
each iterations is such that there is an overall reduction in solution time. Note, in the above, we have
described left preconditioning. For right preconditioning, one is solving the equivalent system

AP−1y = b, x = P−1y.

It is also possible to use a combination of left and right preconditioners together:

P−11 AP−12 y = P−11 b, x = P−12 y.

2 Software for Plasma Physics Modelling: Overview

In the following, we describe our use of BOUT++ and Nektar++, which have been identified by UKAEA
to be the modelling packages of interest for the NEPTUNE Project. As part of the descriptions, we include
how preconditioners are currently incorporated into these libraries.

∗The authors are with the Hartree Centre, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick, Daresbury,
Warrington, WA4 4AD, UK. Email contact: maksims.abalenkovs@stfc.ac.uk

∗∗Sue Thorne is with the STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK. Email
contact: sue.thorne@stfc.ac.uk

1

mailto:maksims.abalenkovs@stfc.ac.uk
mailto:sue.thorne@stfc.ac.uk

2.1 BOUT++

BOUT++ [5] is very much designed for matrix-free calculations, which use external packages PETSc or
SUNDIALS to solve the more complex problems. In themselves, these external packages use matrix-free
implementations by default. This means that custom preconditioners either need to be developed in
a matrix-free, operator-based manner and provided via BOUT++ or, for preconditioners that can act in
a matrix-free manner, but require access to the action of the linear system being solved, it would need
implementing within the under-lying library.

As part of this project, we used a nonlinear diffusion test case that simulates the effects of heat
conduction in a plasma. This test case is provided as part of BOUT++. At the moment, BOUT++
relies on the PETSc package for the preconditioning work within this test case. There are multiple ways
to execute the heat conduction example. In the simplest possible form the code is launched with

./diffusion-nl

IMEX-BDF2 multistep scheme is launched with

./diffusion-nl solver:type=imexbdf2

Preconditioning is enabled with the following flag

./diffusion-nl solver:use_precon=true

Finally, the Jacobian colouring with the IMEX-BDF2 is enabled with

./diffusion-nl solver:type=imexbdf2 solver:matrix_free=false

The end command used in the experiments is

./diffusion-nl solver:type=imexbdf2 solver:matrix_free=false solver:use_precon=true

Extracting and saving the system matrix was done via PETSc routines. In order to save the matrix
imex-bdf2.cxx source code file was modified. The precon routine was supplemented with the following
commands (Figure 1):

1: PetscViewer viewer;
2: PetscViewerASCIIOpen(MPI COMM WORLD, "A.mtx", &viewer);
3: PetscViewerPushFormat(viewer, PETSC VIEWER ASCII MATRIXMARKET);
4: MatView(Jmf, viewer);

Figure 1: C++ source code for system matrix extraction

In this report, we also consider the SD1D test case [4], which uses BOUT++ to simulate a plasma fluid
in one dimension (along the magnetic field) that interacts with a neutral gas fluid. Unlike the nonlinear
diffusion example, this test case provides a preconditioner as part of the model in an operator-based
manner.

2.2 Nektar++

Nektar++ [2, 6] is designed to provide discretisation and solution of partial differential equations using
the spectral/hp element method.

Nektar++ accepts *.xml or similar formats as inputs, where the input file provides finite-element
mesh and the specifications to solve the specific PDE problem. The specification of the mesh format
within Nektar++ is hierarchically defined as: 1D edges as connection of vertices, 2D faces as bounding
edges and 3D elements as bounding faces. Nektar++’s MultiRegions library derives mapping from these
meshes and uses these mappings for different Galerkin projection methods to assembly a global linear
system. Afterwards, constructed global linear system may be solved by using direct Cholesky factorisation
or iterative preconditioned conjugate gradient. Nektar++ provides range selection of the preconditioners
such as classical Jacobi preconditioner, coarse-space preconditioner, block preconditioner and low-energy
preconditioner. It is also providing interface to use PETSc for additional solvers. Nektar++ evaluates
L2 and Linf errors against the provided exact solution.

2

Due to the structure of the MCMCMI algorithm, it is not feasible to adapt it as a preconditioner
module for the Nektar++ in the timeline of the project according to the steps described in [2]. Therefore,
Nektar++ is edited accordingly to extract full system matrices as Matrix Market format *.mtx to use it
separately in the MCMCMI algorithm.

Nektar++ provides Advection-Diffusion-Reaction solver to solve partial differential equations of the
form (1) in either discontinuous or continuous projections of the solution field [6].

α
∂u

∂t
+ λu+ v∇u+ ε∇ · (D∇u) = f (1)

However, it is not possible to construct linear systems for the discontinuous Galerkin. Hence, application
cases with continuous Galerkin were chosen from ’Nektar++/Solvers/ADRSolver/Tests’ accordingly to
the prioritised equations as described in [1].

2.3 Testing Environment

Numerical experiments were run on the SKL (Skylake) nodes of the Scafell Pike system which consists
of nodes fitted with 2x XEON gold E5-6142 v5 processors resulting in 32 cores per node and, due to
HyperThreading, 64 threads per node.

3 Numerical Results for Sparse Approximate Inverse Precondi-
tioners

MCMCMI experiments were performed on four system matrices extracted from the BOUT++ software.
These matrices were created for one and the same one-dimensional “Non-linear diffusion” test problem
called diffusion-nl. The main BOUT++ source code was modified to enforce PETSc, powering the
solution of diffusion-nl problem, to output system matrices into the Matrix Market *.mtx format.
Matrix orders of the extracted BOUT++ system matrices were n = 128, 512, 2048, 8192. The ever-
increasing system matrices were obtained by increasing the resolution over the y axis. Unfortunately, it
was not possible to extend the problem even further since PETSc started to crash for ny > 8192.

 10

 100

 1000

 10000

 100000

128 512 2048 8192

It
e

ra
ti
o

n
s

Matrix order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 2: Matrix order vs GMRES and BiCGStab iteration steps, BOUT++.

In Figure 2, we compare the matrix order vs GMRES and BiCGStab iteration steps for the BOUT++
examples. In the case of GMRES method and small matrices (n = 128, 512), the MCMCMI preconditioner
P decreases the number of iterations required for the linear system solution by 18% and 72% respectively.
In GMRES method applied to larger matrix orders (n = 2048, 8192) MCMCMI preconditioner shows
a dramatic improvement of 94%. On the other hand, using the BiCGStab solver, MCMCMI-based
preconditioner provides performance comparable with the reference solution for small matrices (n =

3

128, 512). For larger system matrices (n = 2048, 8192) MCMCMI preconditioner reduces the number of
iterations by 26% and 27% respectively.

0.0000001

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

10.0000000

100.0000000

128 512 2048 8192

L
1
 n

o
rm

Matrix order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 3: Matrix order vs L1 norm values in GMRES and BiCGStab, BOUT++.

We compare the L1 norm values for our approximate solutions from GMRES and BiCGStab for the
BOUT++ test problems in Figure 3. The highest values of L1 norm are provided by the preconditioned
linear system solve in the GMRES method. L1 norm values for non-preconditioned solutions in GMRES
and BiCGStab are comparable. Finally, the smallest values of L1 norm are obtained by the preconditioned
solution with the BiCGStab. One exception is the L1 norm values for the smallest test matrix (n = 128).

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

0.10000000

1.00000000

128 512 2048 8192

L
2
 n

o
rm

Matrix order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 4: Matrix order vs L2 norm values in GMRES and BiCGStab, BOUT++.

In Figure 4, we compare the L2 norm values for our approximate solutions from GMRES and
BiCGStab for the BOUT++ test problems. The L2 norm values follow the same tendency as the L1

norms described above (See Fig. 3 for details). The highest values are produced by the preconditioned
solution with the GMRES method and the lowest—by the preconditioned solution with the BiCGStab
algorithm. The L∞ norm values are compared in Figure 5. L∞ norms exhibit behaviour similar to the
L1 and L2 norms. Overall, the L∞ norms are the smallest amongst all norms. With rare exceptions
the preconditioned system solutions resulted in the highest (GMRES) and the lowest (BiCGStab) norm
values. We note that a left preconditioner is being used within the GMRES method and, hence, at each

4

iteration k, the preconditioned residual

||P−1 (b−Axk) ||2

is minimimised, where xk is a member of the Krylov subspace defined by

span
{
P−1r0, P

−1AP−1r0, . . . ,
(
P−1A

)k
P−1r0

}
with r0 = b−Ax0. Now,

||P−1 (b−Axk) ||2
||P−1||2

≤ ||b−Axk||2 ≤ ||P ||2||P−1 (b−Axk) ||2

and, hence, left preconditioned GMRES is not minimising the L2 norm of the residual and the values
of ||P ||2 and ||P−1||2 are likely to be such that whilst ||P−1 (b−Axk) ||2 can be small, the value of
||b − Axk||2 can be large. There is no minimisation property for the iterations of BiCGStab but these
results lead to the question: would right preconditioned GMRES lead to similar results to BiCGStab?
In the future, we would like to investigate this with larger problem sizes.

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

0.10000000

128 512 2048 8192

L
∞

 n
o

rm

Matrix order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 5: Matrix order vs L∞ norm values in GMRES and BiCGStab, BOUT++.

In Table 1, we provide the details for the matrices that were extracted from Nektar++. We compare
the number of GMRES and BiCGSTAB steps in Figure 6. Since the iterations are higher than non-
preconditioned GMRES method, the preconditioner failed for the GMRES method for all except the
Helmholtz problems. However, the preconditioner is successful for the BICGSTAB method. Higher L2

and L∞ values also supports the failure of the preconditioner for the GMRES method, likewise success
for the BICGSTAB method as shown in the Figures 7 and 8.

In the future, we would like to investigate the use of the MCMCMI preconditioner with test problems
that arise from anisotropic problems to see if the performance is markedly different.

5

Matrix name Label n Mode — Order Int timestep

Helmholtz H 1312 2D modal
Steady Adv-Diff SAD 2281 2D modal
Unsteady Adv-Diff 1 UAD1 225 Order 1 001
Unsteady Adv-Diff 2 UAD2 225 Order 1 0001
Unsteady Adv-Diff 3 UAD3 225 Order 2 001
Unsteady Adv-Diff 4 UAD4 225 Order 2 0001

Table 1: Nektar++ matrices used in MCMCMI preconditioner experiments.

 100

 1000

 10000

H
 1

31
2

SAD
 2

28
1

U
AD

1
22

5

U
AD

2
22

5

U
AD

3
22

5

U
AD

4
22

5

It
e

ra
ti
o

n
s

Matrix name order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 6: Matrix order vs GMRES and BiCGStab iteration steps, Nektar++.

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

0.10000000

1.00000000

10.00000000

H
 1

31
2

SAD
 2

28
1

U
AD

1
22

5

U
AD

2
22

5

U
AD

3
22

5

U
AD

4
22

5

L
2
 n

o
rm

Matrix name order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 7: Matrix order vs L2 norm values in GMRES and BiCGStab, Nektar++.

6

0.00000001

0.00000010

0.00000100

0.00001000

0.00010000

0.00100000

0.01000000

0.10000000

1.00000000

10.00000000

H
 1

31
2

SAD
 2

28
1

U
AD

1
22

5

U
AD

2
22

5

U
AD

3
22

5

U
AD

4
22

5

L
∞

 n
o

rm

Matrix name order

gmres(A)
gmres(P·A)
bicgstab(A)
bicgstab(P·A)

Figure 8: Matrix order vs L∞ norm values in GMRES and BiCGStab, Nektar++.

7

4 Numerical results for operator-based preconditioners

Here, we focus on operator-based preconditioners. An understanding of the underlying mathematical
operators and the numerical properties of discretised version can provide great insight into choice of
preconditioner. For example, a standard finite-element discretisation of the Laplacian operator will, in
general, have condition number that is inversely proportion to h2 for 2D problems and h3 for 3D, where
h is the mesh size. Thus, halving h will increase the condition number of factors of 4 or 8, respectively.
This can cause a dramatic increase in iterations if no preconditioner, or an ineffective preconditioner, is
used.

Suppose we have a problem that couples together 3 different variables, then the matrix A will naturally
split into a block 3× 3 format:

A =

 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3

 (2)

For such problems, it will be natural to use a block-diagonal preconditioner of the form:

P =

 P1,1 0 0
0 P2,2 0
0 0 P3,3

 , (3)

where the dimension of each block directly tallies with the dimension of the associated block in (2).
Alternatively, P could be block upper or lower triangular, or take a constraint preconditioner format:

P =

 P1,1 P1,2 A1,3

P2,1 P2,2 A2,3

A3,1 A3,2 A3,3

 .
For symmetric A, Wathen [8] provides a good overview of block preconditioners and we note that fac-
torizations of constraint preconditioners can be generated implicitly [3]. Constraint preconditioners have
been extended for non-symmetric problems in [7] and, due to time restrictions, are not considered for the
test case considered in this report.

Here, we consider the SD1D test case [4], which uses BOUT++ to simulate a plasma fluid in one
dimension (along the magnetic field) that interacts with a neutral gas fluid. Unlike the nonlinear diffusion
example, this test case provides a preconditioner as part of the model in an operator-based manner. SD1D
has a number of different cases. For Case-03, the equations for the plasma density n, pressure p and
momentum minV||i are evolved:

∂n

∂t
= −∇ ·

(
bV||n

)
+ Sn − S (4)

∂

∂t

(
3

2
p

)
= −∇ · q + V||∂||p+ Sp − E −R (5)

∂

∂t

(
minV||

)
= −∇ ·

(
minV||bV||

)
− ∂||p− F (6)

j|| = 0

Ti = Te =
1

2

p

en

q =
5

2
pbV|| − κ||e∂||Te

Which has a conserved energy: ∫
V

[
1

2
minV

2
||i +

3

2
p

]
dV

The heat conduction coefficient κ||e is a nonlinear function of temperature Te:

κ||e = κ0T
5/2
e

8

where κ0 is a constant. See [4] for further details. Operators are:

∂||f = b · ∇f ∇||f = ∇ · (bf) (7)

This nonlinear problem is solved by using CVODE from the SUNDIALS library [9], which uses a Newton
method. At the heart of the simulation, a large number of systems of the form (2) are solved, where
A = I−γJ and J are Jacobian matrices for a computed value of γ : for clarity, we will assume that J has
the same block structure as A and J1,j are derived via (4), J2,j are derived via (5), J3,j are derived via
(6), Jj,1 are formed by taking the derivative with respect to n, Jj,2 are formed by taking the derivative
with respect to p and Jj,3 are formed by taking the derivative with respect to minV||. We note that J2,1
and J2,2 contain terms that including ∂2||.

The preconditioner provided within SD1D takes the following block-diagonal, operator form:

P0 =

 I 0 0
0 I − γ 2

3∂
2
|| 0

0 0 I

 . (8)

We note that 5 shows that ∂2|| is applied to 1
2Te and not p, and hence, we propose the following block-

diagonal, operator-form preconditioner:

P1 =

 I 0 0
0 (I − γ 1

3n∂
2
||)n 0

0 0 I

 . (9)

We note that application of the preconditioner P1 will be more expensive than P0. Finally, for Case-03,
we also try a block lower triangular preconditioner that additionally incorporates the ∂|| from (6):

P2 =

 I 0 0
0 (I − γ 1

3n∂
2
||)n 0

0 −γ∂|| I

 . (10)

Case-04 from SD1D additionally couples the above plasma equations to a similar set of equations for
the neutral gas density, pressure, and parallel momentum. A fixed particle and power source is used
here, and a 20% recycling fraction. Exchange of particles, momentum and energy between neutrals and
plasma occurs through ionisation, recombination and charge exchange. If we sub-divide A according to
the variables that are being evolved, we now have a block 6× 6 structure. The provided preconditioner
P0 is now

P0 =



I 0 0 0 0 0
0 I − γ 2

3∂
2
|| 0 0 0 0

0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I − γ 2

3∂
2
||

0 0 0 0 0 I

 . (11)

Using the properties of the neutral, we instead propose

P1 =



I 0 0 0 0 0
0 I − γ 2

3∂
2
|| 0 0 0 0

0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I − γDn

2
3∂

2
||

0 0 0 0 0 I

 , (12)

where Dn is a diffusion term. As for case-03, we also propose a block lower-triangular preconditioner
that incorporates the ∂|| from (6) and the ∂|| from the corresponding equation for neutral momentum:

P2 =



I 0 0 0 0 0
0 I − γ 2

3∂
2
|| 0 0 0 0

0 −γ∂|| I 0 0 0
0 0 0 I 0 0
0 0 0 0 I − γDn

2
3∂

2
||

0 0 0 0 −γ∂|| I

 . (13)

9

Finally, we consider a preconditioner that is identical to P2 but the ∂|| relating to the neutral momentum
equation is dropped:

P3 =



I 0 0 0 0 0
0 I − γ 2

3∂
2
|| 0 0 0 0

0 −γ∂|| I 0 0 0
0 0 0 I 0 0
0 0 0 0 I − γDn

2
3∂

2
||

0 0 0 0 0 I

 . (14)

In Figure 9, we compare the number of times the time derivatives (right-hand sides) were computed for
Case-03 and Case-04 for the different preconditioners. We also compare what happens if no preconditioner
is used for the smaller problems. The smaller matrix orders are from the default problem set-up (i.e., 200
mesh points for each variable). For Case-03, we also compare the preconditioners for the discretization
with 1000 mesh points per variable and, for Case-04, 400 mesh points per variable. If we consider the
smaller version of Case-03, all of the preconditioners reduce the number of right-hand side evaluations
by roughly a factor of 36 with P2 producing the lowest number of evaluations; for the larger problem,
we observe that P2 also has the lowest number of evaluations with an 18% reduction compared to P0.
In Figure 10, we compare the wall clock time to run the simulations. Just one MPI process was used
with one OpenMP thread because of the relatively small problem sizes. For the larger version of Case-
03, we see a 10% improvement, with respect to wall-clock time, when using the block lower-triangular
preconditioner compared to the original preconditioner. These savings are relatively modest because the
density n remains close to uniform throughout the simulation.

For Case-04, we observe that all of the preconditioners substantially decrease the number of evaluations
and the wall clock time compared to using no preconditioner. For both problem sizes, compared to the
original preconditioner, preconditioners P1, P2 and P3 are reducing the number of evaluations and wall
clock time by a third. Thus, for the expert user, it is possible to incorporate more sophisticated operator-
based preconditioners within BOUT++.

10000

100000

1x106

1x107

600 (3) 3000 (3) 1200 (4) 2400 (4)

T
o

ta
l R

H
S

 e
v
a

lu
a

tio
n

s

Matrix order (case)

A
P0· A
P1· A
P2· A
P3· A

Figure 9: Total number of right-hand side evaluations performed during the whole simulation
for Case-03 and Case-04 with different preconditioners. For Case-03, results for the default
discretization with 200 mesh points per variable (matrix order 600) and a larger problem size with
1000 mesh points per variable (matrix order 3000) are provided. For Case-04, results for the default
discretization with 200 mesh points per variable (matrix order 600) and a larger problem size with 1000
mesh points per variable (matrix order 3000) are provided.

10

10

100

1000

10000

600 (3) 3000 (3) 1200 (4) 2400 (4)

W
a

ll
cl

o
c
k

tim
e

,
s

Matrix order (case)

A
P0· A
P1· A
P2· A
P3· A

Figure 10: Total wall clock time (seconds) for the whole simulation for Case-03 and Case-04
with different preconditioners. For Case-03, results for the default discretization with 200 mesh
points per variable (matrix order 600) and a larger problem size with 1000 mesh points per variable
(matrix order 3000) are provided. For Case-04, results for the default discretization with 200 mesh points
per variable (matrix order 600) and a larger problem size with 1000 mesh points per variable (matrix
order 3000) are provided.

5 Proposed roadmap for including new preconditioners within
BOUT++ and Nektar++

Prior to including custom new preconditioners into BOUT++ and Nektar++ [2] it would be the best to
have the exact testing scenarios of interest to UKAEA ready. Once the testing scenarios are available and
working at scale close to the real problems UKAEA want to solve, it would be the right time to investigate
preconditioner deployment. Ideally the new preconditioners need to be reformulated in a matrix-free
manner. Once these formulations are available they could be integrated into PETSc, SUNDIALS and
other solver packages powering BOUT++ and Nektar++. This way it would bring more benefit to
the user community. The user base of PETSc and SUNDIALS is likely to be much larger than that
of BOUT++ and Nektar++. This would also ensure that only minimal changes would be required to
BOUT++ and Nektar++ in order to leverage computational advantages of new preconditioners.

In summary the following steps are required for a successful deployment of new preconditioners into
BOUT++ and Nektar++:

1. Design testing scenarios in native BOUT++ and Nektar++. These scenarios should reflect real-
world problems UKAEA solves at the moment. Pay attention to scale at which simulations should
be performed.

2. Identify (matrix-free) methods and underlying solver packages (PVODE, CVODE, PETSc, SUN-
DIALS) that BOUT++ and Nektar++ employ to solve those problems.

3. Reformulate MCMCMI-based preconditioner in the operator (matrix-free) form.

4. Implement MCMCMI preconditioner in operator form and test it thoroughly.

5. Integrate operator-based MCMCMI preconditioner into solver packages identified in Step 2.

6. Solve testing scenarios identified in Step 1 using standard (native) BOUT++ and Nektar++ meth-
ods as well as new MCMCMI preconditioners.

7. Compare computational performance of native vs MCMCMI-based preconditioners.

11

6 Conclusion

Including MCMCMI-based preconditioners into either BOUT++ or Nektar++ simulation software is
difficult at the moment. First, the MCMCMI code needs to be reformulated in the matrix-free man-
ner. Then it can be integrated into solver packages (PETSc, SUNDIALS) powering solving abilities of
BOUT++ and Nektar++. Reformulation and implementation of MCMCMI in the operator form will
take 3–6 months. Integration of operator-based MCMCMI into PETSc and SUNDIALS will take another
3–6 months. Therefore, to obtain preliminary results of MCMCMI performance over the test problems
the STFC team decided to extract the system matrices from the relevant BOUT++ and Nektar++ testing
scenarios. In the process the team discovered the (i) it was not possible to extract the matrices for some
scenarios due to their inherent matrix-free nature, (ii) some testing scenarios of interest to UKAEA are
not available yet in either BOUT++ or Nektar++. These need to be designed and developed further.

Acknowledgements

The team would like to thank Dr. Benjamin Dudson from the University of York and Dr. Chris Cantwell
from the Imperial College London for their time, help and guidance in technical aspects of BOUT++
and Nektar++ functionality.

References

[1] V. Alexandrov, A. Lebedev, E. Sahin, and S. Thorne. Linear systems of equations and preconditioners
relating to the NEPTUNE Programme: a brief overview. Technical Report 2047353-TN-02, UKAEA,
2021.

[2] C. D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. D. Grazia, S. Yakovlev,
J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto,
R. M. Kirby, and S. J. Sherwin. Nektar++: An open-source spectral/hp element framework. Computer
physics communications, 192:205–219, 2015.

[3] H. S. Dollar, N. I. Gould, W. H. Schilders, and A. J. Wathen. Implicit-factorization preconditioning
and iterative solvers for regularized saddle-point systems. SIAM Journal on Matrix Analysis and
Applications, 28(1):170–189, 2006.

[4] B. Dudson. SD1D. online repository, 2016. URL https://github.com/boutproject/SD1D.

[5] B. Dudson, P. Hill, and J. Parker. BOUT++. online repository, 2020. URL http://boutproject.

github.io.

[6] S. Sherwin, M. Kirby, C. Cantwell, and D. Moxey. Nektar++. online, 2021. URL https://www.

nektar.info.

[7] S. Thorne. Implicit-factorization preconditioners for non-symmetric problems. Technical Report
2047353-TN-04, UKAEA, 2021.

[8] A. Wathen. Preconditioning. Acta Numerica, 24:329 – 376, 2015.

[9] C. S. Woodward, D. R. Reynolds, A. C. Hindmarsh, D. J. Gardner, and C. J. Balos. SUNDIALS: SUite
of Nonlinear and DIfferential/ALgebraic Equation Solvers. online, 2021. URL https://computing.

llnl.gov/projects/sundials.

12

https://github.com/boutproject/SD1D
http://boutproject.github.io
http://boutproject.github.io
https://www.nektar.info
https://www.nektar.info
https://computing.llnl.gov/projects/sundials
https://computing.llnl.gov/projects/sundials

	Introduction
	Software for Plasma Physics Modelling: Overview
	BOUT++
	Nektar++
	Testing Environment

	Numerical Results for Sparse Approximate Inverse Preconditioners
	Numerical results for operator-based preconditioners
	Proposed roadmap for including new preconditioners within BOUT++ and Nektar++
	Conclusion

