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1 Executive summary

Reference elliptic solver implementations in BOUT++ [1] are described, along

with the techniques which use simplified methods to effectively precondition

more complex problems. Implementations in BOUT++ include previously de-

veloped PETSc-based solvers, and a new Hypre implementation.

The results of an axisymmetric Alfvén wave test are presented, showing differ-

ences in numerical stability between direct and iterative solvers for these modes.

The Hypre-based solver has been profiled on the Lassen supercomputer [2] in

collaboration with LLNL. This indicates that GPUs can result in significant

speedups of the matrix solves (e.g. factor of 6.9 here, on 4 GPUs vs 40 CPUs),

but that other parts of the problem setup and solve can dominate and must be
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mitigated to achieve good performance.

2 Problem description

Elliptic problems appear as important elements of fluid and (gyro-)kinetic plasma

models. Here we focus on the solution of the electrostatic potential φ, which is

required in order to advance the model equations, and acts in a similar way to

the stream function in incompressible fluid flow. The usual technique used to

calculate φ in edge simulation codes is to evolve the vorticity ω in time, and at

each timestep to invert a second order elliptic equation of the form:

∇ ·
(min

B2
∇⊥φ

)
= ω (1)

where mi is the ion mass; B is the magnetic field strength which varies in space,

but typically not strongly in time; n is the plasma density, which does vary

in time and space. This time variation poses a challenge for methods which

require matrix assembly, because the matrix elements then change in time. In

some situations and models this density is replaced by a constant. This is often

called the ”Boussinesq” approximation, by analogy to buoyancy-driven fluid

flow.

The elliptic operator in equation 1 includes an operator ∇⊥ = ∇−bb ·∇ which

is the component of the gradient perpendicular to the magnetic field unit vector

b. In the case where b is constant, equation 1 becomes a 2D problem, but in

toroidal fusion systems such as tokamaks b varies in space (and in principle also

in time). The result is that the 2D surface becomes a complicated helix which

wraps around the torus. In general this helix does not close on itself, and so

the 2D surface fills the 3D domain. Equation 1 is therefore a 3D problem, but

one which in some cases can be approximated by a 2D system, when gradients

along the magnetic field b are neglected.
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3 Implementation

The BOUT++ code includes several solvers for potential, because these are

commonly needed in the drift-reduced fluid models it is designed to solve. The

system to be inverted is in general 3-dimensional, but can be simplified in many

cases. There are therefore several implementations

• 3D solvers, using PETSc and Hypre. These have been developed relatively

recently; the Hypre implementation has been developed in the last year.

• 2D solvers, where the derivatives of the electrostatic potential φ along

the magnetic field are neglected. In BOUT++ the potential is solved

on toroidal planes (in ψ, ζ) rather than poloidal planes. The toroidal

plane requires lower resolution, and means that the geometry coefficients

are constant in one dimension (toroidal angle ζ). Disadvantages include

a singularity in the coordinates near the X-point. (Note that often φ is

often used for both toroidal angle and electrostatic potential).

• 1D solvers, where the 2D domain is Fourier decomposed into toroidal

modes. This leads to a set of independent complex tridiagonal systems,

one for each mode, which can be solved in parallel. This is possible in an

axisymmetric system, like a tokamak, if the variation of density in toroidal

angle is neglected (the Boussinesq approximation).

These approximations (neglecting parallel derivatives, and density constant in

toroidal angle) tend to be good for high mode-number instabilities and turbu-

lence, but become worse at lower mode-numbers (say toroidal mode number

< 5). In particular for the axisymmetric mode these approximations become

poor.

For many applications the lower dimensional applications give a good approxi-

mation, and can be trivially parallelised. They therefore make good precondi-

tioners for the more complex problems. One quite common application of this

is the ”Naulin method” [3], where a fast solver using the Boussinesq approxi-

mation (constant density) is used in a Picard iteration to find the solution with

varying density:

∇ ·
(min

B2
∇⊥φ

)
= ω
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n = n0 + δn

∇ ·
(min0
B2
∇⊥φk+1

)
= ω −∇ ·

(
miδn

B2
∇⊥φk

)
where n0 is constant (in a way which simplifies the solve), and k is the iteration

number. Since φ is evolving in time, typically this iteration starts from the

solution at the previous time step, and tends to converge to acceptable tolerances

in a small number of iterations (2-3).

3.1 1D solvers

If the density is assumed constant in toroidal angle, then the 2D system of

equations can be Fourier decomposed into toroidal modes. Each mode is coupled

in the radial (ψ) direction through a second-order ODE. Using 2nd-order central

differencing, this results a complex tridiagonal system for each mode. Both

direct and iterative methods are implemented in BOUT++:

Direct partitioning: This is a method described in a preprint by Austin

et al [T.Austin, M.Berndt, D.Moulton, preprint LA-UR-03-4149, 2004]. For

each 1D system, each processor reduces its local rows by eliminating rows until

there are only two rows per processor. These rows are then gathered onto

one processor, solved using the fast serial Thomas algorithm, and scattered

back. The solution to this reduced system is then substituted back in to solve

for the remaining rows on each processor. This results in an all-to-one and a

one-to-all communication pattern. Performance is improved in the BOUT++

implementation by solving for all 1D systems in parallel, and grouping the rows

into larger messages. In the current implementation the reduced systems are

shared between all processors, so each processor sends the rows for some systems

to one processor, some to the next processor, and so on. This balances the work,

but results in all-to-all communications. On Archer2 this has been found to have

much worse multi-node scaling than previous machines; This is currently being

investigated with Archer2 support. A possible optimisation might be to gather

onto fewer processes, which would result in more load imbalance, but fewer

messages.

Cyclic Reduction: This is a direct algorithm which works like a multi-level

extension of the partitioning algorithm described above. This algorithm has
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very good theoretical scaling, with the number of communication steps scaling

logarithmically with the number of processors. Joseph Parker (UKAEA) re-

cently implemented this algorithm in BOUT++, using an MIT-licensed library

by Ji-Hoon Kang (KAIST) [4].

Multigrid: Over the last year or so, Joseph Parker (UKAEA) has implemented

two multigrid algorithms in BOUT++, including a novel variation which has

been submitted for publication. These have shown significantly better perfor-

mance on Archer2 than either of the direct solvers described above.

3.2 2D solvers

2D solvers do not rely on Fourier decomposition into toroidal modes, and so can

take into account corrections for density or (in principle) geometry. Implemen-

tations include:

Naulin method: As described above, this method uses the 1D solver to correct

for non-constant density iteratively.

Geometric multigrid: This solver was implemented under a EUROfusion

HLST project. It works, but has been found to be hard to extend or diagnose

due to insufficient documentation.

PETSc: The Portable, Extensible Toolkit for Scientific Computation [5] pro-

vides a wide range of linear (and nonlinear) solvers, and interfaces to third-party

libraries. Code in BOUT++ constructs the matrix elements and passes the ma-

trix to PETSc to solve. There are actually two separate 2D solvers: One which

solves in the ψ−φ toroidal plane, and another (called LaplaceXY) which solves

in the ψ−θ poloidal plane. The first can solve accurately for high toroidal mode

numbers, while the second was added specifically in order to solve the axisym-

metric component. PETSc provides many options, and while these have not

been exhaustively tested, the highest performance has typically been obtained

by having PETSc pass the matrix through to Hypre [6].

5



3.3 3D solvers

In general the equation for the potential (equation 1) is 3D, even though it

contains only the component of φ perpendicular to the magnetic field. The

axisymmetric (toroidal mode number n = 0) and high modes (n > 5) can be

solved to acceptable accuracy by 2D approximations, but the low n (1−5) modes

require a 3D solve. There are currently two solvers implemented in BOUT++:

PETSc: Chris MacMackin and John Omotani (UKAEA) implemented this in

2019, in the process creating a wrapper around PETSc to simplify the process

of creating matrices and vectors from BOUT++ data structures.

Hypre: During this ExCALIBUR-Neptune project, Peter Hill has worked with

staff at LLNL (particularly Steven Glenn), to adapt the PETSc interface to

Hypre. This was needed in order to make use of the latest Hypre versions,

which can run on GPUs. It also eliminated a small overhead in run time,

and complexity of library dependencies, which came from passing data through

PETSc. During this Neptune project we have worked with LLNL to characterise

and optimise this solver for GPU performance on Lassen.

4 Testing

4.1 Correctness testing

The nature of the correctness tests were described in report 2047356-TN-02-2

(task 1.1). Here we report on the results of the Alfvèn wave test, comparing

direct solvers (”Tri” and ”LaplaceXZ”, both using partitioning; see section 3.1),

with an iterative solver in 2D using PETSc (”LaplaceXY”, section 3.2). This

was done in both shifted circle (cbm18) geometry and DIII-D X-point geometry;

the X-point geometry case is the more interesting, and reported here.

Using DIII-D equilibrium, shot 119919, with grid shown in figure 1 The Alfvén

wave problem (report 1.1) is simulated for the axisymmetric modes only (toroidal

mode number n = 0).

To compare the results with and without poloidal derivatives in LaplaceXY, the
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Figure 1: DIII-D 68× 64 single null grid used for Alfvén wave test

simulation is run for a short time so that the vorticity is nearly the same in the

two cases. The results in figure 2 compare the potential φ at the first radial

cell outside separatrix (x = 25) as a function of poloidal cell index y for the

Laplacian (X-Z) and LaplaceXY (X-Y) solvers: Over most of the domain the
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Figure 2: Electrostatic potential φ along the poloidal coordinate (y) just outside
the separatrix. Blue line from solve neglecting poloidal derivatives; Green line
from solve including poloidal derivatives.

result from the two solvers is quite close, as expected since poloidal derivatives
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should be small relative to radial (x) derivative terms. The X-point branch cuts

at y = 15 and y = 111 are clearly seen as locations where jumps in the potential

occur when the Laplacian (X-Z) solver is used (blue line). Including the poloidal

derivatives acts to smooth the potential across this location (green line).

It was found that running the simulations for longer resulted in growing insta-

bilities in some cases but not others. The system of equations does not contain

a physical growing mode, so this is the result of a numerical instability. The

source of this instability would initially appear to be neglecting poloidal deriva-

tives (blue line in figure 2) but this was not the case: Iterative solvers which

neglect these derivatives were found to run stably, though with more noise than

simulations which include poloidal derivatives.

Figure 3 summarises the results found: It shows a comparison between the iter-

ative (PETSc; GMRES + SOR) LaplaceXY solver without poloidal derivatives;

the original X − Z Laplacian (Tri serial implementation) direct solver; and

the LaplaceXZ direct solver at a point in the private flux region. Note that the
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Figure 3: Comparison of solvers with poloidal derivatives removed, so only radial
(x) derivatives. LaplaceXY is iterative (PETSc) while LaplaceXZ and Tri are
direct; LaplaceXZ uses the same discretisation as LaplaceXY, while Tri uses a
different discretisation.

direct solvers (Tri and LaplaceXZ) become unstable and have growing oscilla-
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tions, while the iterative solver (LaplaceXY) remains stable. The error in the

iterative method is not playing a significant role, as reducing tolerances from

(rtol=1e-8, atol=1e-12) to (rtol=1e-10, atol=1e-14) makes little difference.

Conclusions drawn from these experiments are that:

• Including poloidal derivatives does not appear to be essential for the sta-

bility of n = 0 Alfvén wave simulations, but including them smooths the

potential, and is probably important for accuracy.

• Formulating the Laplacian inversion in a conservative form (LaplaceXZ vs

Tri) makes a small difference, but is probably not essential here

• There is a problem in the direct solvers for the axisymmetric component of

φ. Direct methods tested are the serial Thomas algorithm and the direct

partition algorithm. Both result in growing oscillations. This is likely

because both these algorithms assume diagonal dominance, which is only

marginal for axisymmetric modes when poloidal derivatives are neglected.

• The PETSc iterative solver gives very similar results to the direct solver

(relative difference ∼ 10−6) on individual solves, but in the case of the

direct solver this error builds up and results in a growing numerical insta-

bility.

• Preconditioning the iterative solver with a direct solver, effectively cor-

recting the error in the direct solve, was found to remove the numerical

instability.

4.2 Performance testing

Thorough performance testing of the direct and iterative tridiagonal (1D) solvers

has been performed by Joseph Parker (UKAEA) on Archer 2. That work

is detailed in a paper ”Parallel tridiagonal matrix inversion with a hybrid

multigrid–Thomas algorithm method” by J.T.Parker, P.A.Hill, D.Dickinson and

B.D.Dudson, which is currently under review at the Journal of Computational

and Applied Mathematics.

Performance testing of the 2D Hypre solver on Lassen has been carried out on

Lassen [2] by Steven Glenn, Aaron Fisher and Holger Jones (LLNL), whom
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we have worked with during this project. Lassen is a 23 PFLOP system lo-

cated at Lawrence Livermoe National Laboratory (LLNL), which has an IBM

Power9/NVIDIA V100 architecture similar to the Sierra and Summit supercom-

puters, but with 40 Power9 CPUs and 4 V100 GPUs per node.

The results in figure 4 show the timing of a Hypre solver on a large 4000x4000

mesh, on either all 40 CPUS, or all 4 GPUs of a single node. Note that in the

4 GPU case, 4 CPUs are also used, to coordinate data transfers and execute

parts of the code not running on the GPU.

Figure 4: Timing of a Laplacian solve using Hypre on a Lasses node. Using
either 40 CPUs (left) or 4 GPUs (right). Timing is broken down into stages,
from matrix assembly to result vector retrieval.

Figure 4 shows that the solve time (dark blue) is 6.9 times faster on GPUs than

CPUs, but is only a relatively small part of the run time (9% on GPUs; 40%

on CPUs). Matrix assembly is also faster on GPUs (6x), but other parts of the

solve either don’t speed up (e.g preconditioner setup), or slow down (matrix

setup). These steps are either not yet ported to GPUs, or require relatively

complex data structure manipulation which don’t tend to perform well on GPU

architectures. If the matrix must be assembled every solve, this figure shows

that the overall speed is only increased by a factor of 1.6.

These results indicate that matrices and preconditioners must be re-used many

times, if good performance is to be achieved: Matrix and preconditioner setup

takes approximately 5 times as long as vector setup, solve, and retrieval together
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in this case.

As discussed in section 3, iterative methods can be used to calculate corrections,

to include variations in density for example. This approach could be used to

improve performance, by keeping the matrix and preconditioner on the GPU

fixed, and performing a small number of iterations to correct for a time-varying

matrix.

5 Conclusions

Performance and correctness tests of BOUT++ elliptic solver implementations

have been described. Reference implementations using PETSc and Hypre have

been shown to be robust, and can make use of GPU architectures. Direct solvers

based on cyclic reduction or similar tridiagonal methods can be highly efficient,

but are limited to cases where the density is assumed constant (Boussinesq

approximation), and can be numerically unstable under some circumstances.

These deficiencies can be corrected by employing a Picard iteration to correct

for non-constant density, or by using the direct solver as a preconditioner for

PETSc or Hypre’s iterative methods.
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