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1 Equations and benchmark simulations setup

In this section we will summarise the equations to be solved. Full details can be found in Ref. [I]
where the system is denoted ‘System 2-4’. We will also summarise the methodology by which we
will produce the benchmark solutions to these equations. In particular we will outline the code used,
i.e. the EPOCH particle-in-cell (PIC) code [2], as well as the setup of the benchmark problems.

1.1 Recap of system of equations

We will solve a system of equations (system 2-4) consisting of the Vlasov equation for the electrons
and ions in the case where the magnetic field is zero.
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Where f is the distribution function for electrons (when o = e) or ions (when a = i) defined

in the usual phase space coordinates (x,v). The electric field is given by the Ampere-Maxwell
equation, given the current j.
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1.2 Simulation code — EPOCH

Equations and are solved by the particle-in-cell method commonly employed in plasma
simulation. Here we will use the PIC code EPOCH described in detail in Ref. [2]. The standard
PIC loop, used by EPOCH, is broken down into two steps as follows. First the particle pusher solves
the Lorentz force law for the charged particles under the action of the local electromagnetic fields.
The current density is then determined by interpolating particle properties onto the grid and solving
Maxwell’s equations. The particle pusher uses the standard Boris algorithm. The field solver uses
the FDTD approach on a staggered Yee grid. There are multiple options for interpolation functions
to obtain the current, using different particle shape functions. In the simulations that follow we use
third order splines.

1.3 Benchmark problems

The following two benchmark problems are chosen.

1. Benchmark problem 1 — small amplitude density modulation. The plasma is initialised
with number density n = nyg — nj tanh(kx) for both electrons and ions. The temperature of
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Figure 1: Example simulations of the ITER-SOL in steady state. These electron temperature (left)
and number density (right) profiles were produced using the fluid code SD1D [3]. Different thermal
conduction models (‘Ji-Held’, ‘Spitzer-Harm’ and flux-limited Spitzer-Harm ‘FL’ with flux-limiter
of 0.2) produce similar results, motivating a simple choice of parameters for suitable benchmark
problems.

both species is 1. The perturbation is small in the sense that n; < ng.

2. Benchmark problem 2 — large amplitude temperature modulation The temperature
of both electrons and ions is initially set to T = Ty — 17 tanh(kx). The perturbation in this
case is large as 17 ~ Tp.

EPOCH simulations of these benchmark problems were set up as follows. In both benchmark
problems k = 1/30 mm. The spatial domain is represented by 200 spatial grid cells. The timescale for
the simulations is set to be 120/kvp, for benchmark problem 1 and 9/kvp, for benchmark problem
2. vre is the electron thermal speed with the timestep adaptive and set by the CFL condition. The
timescales are set this way to ensure time for substantial particle and energy transport to occur.

The plasma parameters are chosen to be reasonably indicative of the ITER SOL. An example
simulation is shown in figure This simulations shows an attached case so has a relatively high
temperature at the target but nevertheless provides motivation for the following choice of parameters.
no = 10m™3, ny = 0.05 x 10 m™3, Ty = 306V, T; = 20€V. Figure [1] shows that the steepest
gradients in density and temperature are in the last few metres before the target in the SOL. This
motivates the choice of k.

The plasma is represented by 50,000 macroparticles per cell equally divided between electrons
and ions. The EPOCH simulations are 1D-3V, i.e. while macroparticles can have velocities in all
three dimensions, spatial gradients are limited to the z-direction only.

2 EPOCH simulation results

2.1 Transport quantities

The transport properties are those of most interest in the aforementioned benchmark cases. Namely
the transport of particles and energy. The former is determined by the particle flux I'" while the
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Figure 2: Left: Initial ion number density (ns) profile (blue) in EPOCH simulations of benchmark
problem 1 (blue). Also shown is the ion number density profile at the end of the simulation (orange),
i.e. after 0.954 us. Right: average ion velocity in the z-direction ¢ = (vg); initially (blue) and at the
end of the EPOCH simulation (orange).

latter is determined by the heat flux q. These are defined in terms of velocity-space averages of the
distribution function.

Lo =na(v)a (3)
Qo = o <;mv2v>a ()

Here n, is the particle number density for the species o = i, e (i for ions and e for electrons).
The angled brackets denote averages of the distribution function over velocity space as follows.

(B(v))e = nla / £ (v)d3y. (5)

We will consider both electron and ion transport.

2.2 EPOCH simulation results for benchmark problem 1

Ion inertia dominates the particle flux. Figure[2shows the initial and final ion number density in the
EPOCH simulations of benchmark problem 1. It also shows the average ion velocity that develops
in the x-direction as a result of the imposed density modulation. This average velocity is given by
(vg);. As EPOCH discretises the distribution functions as discrete macroparticles this velocity space
average is computed by simply taking the mean of v, for the macroparticles in a given spatial cell.

2.3 EPOCH simulation results for benchmark problem 2

As the temperature of the electrons and ions is equal, the electrons move much faster and thus
dominate the heat flux. Figure [3] shows the initial and final electron temperature in the EPOCH



2.4 Numerical convergence 2 EPOCH SIMULATION RESULTS

le8
501 ‘oo — 0.0044 ns
1.0 71.5 ns
45 |
40 0.81
— 351 N
S T 06
L £
”, 30 =
25 o 4
20 0.2
15 4
0.0 ,‘.L ."JVWWMW”‘—M—'—‘"’ -—
101 b
-1000 -500 0 500 1000 -1000 -500 0 500 1000
X (mm) X (mm)

Figure 3: Left: Initial electron temperature (75) in eV in EPOCH simulations of benchmark problem
2 (blue). Also shown is the electron temperature profile at the end of the simulation (orange), i.e.
after 0.0715 us. Right: heat flux in the z-direction initially (blue) and at the end of the EPOCH
simulation (orange).

simulations of benchmark problem 2 as well as the heat flux. The heat flux is given by (mev?v,/2)e.
Again this is computed by simply taking the mean for the macroparticles in a given spatial cell.

2.4 Numerical convergence
2.4.1 Convergence with number of particles and gridding

Transport phenomena such as particle and heat flux are challenging to simulate accurately with PIC
codes. This is because the transport arises from the anisotropic part of the distribution function,
which is often small. Resolving this anisotropic part therefore requires many macroparticles. In
addition the steep temperature and density gradients must be adequately resolved with sufficient
spatial grid cells. To determine whether this was the case we halved both the number of grid cells and
number of macroparticles per cell. Figure[]shows the peak electron heat flux and average ion velocity
as a function of time for benchmark problems 2 & 1 respectively. It is clear that in both cases the
results are not changed significantly by reducing the resolution and thus we conclude that numerical
convergence has been achieved. We note that the convergence is better for benchmark problem 2
than for problem 1. This is because for the larger modulation in problem 2 the anisotropy in the
distribution function driving the transport is bigger and so easier to resolve with macoroparticles.

2.4.2 Minimising numerical heating

Numerical heating is another well known problem when running under-resolved PIC simulations.
For low-order particle shape functions, if the grid cell size is not smaller than the Debye length
then the plasma spontaneously heats up. It was shown that the use of high-order shape functions
suppresses numerical heating in EPOCH simulations, as shown in figure 5} In benchmark problem
2 the grid cell size is approximately 850 Debye lengths (for the 50 eV plasma). This is substantially
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Left: Peak electron heat flux in EPOCH simulations of benchmark problem 2 (blue)
compared to the simulations of the same problem with half the number of particles per cell ‘npart’
and number of grid cells ‘nx’ (orange) Right: Peak average ion velocity in EPOCH simulations of
benchmark problem 1 (blue) compared to the simulations of the same problem with half the number
of particles per cell and number of grid cells (orange).

(Ap JAx I'I

0.9

— Tophat
0.8 - Tophat, smoothed

— Triangle

. = Trangle, smoothed
0.7 — Spline
- Spline, smoothed
0.6
0.5 T
0.4 T -
0.3 T o __,__,_.—r-———'—‘—‘_'—F-_
02 i i i
0 5 10 15 20 25 30 35
Time (ps)

Figure 5: Demonstration of the suppression of numerical heating in EPOCH by using higher order
particle shape functions. The plasma is initially uniform and the Debye length (Ap) — initially 0.5
times the grid cell size Ax — increases as the plasma gets hotter due to numerical heating. Taken

from [2].
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Figure 6: Left: Total energy in the simulation box in EPOCH simulations of benchmark problem
1 as a function of time in the simulation. Right: The same for EPOCH simulations of benchmark
problem 2.

larger than in the test cases in figure 5} It is therefore necessary to check that numerical heating is
small for our benchmark problems. Figure[6]shows the total energy in the simulations for benchmark
problems 1 and 2. It shows that the energy grows by a negligible amount over the course of the
simulations of both problems. Numerical heating can thus be safely neglected. It should be noted
that in the test cases in figure [f] collisions were included which makes numerical heating worse. This
could explain why numerical heating is so small in our (collisionless) simulations, even with very
large grid cell sizes.

3 Conclusions

e EPOCH PIC simulations have been used to benchmark system 2-4 (Vlasov and Ampere-
Maxwell equations for both electrons and ions). Two benchmark problems were defined to
investigate particle and energy transport in scenarios relevant to typical SOL conditions.

e Energy transport was dominated by electron heat flux and bulk transport by ion velocity.
The mass difference of these species makes finding a problem where transport from both is
important challenging.

e Numerical convergence was achieved for both problems but a large number of particles per cell
was required (50,000), This is necessary to resolve small scale anisotropies in the electron and
ion distribution which drive the transport. Simulations with large modulations in the driving
thermodynamic variable s(temperature , density) converge more easily as the anisotropic part
of the distribution function is larger.

e To simulate large enough spatial domains the grid cell must be very large compared to the
Debye length of the plasma ( 850 times larger). Numerical heating can be suppressed in this
case by using a high order shape function for the particles.
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