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1 Summary

Project NEPTUNE (NEutrals & Plasma TUrbulence Numerics for the Exascale) is concerned with the

development a new code for the simulation of a next generation fusion reactor. Both fluid and particle

models will be required by such a complex simulation code, along with methods of coupling the two models.

In NEPTUNE, the fluid model is likely to take the form of a high-order finite element method, while the

particle model will necessarily be particle-in-cell (PIC).

In our previous reports we have been focussed on the performance and portability of various programming

models and domain specific languages (DSLs) for both fluid and particle methods. In this project we have

identified some DSLs that can be used to develop fluid simulations (such as Bout++[1, 2], Nektar++ [3],

OPS/OP2 [4, 5, 6], UFL [7]), but have not identified any DSLs focussed on particle methods, where the

particles must interact primarily with the mesh, as in PIC.

This report therefore documents our progress towards developing a DSL that can be used for PIC methods,

embedded within the OP2 DSL.

1.1 The Particle-in-Cell Method

The PIC method is a well established procedure for modelling the behaviour of charged particles in the

presence of electric and magnetic fields [8, 9]. Discrete particles are tracked in a Lagrangian frame, while

the electric and magnetic fields are stored on stationary points on a fixed Eulerian mesh.

The electric and magnetic fields evolve according to Maxwell’s equations (Equations (1)-(4)).
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While the force experienced by a particle is calculated according to the Lorentz force (Equation (5)).

F⃗ = q
(
E⃗ + v⃗ × B⃗

)
(5)

A typical PIC method can be thought of as two coupled solvers where one is responsible for updating the

electric and magnetic fields according the Maxwell’s equations, while another calculates the movement of

particles according to the Lorentz force. These are referred to as the field solver and the particle mover

(sometimes called the particle pusher), respectively.

The main time loop of the core PIC algorithm consists of: solving the field values on the computational
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mesh; weighting these values to determine the fields at particle locations; updating the particle velocities

and positions; and depositing the particle charge/current back to grid points. The algorithm is summarised

in Figure 1.

Figure 1: Flow chart summarising the key components of the PIC algorithm

Since the field solve acts upon a grid or a mesh, it can easily be implemented using numerous DSLs that

have been developed for such simulations (mentioned previously). The goal of this work is to develop a DSL

extension that allows us to implement the particle mover within the same framework.

2 Developing a PIC Domain Specific Language

Domain Specific Languages (DSLs) allow us to bridge the gap between domain scientists and application

developers by allowing the domain specialists to write their calculations using high level abstractions specific

to their domain. These abstractions typically take the form an API (Application Programming Interface)

embedded in a host language such as C/C++ or Fortran.

A DSL and its associated parser(s)/compiler(s) can then translate this high level abstraction into various low-

level parallelisations such as OpenMP, MPI, CUDA, HIP, etc., introducing optimisations to the code using

compiler techniques such as source-to-source code translation and code generation. The lower level imple-

mentation focuses on how the computation can be executed in the most efficient way on the given hardware

platform, extracting and analysing the computation, data access/communication and synchronisation.

We have identified numerous DSLs for developing structured and unstructured mesh computations (e.g.

OP2 [5, 10], OPS [4, 6], Bout++ [2, 1], PATUS [11], UFL [7], PSyclone [12], etc.), but none that include

support for particle methods. In this report, we detail our progress towards developing an extension to the

OP2 DSL with a focus on implementing PIC methods. We focus on OP2’s loop-level abstraction as a first

step towards a proposal for a high-level DSL, like that found in Firedrake.
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2.1 OP2: A DSL for Unstructured Mesh Computations

OP2 [5] is a high-level abstraction and active library targeting parallel execution of Unstructured mesh

applications. It has the capability of auto generating code for OpenMP, MPI, CUDA, OpenACC and

OpenCL, using source-to-source translation. It has a well defined API and the execution algorithm can be

divided in to four distinct parts:

(1) Defining sets

(2) Defining connectivity (or mapping) between the sets

(3) Defining data on sets

(4) Operations over sets, allowing the mesh to be defined completely and abstractly

For example, a set could be of cells, nodes, edges and/or faces of the mesh; data on sets could be the current

over an edge; connectivity could be the mapping between an edge to its connected two nodes; and the

operations could be the kernel calculations (solving partial differential equations) by iterating over edges.

Unstructured mesh applications inherently have indirect data accesses, and the main challenges in developing

an application will be on data locality, data layout in memory, data dependencies and data conflicts. OP2

handles some of these issues by colouring of the mesh, using atomics (hardware dependent) and partitioning

with halo regions. Since the PIC DSL that is to be developed during this research is unstructured mesh, the

new development could be inspired by OP2.

2.2 OP-PIC: Unstructured Mesh Particle-in-Cell DSL Design

As stated in Section 1.1, the main loop of a standard PIC algorithm involves four key steps:

(1) Solve Electric and Magnetic Fields (Field Solver)

(2) Weight fields to particles

(3) Push/Move particles

(4) Weight particles to mesh

In many codes, additional routines may also be interleaved, for example, injecting particles or computing

particle collisions. In all of these routines the computations typically involves iterating over particles or mesh

points (i.e., cells, nodes, edges etc.) and solves mathematical equations such as partial differential equations.

Similar to the OP2 execution algorithm (briefly described in Section 2.1), the proposed DSL comprises of

the same four distinct parts. Here we give an overview of the API for particle movement within a simple 2D

quadrilateral unstructured mesh.
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Figure 2: An example unstructured mesh with cells and nodes

2.2.1 Defining sets

The mesh in Figure 2 can be defined as a collection of cells (quadrilaterals) and nodes. There are 6 cells and

12 nodes, which can be declared using op decl set.

1 int n_nodes = 12; int n_cells = 6;

2

3 op_set nodes_set = op_decl_set(n_nodes , "mesh_nodes");

4 op_set cells_set = op_decl_set(n_cells , "mesh_cells");

The particle sets can be declared with op decl particle set allowing multiple particle sets to be defined

if there are more than one particle species.

1 op_set particles_set = op_decl_particle_set("x particles", cells_set);

The above will create an empty particle set, assuming that particles will be injected during the main loop.

However, if the initial particle size is known, it could be set when defining the particle set with the API call

below.

1 op_set op_decl_particle_set(int size , char const *name , op_set cells_set);

2.2.2 Defining connectivity (or mapping) between the sets

The connectivity is declared through mappings between sets, using op decl map. Considering the mesh in

Figure 2, there could be cell to node mappings as well as cell to cell mappings.
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1 int NODES_PER_CELL = 4; int NEIGHBOUR_CELLS = 4;

2

3 int* cell_to_nodes = {1,2,5,6, 2,3,7,6, 3,4,7,8, 5,6,9,10, 6,7,10,11, 7,8,11,12};

4 int* cell_to_cells = {2,4,-1,-1, 1,3,5,-1, 2,6,-1,-1, 1,5,-1,-1, 2,4,6,-1, 3,5,-1,-1};

5

6 op_map cell_to_nodes_map = op_decl_map(cells_set , nodes_set , NODES_PER_CELL ,

7 cell_to_nodes , "cell_to_nodes_map");

8

9 op_map cell_to_cells_map = op_decl_map(cells_set , cells_set , NEIGHBOUR_CELLS ,

10 cell_to_cells , "cell_to_cell_map");

Each cell belonging to cells set is mapped to 4 nodes (NODES PER CELL) in nodes set. Hence, the map

declaration cell to nodes map has a dimension of 4, thus its indices 0-3 relates to the first cell (C1) mapping

its connected { N1, N2, N5, N6 } nodes, indices 4-7 relates to second cell (C2) mapping its connected { N2,

N3, N7, N6 } nodes and so on. As shown in int* cell to cells, we define -1 as a mapping indicating that

there is no element on that direction.

Moreover, since the mapping between particles and cells is dynamic (particles can be injected/removed and

they move between cells), we will keep cell index mapping per particle as data.

2.2.3 Defining data on sets

Once the sets and its connectivities are defined, the mesh data can be associated with cells set and

nodes set through the op decl dat API call. Note that in the below example, node dat1 is declared with

dimension 2, allowing to it store { X, Y } coordinates, while cell dat1 stores a single double-precision value

per set element.

1 int DIM = 2;

2 double* d_cell1 = {cd1 , cd2 , cd3 , cd4 , cd5 , cd6};

3 double* d_node1 = {x1,y1, x2,y2, x3,y3 , x4,y4, x5 ,y5, x6,y6, x7,y7, x8,y8 , x9,y9,

4 x10 ,y10 , x11 ,y11 , x12 ,y12};

5

6 op_dat cell_dat1 = op_decl_dat(cells_set , 1, "double", sizeof(double), (char*)d_cell1 ,

7 "cell field name");

8

9 op_dat node_dat1 = op_decl_dat(nodes_set , DIM , "double", sizeof(double), (char*)d_node1 ,

10 "node field name");

The particle dats should be created with op decl particle dat and the arguments will be similar to

op decl dat, except when defining the cell index dat. Here an additional argument “true” should be

provided indicating that it will be the cell index used to map the particle to its containing cell.

1 op_dat part_dat1 = op_decl_particle_dat(particles_set , 1, "double", sizeof(double),

2 nullptr , "part field name");

3

4 op_dat part_cell_index = op_decl_particle_dat(particles_set , 1, "int", sizeof(int),

5 nullptr , "part cell index", true);
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The above will create an empty particle dat, assuming that particles will be injected during the main loop.

However, if the initial particle size is known and if the set is created by providing it, the corresponding data

could be provided as an array (instead of nullptr) using the same API call.

1 op_dat op_decl_particle_dat(op_set set , int dim , char const *type , int size , char *data ,

2 char const *name , bool cell_index = false);

2.2.4 Operations over sets

All of the numerically intensive operations in a PIC application can be described as computations over sets,

accessing data though the mappings (if indirection exists).

API: op par loop

1 template <typename ... T, typename ... OPARG >

2 void op_par_loop(void (* kernel)(T *...), char const *name , op_set set ,

3 op_iterate_type iter_type , OPARG ... arguments);

Consider the following sequential loop, that demonstrates most of the indirect mappings. This uses all of the

structures & declarations defined in Sections 2.2.1, 2.2.2 and 2.2.3; however it assumes there are particles in

particles set.

1 void example_seq_loop(int nparticles , int* cell_to_node , int* cell_idx ,

2 double* cell_dat , double* node_dat , double* part_dat) {

3 for (int i = 0; i < nparticles; i++) {

4 int cell_index = cell_idx[i];

5

6 int node0_mapping = cell_to_node[NODES_PER_CELL * cell_index + 0];

7 int node1_mapping = cell_to_node[NODES_PER_CELL * cell_index + 1];

8 int node2_mapping = cell_to_node[NODES_PER_CELL * cell_index + 2];

9 int node3_mapping = cell_to_node[NODES_PER_CELL * cell_index + 3];

10

11 double inc_value = (part_dat[i] + cell_dat[cell_index ]);

12

13 // Assume only X value of node data need to increment

14 node_dat[DIM * node0_mapping + 0] += inc_value;

15 node_dat[DIM * node1_mapping + 0] += inc_value;

16 node_dat[DIM * node2_mapping + 0] += inc_value;

17 node_dat[DIM * node3_mapping + 0] += inc_value;

18

19 part_dat[i] = 0.0;

20 }

21 }

The sequential example loop above iterates over all the particles, computes the sum of the particle dat and

its corresponding cell dat, and increments all 4 connected node dats with the sum calculated. Finally the

particle dat is assigned with a new value (0.0). Here the particle should map to its containing cell though

its cell index and maps all four nodes connected to that cell, to compute the reduction operation (SUM).
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Even though the sequential code looks simple, it would be quite complex if the computation is to be done

in parallel (OpenMP, MPI and/or GPUs), since race conditions needs to be considered when executing

increments to shared nodes. However, together with the below API calls and code-to-code translation, the

proposed DSL removes all of the development complexities from the domain specialist and should provide

an optimised code to run on their intended platform.

1 void example_kernel(double* part_data , const double* cell_data , double* node0_data ,

2 double* node1_data , double* node2_data , double* node3_data) {

3 double inc_value = (* part_data + *cell_data);

4

5 // Assume only X value of node data need to increment

6 node0_data [0] += inc_value;

7 node1_data [0] += inc_value;

8 node2_data [0] += inc_value;

9 node3_data [0] += inc_value;

10

11 *part_data = 0.0;

12 }

13

14 op_par_loop(example_kernel , "example_op_par_loop",

15 particles_set , OP_ITERATE_ALL ,

16 op_arg_dat(part_dat1 , OP_RW),

17 op_arg_dat(cell_dat1 , OP_READ , true),

18 op_arg_dat(node_dat1 , 0, cell_to_nodes_map , OP_INC , true),

19 op_arg_dat(node_dat1 , 1, cell_to_nodes_map , OP_INC , true),

20 op_arg_dat(node_dat1 , 2, cell_to_nodes_map , OP_INC , true),

21 op_arg_dat(node_dat1 , 3, cell_to_nodes_map , OP_INC , true)

22 );

An application developer could write the elemental kernel function example kernel and the op par loop

declaration as above. Declaring the set and OP ITERATE ALL enables the DSL to iterate all elements of that

given set.

In this case, the elemental kernel function takes 6 arguments and the loop declaration requires the access

method of the data (e.g. OP READ, OP WRITE, OP INC). After the access specifier, a Boolean true value should

be provided to all op arg dats that need mapping through the particle cell index. In addition, the mapping

offset (0,1,2,3) and the op map mapping should be provided to access the correct node connected to the cell.

Having neither Boolean true and/or a mapping indicates that this data should be directly mapped.

API: op par loop particle

1 template <typename ... T, typename ... OPARG >

2 void op_par_loop_particle(void (* kernel)(T *...), char const *name , op_set set ,

3 op_iterate_type iter_type , OPARG ... arguments);

Although most of PIC equations can be written as op par loop API calls over particle set, cells set or

nodes set, particle movement (handling the change of cell index of a particle, during inter cell movement)

has a different communication pattern. To cater to that requirement, a new API call op par loop particle

is introduced to the API.
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Similar to op par loop, the application developer should implement op par loop particle declarations

with similar constructs, however it will only loop over a particle set created using op decl particle set.

Nevertheless, the elemental function should always have an int* move status given as the first argument,

which should be changed to MOVE DONE, NEED MOVE, NEED REMOVE by the application developer within the

elemental function.

NEED REMOVE

The particle will be removed from the particle set.

MOVE DONE

The final cell index assigned in the kernel will be set to the particle and the necessary communication

of the particle will be handled by the DSL.

NEED MOVE

The same elemental kernel will be called again with the data corresponding to the new cell index set

during the previous elemental function call to the same particle.

An example code of an elemental function required for op par loop particle is below.

1 void example2_kernel(int* move_status , int* cell_index , double* ...) {

2 {

3 // Compute logic involving particle and mesh data

4 }

5

6 if (is_inside_the_cell) {

7 *move_status = MOVE_DONE;

8 } else if (need_to_remove_from_mesh) {

9 *move_status = NEED_REMOVE;

10 } else { // need_to_search_a_different_cell_in_the_mesh

11 *move_status = NEED_MOVE;

12 (* cell_index)++; // or compute the most probable cell index to search next

13 }

14 }

API: op increase particle count

In order to add particles to the simulation, the particle count of the set should be increased, hence the

application developer should use the below API call.

1 void op_increase_particle_count(op_set particles_set , int num_particles_to_insert);

Afterwards, both the op par loop and op par loop particle declarations can be used to iterate over the

new particles by changing op iterate type to OP ITERATE INJECTED.

API: op particle sort

To gain better particle locality during kernel calls and in applications where double indirection is present

(e.g., particle→cell→node), sorting particles according to its residing cell index is required (after particle
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injections and particle movements).

1 void op_particle_sort(op_set set);

However, after calling op particle sort, the OP ITERATE INJECTED will not iterate any particles at all,

since the added particles are no longer considered new to the simulation.

2.3 OP-PIC: Unstructured Mesh Particle in Cell DSL Implementation

Despite not having a complete unstructured mesh 3D electromagnetic FEM PIC code available to demon-

strate the proposed PIC DSL functionality, we have converted three PIC codes to to exhibit the use of API

calls & design, with unstructured type indirect data mappings. They are namely,

• SimPIC, an electrostatic 1D FDTD structured mesh PIC code

• CabanaPIC, an electromagnetic 3D FDTD structured mesh PIC code

• FemPIC, an electrostatic 3D FEM unstructured mesh PIC code

For both SimPIC and CabanaPIC, the structured stencil type computations were converted to unstructured

type indirect data mappings (which is loaded from a file prior simulation). The new SimPIC and CabanaPIC

codes are serial implementations written in C++ (without MPI) and the calculated particle data & grid point

data are verified to be equal to its original implementation.

FemPIC is a sequential electrostatic 3D unstructured mesh FEM PIC example code written in C++ as a part

of the course https://www.particleincell.com/2015/fem-pic/, that contains an inject particles routine

as an addition to the usual PIC algorithm. FemPIC code is originally unstructured and the new sequential

& OpenMP versions are written in C++, utilising PETSc (sparse matrix linear solvers) inside the PIC Field

Solver, instead of the DSL API calls (the calculations need to be broken down to kernels to call the APIs,

which will be the focus of future work).

The current implementations can be found at https://github.com/OP-DSL/OP-PIC. It should be noted

that the current implementations include sequential and OpenMP parallelisations, but do not include MPI

parallelisation.
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Corrections/Clarifications

The DSL that we propose right now is a loop-level abstraction, specialising code generation for the hardware.

A higher-level abstraction allowing developers to specify problems in terms of mathematical equations can

be built on top of this. Similar high-level abstractions have been developed with OpenSBLI1 (generating

OPS loop-level DSL [6]) and Firedrake2 (generating PyOP2 [13]). Such a higher level abstraction could be

developed targeting the OP-PIC DSL as the backend, however we have not focused on this at this time. We

will need a better understanding of specifying the problem at a mathematical level for this. [We do not have

expertise in these equations, so we will need to work with Physicists/UKAEA scientists]

• Is an op set decomposed over MPI ranks?

The op sets exist on each rank and they are just a symbol to denote the collection of dats and maps

(particles/nodes/cells etc.) on that rank.

• “we will keep cell index mapping per particle as data” clarification.

In OP2, all the mappings (one op set to another op set) are placed inside op maps, which are static.

Even though cell index is a mapping between a particle set to its underlying cell set, the dy-

namic nature of particles lets us to store the cell index in particles as data, however treat it differently.

• Cell data - looks like CellDat in NESO-Particles.

As of our knowledge, yes. However there could be differences which we are not aware of.

• Section 2.2.3 particle data - These look like they have a one-to-one mapping with PPMD/NESO-

Particles ParticleDat objects

There could be differences which we are not aware of. op dats have the capability of arranging the

data in the dat as AOS/SOA depending on the hardware architecture.

• Is “elemental function” another name for kernel?

Yes, we could call it as elemental kernel.

• op increase particle count: I think there will be a use case for an API where particles can be initialised

(e.g. from a particular distribution) then injected

As explained in Section 2.2.1, a particle set can be defined by providing the initial particle count (size

for the set). This allow the user to initialise particle values for dats, prior to the main loop. As

explained in Section 2.2.4, initialisation of injected particles during the main loop can be done using an

op par loop and op par loop particle declarations with iterate type=OP ITERATE INJECTED (here

we could copy data from another dat to particle data if required).

• op particle sort; If I sort the particles then call a parloop that accesses a grid data set (INC or READ)

will the code generation exploit, e.g. combine writes, remove indirections?

1https://opensbli.github.io/
2https://www.firedrakeproject.org
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Since data on sets are kept per MPI rank, the particle sorting will be done per MPI rank (the particles

will belong to the cells of the current MPI rank). The OP-PIC DSL is capable of generating code

without data hazards and make halo exchanges when necessary.

• Please can you give an overview (or point to) how this DSL (embedded in C++?) is construed and

code generation occurs (maybe for cases where there is an existing parallel loop implementation)

– OP2-Clang: A Source-to-Source Translator Using Clang/LLVM LibTooling [14]

– https://warwick.ac.uk/fac/sci/dcs/people/gihan_mudalige/talksandpresentations/

keynote-europardslaug2022.pdf (slide 7 & 8)

– https://warwick.ac.uk/fac/sci/dcs/people/gihan_mudalige/talksandpresentations/

dslworkshoptalk_oct2020.pdf
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