
T/NA086/20

Code structure and coordination

Report 2047358-TN-04

Approaches to Scientific Software

Development at Exascale

Steven Wright, Ben Dudson, Peter Hill, and David Dickinson

University of York

Gihan Mudalige

University of Warwick

November 16, 2021

Contents

1 Executive Summary 3

2 Hardware Targets 5

2.1 Exascale Efforts . 5

2.1.1 The United Kingdom . 5

2.1.2 Europe . 6

2.1.3 United States . 7

2.2 Hardware Overview . 8

2.3 Summary . 10

3 Developing Performance Portable Software 11

3.1 OpenMP . 11

3.2 Kokkos and RAJA . 12

3.3 SYCL and DPC++ . 13

3.4 Other Approaches . 15

3.5 Portable Data Structures . 16

3.6 Summary . 18

4 Analysis of Approaches 20

4.1 Pragma-based Approaches . 20

4.2 Programming Model Approaches 22

4.3 High-level DSL Approaches . 28

4.4 Summary . 29

5 Key Findings and Recommendations 31

1

References 37

2

1 Executive Summary

In 2008 Roadrunner became the first supercomputer to break the PetaFLOP/s

barrier. Roadrunner was an AMD Opteron powered system with PowerXCell

accelerators connected to each core, making it perhaps the first modern hetero-

geneous system. This heterogeneous approach has continued ever since, with

a growing proportion of the fastest supercomputers in the world making use

of highly-specialised computational accelerators (e.g. GPUs) alongside tradi-

tional multi-CPU hosts; and this trend looks set to continue as we cross the

ExaFLOP/s barrier.

The emergence of computational accelerators has been coupled with a golden

age of architectural developments [1]. Many of the systems likely to be available

in the next decade will employ hierarchical parallelism, delivered by a diverse

set of architectures [2, 3]. With each architecture potentially requiring different

optimisation strategies, developing software that is both performant and portable

across systems is becoming increasingly difficult.

The NEPTUNE (NEutrals & Plasma TUrbulence Numerics for the Exascale)

project is concerned with the development of a new computational model of the

complex dynamics of high temperature fusion plasma. It is an ambitious pro-

gramme to develop new algorithms and software that can be efficiently deployed

across a wide range of alternative supercomputers, to help guide and optimise

the design of a UK demonstration nuclear fusion power plant. The goal of the

code structure and coordination work package within NEPTUNE is to establish

a series of “best practices” on how to develop such a next-generation simulation

application that is performance portable.

In our first report (2047358-TN-01), we provided a survey of the hardware and

software that is likely to be prevalent on next-generation HPC systems. The

hardware landscape is diversifying and because of this, new approaches to de-

veloping performance portable software are emerging.

Our second report (2047358-TN-02) set out to identify a number of test appli-

cations that could be used to evaluate some of the options available. Further,

it established a series of ground rules, setting out the process through which we

would evaluate the performance portability of approaches to software develop-

ment.

3

The third report (2047358-TN-03) analysed a number of these approaches,

through existing performance studies of these mini-applications, or from gather-

ing execution data from the UKs HPC offerings, in order to evaluate approaches

to developing performance portable scientific simulation applications.

In this final report, we summarise the key findings from our investigations and

provide recommendations for developing a new plasma fusion simulation appli-

cation.

The remainder of this report is structured as follows:

Section 2 summarises the hardware that is likely to be available at the Exascale

in the UK, Europe and the US;

Section 3 outlines the possible approaches to developing software that is portable

across these architectures;

Section 4 provides a brief analysis of these approaches, using the data collected

in 2047358-TN-03;

Section 5 provides recommendations for future development in the NEPTUNE

project.

As the HPC landscape shifts over the coming years, it is likely that some of the

data or recommendations in these reports will change; therefore, these reports

should be considered living documents that will be updated as new evidence

emerges.

4

2 Hardware Targets

As we approach the era of Exascale computing, it is clear that heterogeneity

is likely to be prevalent in the first generation of systems. This shift towards

accelerated computing has been coupled with increasing diversity in the architec-

tures available in HPC. Developing applications for these post-Exascale system

therefore requires careful consideration of and preparation for the systems they

are likely to be executed on.

2.1 Exascale Efforts

There are on going efforts towards Exascale happening around the world, and

it is possible the first Exascale system will appear at the 2021 Supercomputing

Conference (SC’21). Here we summarise the ongoing efforts in the UK, Eu-

rope and the United States, that are perhaps most relevant to NEPTUNE and

UKAEA.

2.1.1 The United Kingdom

In the UK, Supercomputing is focused around Universities, often funded by

UKRI, and a small number of commercial sites. Currently, the biggest systems

in the UK are those those found at research laboratories such as the Met Office

(#58, #152 and #153 on Top500.org at the time of writing), ECMWF (#103

and #104) and AWE (#125). Each of these systems are homogeneous clusters

using Intel CPUs, typically supporting applications that have been developed

over a long period of time, in Fortran or C/C++, using MPI to distribute work

across the cluster.

In 2021, the Met Office announced that its next system will also be a homo-

geneous cluster, but will be based on AMD Milan CPUs and delivered by Mi-

crosoft. It will deliver approximately 60 PetaFLOP/s of performance (i.e. 8×
more powerful than their current XC40 system).

The fastest machine in the UK currently is the NVIDIA Cambridge-1 system,

dedicated to use by Pharmaceutical companies. It is comprised of 80 NVIDIA

5

DGX nodes, each containing 8 GPUs, for a total of 640 A100 GPUs. Its 16

PetaFLOP/s performance puts it at #41 in the June 2021 Top500 list.

The HPC provision provided by UK Universities is structured in the form of

a tiered system. The UK’s national (Tier-1) supercomputer, ARCHER2, is

currently in the process of being commissioned at the Edinburgh Parallel Com-

puting Centre (EPCC). Like many of the HPC systems in the commercial sector,

ARCHER2 is an homogeneous system with AMD Rome CPUs and will deliver

approximately 28 PetaFLOP/s of performance.

It is at the regional (Tier-2) centres where there is a wealth of architectural di-

versity. The Isambard system, installed at the University of Bristol, is predomi-

nantly an ARM-based system, with one cabinet of Marvell ThunderX2 compute

nodes. Besides this, it also contains a cabinet of Fujitsu A64FX CPUs, and the

Multi-Architecture Comparison System (MACS), which consists of a range of

alternative platforms for evaluation, including NVIDIA P100 and V100 GPUs,

and CPUs from IBM, AMD and Intel.

The N8’s Bede system is an IBM system that is similar in construction to the

US Department of Energy Summit (#2) and Sierra (#3) systems. It consists

of 32 nodes, each with two IBM Power9 CPUs and four NVIDIA V100 GPUs.

Besides these systems, York and Warwick also each have compute clusters for

their own researchers. Each of these are predominantly homogeneous clusters

with Intel CPUs, but both containing small GPU accelerated partitions.

The UK Government has stated that it is UKRI’s intention that an Exascale-

class supercomputer is available for UK researchers by 20251. Given the current

status of HPC in the UK, it is likely that if this were to be achieved, it would

require widespread adoption of heterogeneous compute.

2.1.2 Europe

In Europe, PRACE (Partnership for Advanced Computing in Europe) provide

access to a number of PetaFLOP-class HPC systems (Tier-0). The current

Tier-0 systems are:

1https://www.theyworkforyou.com/wrans/?id=2021-02-22.156386.h&s=exascale#

g156388.q2

6

https://www.theyworkforyou.com/wrans/?id=2021-02-22.156386.h&s=exascale#g156388.q2
https://www.theyworkforyou.com/wrans/?id=2021-02-22.156386.h&s=exascale#g156388.q2

Marconi, a 30 PetaFLOP/s IBM Power9 and NVIDIA V100 system installed

at CINECA;

Hawk, HLRS’s 25 PetaFLOP/s homogeneous system using AMD Rome CPUs;

JUWELS, a 70 PetaFLOP/s system with AMD Rome CPUs and NVIDIA

A100 GPUs installed at FZJ;

SuperMUC, a 26 PetaFLOP/s system installed at LRZ, using Intel Xeon Sky-

lake CPUs.

Joliot-Curie, a 12 PetaFLOP/s homogeneous AMD Rome system at CEA;

Piz Daint, a Intel Xeon and NVIDIA P100 system, delivering 27 PetaFLOP/s

at ETH Zurich;

and, MareNostrum 4, installed at BSC consisting of 4 separate systems: an

Intel Xeon cluster, an IBM Power9 and NVIDIA V100 system, an AMD Rome

and Radeon Instinct MI50 system, and an ARMv8 cluster.

In July 2019, the EuroHPC Joint Undertaking governing body selected 8 sites

across the EU to host new HPC systems. Of these 8 sites, 3 will host pre-

Exascale machines capable of at least 150 PetaFLOP/s.

LUMI will be installed in Kajaani, Finland, and will be a Cray Shasta sys-

tem comprising of AMD EPYC CPUs and AMD Radeon Instinct GPUs. It is

expected to be capable of approximately 550 PetaFLOP/s.

LEONARDO will be installed at Cineca, Italy, and will be a Atos BullSequana

system. It will be constructed of Intel Sapphire Rapids CPUs, coupled with

14,000 NVIDIA A100 GPUs, connected with Infiniband.

MareNostrum 5 will be installed within the Barcelona Supercomputing Cen-

tre. Like its predecessor, MareNostrum 5 will be two distinct (and currently

unknown) systems, but may feature some use of the ARM and RISC-V archi-

tectures currently being explored by the EU’s Mont Blanc project [4].

2.1.3 United States

In the United States, there is a long history of supercomputing within the De-

partment of Energy. Currently the largest systems are both IBM Power9 and

NVIDIA V100 systems installed at Lawrence Livermore National Laboratory

and Oak Ridge National Laboratory.

7

The first phase of the new Perlmutter system was recently installed at the

Lawrence Berkeley National Laboratory, with 1,500 nodes, each with dual AMD

Milan CPUs, coupled with four NVIDIA A100 GPUs. Its achieved performance

of 65 PetaFLOP/s placed it at #5 in the most recent Top500 list, with the second

phase to be delivered at a later date, adding 3,000 more CPU-only nodes.

The DoE are currently in the process of building and installing their first three

Exascale systems, namely Aurora, Frontier and El Capitan. Each of them are

heterogeneous systems, consisting of mixture of CPUs and GPUs.

Frontier is a planned 1.5 ExaFLOP/s system being installed at Oak Ridge

National Laboratory in 2021 and will consist of AMD EPYC Milan CPUs with

AMD Radeon Instinct MI200 GPUs. Argonne’s 1 ExaFLOP/s Aurora sys-

tem will follow in 2022 and will be constructed with Intel CPUs and GPUs

– with each node being two Sapphire Rapids CPUs, with six Ponte Vecchio

GPUs. These systems will be followed in 2023 by El Capitan at LLNL, which

is expected to exceed two ExaFLOP/s. Like Frontier, El Capital will consist

of AMD hardware, with EPYC Genoa CPUs and a next generation Radeon

Instinct architecture.

2.2 Hardware Overview

It is clear from the ongoing efforts towards Exascale that the first generation

of machines to break the ExaFLOP/s barrier will do so with heterogeneous

architectures. It is also clear from the machines in development, that these

heterogeneous architectures will feature a range of different CPU and GPU

combinations, highlighting the issue of portability between systems.

Examining the systems listed in Section 2.1, we can see that all of the currently

planned machines will consist of CPUs from Intel or AMD, and GPUs from

Intel, AMD or NVIDIA. There may also be some machines with Arm-based

CPUs, similar to those found in Fugaku, Isambard and EPCC’s Fulhame.

There have been a number of recent announcements on these architectures that

may be relevant to the development of a future NEPTUNE code.

The two major CPU vendors, Intel and AMD, are currently in the process of

8

developing their Exascale-era processors. Intel’s recent Architecture Day in Au-

gust 2021 provided details about their new CPUs and GPUs, while information

from AMD has not yet been publicly released, but has been the subject of recent

data leaks.

The upcoming Xeon Sapphire Rapids CPU includes a number of important

improvements over current generation Xeon CPUs. In particular, there will

be new instruction sets specifically aimed at AI inference and training called

Advanced Matrix eXtensions (AMX), and there will be new acceleration engines

aimed at offloading common tasks such as data movement, to free up CPU

cycles. Additionally, there will be an increased last level cache (LLC) capacity,

and an option for on-board high bandwidth memory (HBM2). There are a

number of connectivity improvements that will also be included in Sapphire

Rapids. The CPUs will include Intel’s new Compute eXpress Link (CXL),

designed for connecting CPUs and Accelerators, and will see an uplift to 8

DDR5 memory channels2.

The next generation of AMDs EPYC CPUs will be codenamed Genoa (Zen

4). Details of Genoa have not yet been officially announced, but a recent data

leak has provided some details. The Genoa CPU may include support for the

AVX-512 instruction set, along with 12 DDR5 memory channels. It may also

come in configurations up to 96 cores, with 2-way simultaneous multithreading

(SMT)3.

In the GPU space, there are three architectures likely to be present in Exascale

systems. Again, details were provided for the upcoming Intel Xe GPU at the

recent Architecture Day, whereas the other two vendors are still subject to

leaked information.

Intel’s first generation Xe-HPC GPUs will be Xe Ponte Vecchio. Much like

recent NVIDIA and AMD GPUs, it will include second-generation High Band-

width Memory (HBM2e), and will allow GPU-GPU and CPU-GPU communi-

cation via Intel’s CXL. Recent prerelease A0 silicon has been able to achieve

over 45 TFLOP/s of performance for 32-bit floating point computation.

2https://www.servethehome.com/intel-details-sapphire-rapids-xeon-at-

architecture-day-2021/
3https://www.techradar.com/uk/news/gigabyte-hacker-spills-details-on-next-

generation-amd-epyc-genoa-series

9

https://www.servethehome.com/intel-details-sapphire-rapids-xeon-at-architecture-day-2021/
https://www.servethehome.com/intel-details-sapphire-rapids-xeon-at-architecture-day-2021/
https://www.techradar.com/uk/news/gigabyte-hacker-spills-details-on-next-generation-amd-epyc-genoa-series
https://www.techradar.com/uk/news/gigabyte-hacker-spills-details-on-next-generation-amd-epyc-genoa-series

The upcoming AMD Radeon Instinct MI200 will be present in the Frontier

system. As with the next generation EPYC CPU, information about the MI200

is only available from recent data leaks. The GPU is expected to double the

performance of the MI100 (11.5 FP64 TFLOP/s) and will be constructed from

two dies connected using Infinity Fabric. It is also expected to contain 128 GB

of High Bandwidth Memory (HBM2e)4.

Details of the next NVIDIA architecture targeted at HPC workloads are still

scarce. However, it is predicted that Hopper will launch in 2022, and will likely

be the first multi-chip-module design from NVIDIA. It is also likely to triple

the performance of the current Ampere generation GPUs.

2.3 Summary

The shift towards accelerated computing has made the task of efficiently pro-

gramming these systems much more difficult. For homogeneous platforms, stan-

dard programming models (i.e. Fortran, C/C++, etc) along with well main-

tained compilers is sufficient for developing complex physics simulations. For

accelerated platforms, hierarchical parallelism is usually exposed through a cus-

tom API and compiler developed specifically for the accelerator in use. For

NVIDIA, this is the CUDA programming model; for AMD, this is HIP; and, for

Intel, this will be SYCL/DPC++.

Although both AMD and Intel provide source-to-source translators that can take

already developed CUDA code, and generate equivalent code for their accelera-

tors, there are a number of efforts aimed at developing platform-agnostic appli-

cations from the outset. Whether applications developed using these platform-

agnostic frameworks can be both performant and portable remains an open ques-

tion.

4https://www.tomshardware.com/uk/news/amd-begins-initial-shipments-of-

aldebaran-cdna-2-gpu

10

https://www.tomshardware.com/uk/news/amd-begins-initial-shipments-of-aldebaran-cdna-2-gpu
https://www.tomshardware.com/uk/news/amd-begins-initial-shipments-of-aldebaran-cdna-2-gpu

3 Developing Performance Portable Software

Our previous report (2047358-TN-01) provides a summary of a number of the

available approaches to developing performance portable software for heteroge-

neous architectures. For brevity, the main approaches considered in this project

are repeated here along with short listings demonstrating how parallelism is

achieved in each of these programming models (using a simple vector-add ex-

ample).

It is likely that any chosen programming model will be coupled with a message

passing library such as MPI (i.e. the so called MPI+X model), and so in this

work programme we have only considered single nodes, assuming node-to-node

communication will still be handled through MPI-like libraries.

3.1 OpenMP

OpenMP is a standardised implementation of a shared-memory fork-join model,

whereby annotations are used in code to signify work that can be multi-threaded.

In scientific workloads, it is typically the case that loop structures are annotated

with an OpenMP #pragma, such that each iteration can be executed in parallel.

Listing 1 shows a simple vector addition, where the loop iterations are dis-

tributed across OpenMP threads. The number of threads used is typically spec-

ified with the environmental variable OMP NUM THREADS, but usually will default

to the number of cores available if unset. Finer control over the parallelism can

be achieved with more complex annotations.

1 #pragma omp parallel for

2 for (int i = 0; i < 100; i++) {

3 c[i] = a[i] + b[i];

4 }

Figure 1: OpenMP code listing

In 2015, the OpenMP 4.5 standard introduced offload annotations, that can

enable the compiler to generate hybrid executables for hosts with accelerator

devices. Compiler support for the latest features of the OpenMP standard is

often lagged, but the majority of compilers used in HPC now support a good

11

subset of omp target directives5.

An example of the same vector addition seen previously is provided in Figure 2

with target directives. In addition to specifying the parallel region, data map-

ping information is also required, indicating which data should be moved to and

from an accelerator device.

1 #pragma omp target map (to:a[:size]) map (to:b[:size]) map (tofrom:

c[:size])

2 #pragma omp teams distribute parallel for default(none)

3 for (int i = 0; i < 100; i++) {

4 c[i] = a[i] + b[i];

5 }

Figure 2: OpenMP 4.5 using target directives

An advantage of these directives is that code written using target directives

can be executed on host platforms with no code changes, if no accelerator is

available. This means that a single code base can target both homogeneous and

heterogeneous platforms.

In our last report we evaluated the performance of TeaLeaf, miniFE and Laghos

implemented in OpenMP, with TeaLeaf and miniFE also available implemented

with OpenMP 4.5 target regions.

3.2 Kokkos and RAJA

An alternative approach that has emerged from the US Department of Energy’s

Exascale Computing Project (ECP) is the use of C++ template libraries to

enable compile-time code generation for different architectures. Kokkos, from

Sandia National Laboratories, and RAJA, from Lawrence Livermore National

Laboratory, are two such libraries.

Both Kokkos and RAJA provide a number of APIs that are primarily aimed

at loop-level parallelism. Through using C++ templates, appropriate code is

generated at compile-time to enable efficient execution on various target archi-

tectures. Figures 3 and 4 provide equivalent implementations of a vector add.

5https://www.openmp.org/resources/openmp-compilers-tools/

12

https://www.openmp.org/resources/openmp-compilers-tools/

1 Kokkos :: parallel_for (100, KOKKOS_LAMBDA (const int& i) {

2 c[i] = a[i] + b[i];

3 });

Figure 3: Kokkos

1 RAJA:: RangeSegment seg (0, 100);

2 RAJA::forall <loop_exec > (seg , [=] (int i) {

3 c[i] = a[i] + b[i];

4 });

Figure 4: RAJA

In both cases, a simple for-loop is replaced with a templated lambda func-

tion that is expanded at compile-time to the appropriate target. Kokkos is

able to target CUDA, OpenMP, pthreads, HIP or SYCL, while RAJA can

target OpenMP, Intel Thread Building Blocks (TBB) or CUDA. Because the

target platform is usually specified at compile-time, architecture-specific code

can be generated, potentially enabling greater performance (unlike with a pure

OpenMP approach, where architecture-specific pragmas would require poten-

tially complex C-preprocessor

In our previous report, we evaluated a number of applications in both Kokkos

and RAJA; in particular, all of the particle-in-cell codes we have evaluated are

parallelised through Kokkos.

3.3 SYCL and DPC++

Another approach to developing portable applications is the Open Computing

Language (OpenCL) framework, maintained by the Khronos Group. More re-

cently, the Khronos Group ratified SYCL, a higher-level programming model

that builds on the underlying concepts of OpenCL, but with a focus on im-

proving programmer productivity. SYCL is a single-source embedded domain

specific language based on C++17.

In SYCL, there is typically a queue that work items can be submitted to.

Work items are typically written in the code as anonymous functions, much

like in Kokkos and RAJA. Parallelisation is achieved using constructs such as

13

the parallel for function.

Figure 5 provides an example of a vector-add written in SYCL. Similar to

OpenMP with offload, data movement is expressed explicitly in the language;

in the case of SYCL this is through device buffers with access specifiers.

1 sycl:: queue myqueue;

2 std:: vector h_a (100) , h_b (100), h_c (100);

3 sycl:: buffer d_a(h_a), d_b(h_b), d_c(h_c);

4

5 auto ev = myqueue.submit ([&](handler &h){

6 auto a = d_a.get_access <access ::read >();

7 auto b = d_b.get_access <access ::read >();

8 auto c = d_c.get_access <access ::write >();

9 h.parallel_for(count , kernel_functor ([=](id <> item) {

10 int i = item.get_global (0);

11 c[i] = a[i] + b[i];

12 }));

13 });

Figure 5: SYCL

Support for SYCL exists in a number of compilers, with a variety of target archi-

tectures6. The ComputeCpp compiler, from Codeplay, has multiple backends,

allowing it to target a range of CPUs and GPUs from Intel, AMD and Arm;

the triSYCL compiler, developed by Xilinx, can generate OpenMP-compliant

applications, and can additionally target Xilinx FPGAs; Heidelberg Univer-

sity’s LLVM-based hipSYCL compiler can generate OpenMP, CUDA, ROCm

or oneAPI Level Zero code, allowing it to target CPUs and GPUs from the three

major hardware vendors expected to be present in post-Exascale systems.

SYCL has additionally been adopted and extended by Intel (as Data Parallel

C++) for its oneAPI programming model. While initially appearing in Intel’s

(now branded “Classic”) C++ Compiler in 2020, aimed primarily at Intel hard-

ware, the adoption of an LLVM-backend in 2021 has meant that Intel’s compiler

can now natively support NVIDIA and AMD targets also, through CUDA and

HIP, respectively.

The maturity of SYCL toolchains has been the subject of recent work, with

performance still typically lagging native alternatives [5, 6]. Whether this per-

formance gap can be reduced remains an open question.

6https://www.khronos.org/sycl/

14

https://www.khronos.org/sycl/

3.4 Other Approaches

A number of other approaches are also available, some of which have been

evaluated in this project but only in a limited capacity.

The OpenACC (Open Accelerators) programming model is an annotation-based

approach similar to OpenMP but specifically aimed at accelerators. Adoption

of the OpenACC standard into common compilers is often lacking, with the ex-

ception of the Cray and NVIDIA (PGI) compilers. The introduction of target

pragmas in the OpenMP standard, may ultimately render the OpenACC stan-

dard unnecessary. Nonetheless, in our previous report, an evaluation of TeaLeaf

with OpenACC is presented, providing a realistic target for future OpenMP

target offload implementations.

Our previous report also provides an evaluation of TeaLeaf developed using

the Oxford Parallel library for Structured mesh solvers (OPS). OPS is a do-

main specific language (DSL) that exists at a higher level than the previously

mentioned programming models, targeting multi-block structured mesh com-

putations. OPS provides an API for storing blocks of data, and abstractions

to iterate over these blocks in parallel. The OPS compiler can then generate

code for CUDA, HIP, OpenMP and SYCL, allowing it to target any of the

post-Exascale hardware platforms currently announced.

There are a number of other DSLs aimed at solving computational fluid prob-

lems. Two notable examples are PSyclone, from the Met Office, and UFL

(Unified Form Language), from the FEniCS project. PSyclone is a code gener-

ator specifically aimed at Finite Element, Finite Difference and Finite Volume

methods, that can generate OpenMP, OpenCL and OpenACC code. UFL is a

DSL for expressing partial differential equations (PDEs) that can be solved by

the FEniCS or Firedrake platforms. PDEs are expressed in Python using the

mathematical operators provided by UFL; the compiler then generates C code

(using PyOP2) to solve the PDEs in parallel.

For particle methods, there is a distinct lack of DSLs. The only notable example

we are currently aware of is PPMD (Performance Portable Molecular Dynam-

ics), another Python-based DSL. As the name suggests, PPMD is specifically

aimed at molecular dynamics simulations. We are unaware of any DSLs aimed

at the Particle-in-Cell (PIC) methods that will likely be required in NEPTUNE.

15

In this work package, we have not attempted to evaluate these high-level DSLs,

as they each code-generate to lower level approaches that have been evaluated.

Nevertheless, these DSLs do provide useful examples for how an interface might

look for scientists wishing to express their computational problems.

Beyond specific programming languages and programming models for develop-

ing performance portable applications, some of the applications evaluated as

part of this project are available written using scientific computing libraries.

For example, the Laghos mini-application is a high-order finite element code

implemented using the HYPRE and MFEM libraries. Computation in HYPRE

is then parallelised with OpenMP, OpenMP 4.5, CUDA, HIP, RAJA or Kokkos.

Similarly, the EMPIRE-PIC code makes extensive use of Kokkos, and the linear

solvers in the Trilinos library that are also parallelised through Kokkos. Many

scientific applications also rely heavily on the linear solvers in common math

libraries such as LAPACK.

3.5 Portable Data Structures

Besides the selection of programming model, data access patterns are perhaps

one of the most important considerations for achieving high performance. In

scientific computing applications, matrices and tensors are typically stored in

multi-dimensional arrays, while particle-like data is usually stored in struc-

tures/objects. When looping over these data in parallel, the order of traversal

can be beneficial or adversarial to the host architectures data caches. Further-

more, expressing multi-dimensional data in C and C++ may be difficult if the

dimensions are not fixed at runtime, requiring programmers to potentially man-

ually de-reference data in one-dimension (i.e. using array[col + (num cols *

row)]).

Both Kokkos and RAJA provide a solution to this by offering views over data.

In the case of RAJA, this is a simple View class that can be used on initialised

1-D arrays to provide simple de-referencing. Figure 6 shows the use of the

RAJA::View class on a simple two-dimensional array.

Kokkos provides fully managed multi-dimensional arrays through its View class.

Figure 7 provides the same simple example of a two dimensional array in Kokkos.

Because Kokkos Views are fully managed, they are allocated and reference

16

1 const int DIM = 2;

2 double *array = new double[num_rows * num_cols];

3 RAJA::View <double , RAJA::Layout <DIM > > array_view(array , num_rows ,

num_cols);

4 Aview (0,0) = ...;

5 ...

6 free(array);

Figure 6: Use of RAJA::View for multi-dimensional arrays

counted, additional arguments can be provided to specify the memory space

in which they are allocated, and whether to use column-major or row-major

layout can be specified in code. This may allow some very simple performance

optimisations to be made at a single point in an applications code.

1 const size_t num_rows = ...;

2 const size_t num_cols = ...;

3 Kokkos ::View <int**> array ("some label", num_rows , num_cols);

4 array (0,0) = ...;

Figure 7: Use of Kokkos::View for multi-dimensional arrays

Besides the storage of simple multi-dimensional data, it is often required to

store multiple fields about a single object, for example, particle data. Figure 8

provides a simple example of particle storage using an array-of-structs (AoS)

and a struct-of-arrays (SoA) approach.

1 #define N 1024

2 typedef struct {

3 // position

4 float x, y, x;

5 // momentum

6 float ux , uy , uz;

7 // weight

8 float w;

9 } Particle;

10 Particle particles[N];

11 // access x field from particle

12 particles [0].x;

1 #define N 1024

2 typedef struct {

3 // position

4 float x[N], y[N], x[N];

5 // momentum

6 float ux[N], uy[N], uz[N];

7 // weight

8 float w[N];

9 } Particles;

10 Particles particles;

11 // access x field from particle

12 particles.x[0];

Figure 8: AoS (left) vs SoA (right) for simple particle structure

The most intuitive way to store such data is typically using the AoS approach,

but this may not be conducive to high performance on SIMD and SIMT sys-

tems. Conversely, the SoA approach may allow the cache lines to be used more

17

effectively, but leads to less intuitive code. It may also be the case that differ-

ent architectures favour different approaches; switching between AoS and SoA

manually may be a significant undertaking.

Intel’s SIMD Data Layout Templates (SDLT) offers a convenient way to abstract

the in-memory data layout transparently to the developer. Figure 9 shows how

this can be achieved with our previous example of particle storage. Accesses

are expressed in an AoS form, but the accesses are performed through an SoA

container.

1 #define N 1024

2

3 typedef struct particle_data {

4 float x, y, x;

5 float ux , uy , uz;

6 float w;

7 } Particle;

8

9 SDLT_PRIMITIVE(Particle , x, y, z, ux, uy, uz, w)

10 ...

11 sdlt:: soa1d_container <Point2D > pContainer(N);

12 auto particles = pContainer.access ();

13 #pragma omp simd

14 for (int i = 0; i < 1024; i++) {

15 particles[i].x() = ...;

16 ...

17 }

Figure 9: Intel SDLT

A similar approach, using Kokkos Views, can be found in the VPIC 2.0 appli-

cation [7]. In VPIC 2.0, an enum is used to provide symbolic deferencing of

the fields in the structure to improve readability of the code (see Figure 10).

Effectively this is implemented using a two-dimensional View that can then be

stored using a row-major or a column-major layout to enable a switch between

AoS and SoA.

3.6 Summary

Due to the nature of how most scientific problems are expressed in code, the

majority of the programming models explored express parallelism through loop-

structures. For this reason, the difference between many of the available pro-

gramming models is primarily semantics.

18

1 Kokkos ::View <float *[7]> particles(N); // particle data

2 namespace particle_var {

3 enum p_v { // particle member enum for clean access

4 x, y, z,

5 ux, uy , uz ,

6 w,

7 };

8 };

9 View <int*> particle_indicies(N); // Particle indices

10 // Access x from particle 0

11 particles(0, particle_var ::x) = ...;

Figure 10: Using Kokkos to convert AoS to SoA

Where the models diverge significantly is in their language, compiler and hard-

ware support profiles. Pragma-based standards like OpenMP are available in

all of the major HPC languages (C, C++, Fortran), and usually benefit from

support in many of the main HPC compilers. Additionally, applications writ-

ten with pragma-based approaches have the advantage of falling back to single

thread, host-only code, where support is unavailable. Unfortunately, it is often

difficult to express complex parallel schemes with these simple code annotations,

and implementation of these standards often lags development of the standard

itself.

Template libraries like Kokkos and RAJA partially avoid this issue, by using

template metaprogramming to generate relevant code at compile time. This

restricts the choice of programming language to modern C++, but does mean

that support for new hardware targets (and architecture-specific optimisations)

come “free” as the Kokkos and RAJA teams develop and optimise new backends.

However, this does build a dependency into any applications developed using

these third-party libraries. This dependency may extend beyond just inclusion

of the library, to adopting custom build instructions.

In contrast to the DoE-developed programming models, SYCL is an open stan-

dard and Intel’s DPC++ is a C++ language extension that is being built into

their own compiler. That the standard is maintained by a group of organisa-

tions, and the investment by Intel, bodes well for its use in HPC.

19

4 Analysis of Approaches

There are currently a large number of projects focused on preparing scientific

applications for the complexities of Exascale. With many of the largest Super-

computers edging towards heterogeneity and hierarchical parallelism, many of

these efforts are in ensuring that applications are performant and portable be-

tween different architectures. As shown in our previous reports 2047358-TN-01

and 2047358-TN-03, there are a wide number of options available for develop-

ing performance portable applications, and each approach comes with various

advantages and disadvantages.

To date, only a small number of these approaches have seen widespread adop-

tion, including OpenMP, Kokkos, and RAJA [8, 9, 10, 11]. Because of the

availability of mini applications that use these programming models, the ma-

jority of our evaluation has been based on these approaches. We have also

conducted some preliminary work in assessing DPC++/SYCL, since adoption

of this programming model is growing (owing to the backing of Intel).

4.1 Pragma-based Approaches

The two pragma-based approaches of OpenMP and OpenACC are perhaps the

easiest to implement into an existing application and require only minimal code

changes. Our evaluation shows that both programming models are typically

performant on CPUs and GPUs, respectively, but potentially lack portability.

In the case of OpenACC, which is specifically targeted at accelerator devices,

this is expected; for OpenMP, it is perhaps more surprising.

The best data we have for this comes from the miniFE application, where

we have runtime data for an OpenMP 3.0-compliant implementation and an

OpenMP 4.5-compliant implementation. Figure 11 shows that for the CPU-

only platforms, OpenMP 3.0 is competitive with (or is) the best performing

miniFE variant, but does not run at all on the GPU platforms. Conversely

the OpenMP 4.5 implementation does run on all platforms, but provides poor

performance on the CPU-only platforms, and significantly lags behind the best

performing (CUDA) miniFE variants on the GPU platforms. It should be noted

that the OpenMP 4.5 implementation does run on the Rome and TX2 platforms,

20

CSL KNL Rome TX2 A64FX P100 V100

10

20

30

Platform

R
u

n
ti

m
e

(s
)

Best OpenMP 3.0
OpenMP 4.5

Figure 11: miniFE in OpenMP runtime data

but the runtime is several orders of magnitude higher than all other variants

and are therefore omitted7.

Figure 12 shows a cascade plot for all miniFE variants, showing that OpenMP of-

fers good portability across the CPU platforms but no portability to accelerator

devices. The OpenMP 4.5 variant is portable to all architectures, but is signifi-

cantly less performant on all platforms. From this data it seems that different

parallelisation strategies may be required for high performance between different

platforms, and therefore it is likely that multiple implementations would need

to be maintained. This can certainly be achieved within a single code base,

using the preprocessor to select the correct code path, but essentially means

maintaining multiple versions of each kernel.

Another useful example of the portability of OpenMP can be seen in the TeaLeaf

data taken from Deakin et al. [9]. In Figure 13 OpenMP is typically shown to be

performance portable, however these figures come from a C-based variant of the

TeaLeaf application, in which multiple compute kernels are provided targeting

7A runtime for the A64FX platform has not been collected due the lack of support for
OpenMP 4.5 in the Cray compiler, but will be collected in due course.

21

1 2 3 4 5 6 7
of platforms

0.0

0.2

0.4

0.6

0.8

1.0
Ap

p
PP

 (d
as

he
d)

/e
ff

ic
ie

nc
y

(s
ol

id
)

CUDA eff.
CUDA PP
MPI eff.
MPI PP
OpenMP eff.
OpenMP PP
SYCL eff.
SYCL PP
OpenMP 4.5 eff.
OpenMP 4.5 PP
Kokkos eff.
Kokkos PP

CascadeLake
KNL
Rome
Volta

Pascal
ThunderX2
A64FX

Figure 12: Cascade visualisation of performance portability of miniFE

different versions of the OpenMP specification, different hardware and even

different compilers8. This is another illustration that if we were to maintain

multiple kernel implementations, we may be able to achieve good performance

with a mixture of OpenMP 3.0 and 4.5 directives (though whether this approach

is “portable” is questionable).

4.2 Programming Model Approaches

The next approach we have explored in this work package, is the use of alter-

native programming models that are targeted at parallel architectures. The

template libraries Kokkos and RAJA are most mature of these approaches.

Both are being developed as part of the Exascale Computing Project within

the US Department of Energy, at Sandia National Laboratories and Lawrence

Livermore National Laboratory, respectively. They are each capable of target-

ing the range of hardware that is going to be present in the Aurora, Frontier

and El Capitan systems, through a combination of OpenMP, CUDA, HIP and

DPC++. Our initial results (and many other studies [8, 9, 10, 11]) have shown

that both are typically able to deliver good and portable performance from a

8See: https://github.com/UoB-HPC/TeaLeaf/tree/master/2d/c_kernels

22

https://github.com/UoB-HPC/TeaLeaf/tree/master/2d/c_kernels

Skylake Naples Power9 TX2 KNL P100 V100

200

400

600

800

Platform

R
u

n
ti

m
e

(s
)

OpenMP CUDA
OpenACC Kokkos

Figure 13: TeaLeaf runtime data from Deakin et al. [9]

single source code base.

The results in Figure 14 shows this for TeaLeaf, with both Kokkos and RAJA

typically being able to achieve good application efficiency over all platforms,

with the exception of using multiple GPUs (which has not yet been implemented

in TeaLeaf).

For the high-order FEM Laghos application, Figure 15 shows that RAJA is

the only portable programming model available and is shown to be competitive

with (or is) the fastest performing variant on each platform. It should be noted

that Laghos is an exceptional case in our evaluation set, since portability is

implemented in the HYPRE and MFEM libraries, rather than the core Laghos

code itself.

For the PIC codes in our evaluation set, Kokkos is the only performance portable

programming model that has been extensively used. The best source for com-

parison is therefore the VPIC code, where there is a vectorised CPU-only variant

for comparison. The vectorisation in VPIC is largely hand-coded, with multi-

ple versions of each kernel available for selection at compile time (depending

on vector-size and vector instruction availability). Figure 16 demonstrates that

23

1 2 3 4
of platforms

0.0

0.2

0.4

0.6

0.8

1.0
Ap

p
PP

 (d
as

he
d)

/e
ff

ic
ie

nc
y

(s
ol

id
)

OpenMP eff.
OpenMP PP
MPI eff.
MPI PP
Hybrid eff.
Hybrid PP
CUDA eff.
CUDA PP

OpenACC eff.
OpenACC PP
Kokkos eff.
Kokkos PP
RAJA eff.
RAJA PP
OPS eff.
OPS PP

Broadwell
KNL

P100
2xP100

Figure 14: Cascade visualisation of performance portability of TeaLeaf from
Kirk et al.

CSL KNL Rome A64FX P100 V100

20

40

60

80

100

120

Platform

R
u

n
ti

m
e

(s
)

MPI OpenMP
CUDA RAJA

Figure 15: Laghos runtime data

while the optimal implementation on each of the CPU-based platforms is the

hand-vectorised variant, the Kokkos version is competitive with the unvectorised

24

implementation; better compiler autovectorisation may help close this perfor-

mance gap in the future9. Importantly, the Kokkos variant can be executed

across GPUs, where much of the available performance is likely to lie in post-

Exascale systems.

Skylake KNL TX2 Naples Rome Power9 V100

100

200

300

Platform

R
u

n
ti

m
e

(s
)

Original SIMD Kokkos

Figure 16: VPIC runtime data from Bird et al. [7]

While Kokkos and RAJA have both shown promise as approaches to perfor-

mance portable application development, each also carry a small element of

risk. For each API there is potentially a single point of failure – the API may

be changed at short notice; support for the API or development of the library

may be withdrawn at any time; and hardware backends may never be devel-

oped. Nonetheless, a high level of support is likely to be maintained while the

APIs form the backbone of many of the Department of Energy’s most important

post-Exascale HPC applications. There are also ongoing efforts to include parts

of the API in the C++ standard10.

In contrast to Kokkos and RAJA, the SYCL programming model is an open

standard maintained by the Khronos Group. Interest in SYCL is growing

9Indeed, a similar issue was seen during the development of EMPIRE-PIC, where the
compiler is not able to fully vectorise some segments of Kokkos code, despite no apparent
dependencies [12].

10e.g. mdspan, http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0009r10.
html

25

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0009r10.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0009r10.html

rapidly, driven in part by Intel’s decision to adopt the programming model

for their Exascale systems, and in particular their Xe HPC accelerators (in the

form of Data Parallel C++).

Due to the relative immaturity of SYCL/DPC++, there are not many NEPTUNE-

relevant mini-applications available for evaluation; our evaluation has so far been

limited to a miniFE port generated using Intel’s DPC++ Compatibility Tool

(which converts from CUDA), compiled with the hipSYCL compiler. Figure 12

shows that the performance portability of SYCL in this configuration is similar

to the OpenMP 4.5 variant of miniFE. Since hipSYCL typically uses OpenMP

to target CPUs, this is perhaps not surprising. It is quite possible (perhaps

even probable) that the Intel DPC++ compiler will yield better performance;

collecting this data, and expanding our evaluation platforms to include Intel

and AMD GPUs is central to our ongoing work.

Besides our own evaluation, there has been a number of recent efforts to explore

the portability of SYCL and the maturity of SYCL compilers that offer some

useful insights. Reguly et al. evaluate SYCL performance through the unstruc-

tured mesh CFD solver, MG-CFD [6]. Figure 17 shows their SYCL runtimes

compared to the best observed performance on each platform; note, the Cascade

Lake and Xe LP results were compiled using Intel’s OneAPI compiler, all other

SYCL targets were built using hipSYCL.

Similar to our own evaluation, they observe that SYCL is typically not compet-

itive, but is able to target each architecture from a single code base. In the case

of the ARM Graviton2 platform, the SYCL build is considerably worse due to

the infancy of the ARM target in hipSYCL. For the two Intel platforms, the

OneAPI compiler is slightly more competitive; for the Iris Xe LP (low-power)

target, its runtime is competitive with a single socket Cascade Lake. On the

GPU platforms, SYCL is still considerable slower than native CUDA builds,

but has the advantage of being portable to the AMD and Intel GPUs.

The study by Lin et al. provides more data on the maturity of SYCL imple-

mentations by evaluating the same small set of applications periodically against

the hipSYCL, Intel DPC++ and ComputeCpp compilers [5]. Their evaluations

are based on three applications: BabelStream, a port of the STREAM mem-

ory benchmark for parallel programming frameworks; BUDE (Bristol Univer-

sity Docking Engine), a molecular dynamics application; and CloverLeaf, a 2D

26

CSL ARM Rome V100 A100 Radeon Xe LP

5

10

15

20

25

Platform

R
u

n
ti

m
e

(s
)

Best SYCL

Figure 17: MG-CFD runtime data from Reguly et al. [6]

structured grid application. They evaluate each application on a Xeon Cascade

Lake, an AMD EPYC Rome, an NVIDIA V100 and an Intel UHD P630 GPU.

Although their study is primarily tracking absolute performance changes with

compiler version, rather than comparing to “best case”, they do also provide a

brief comparison for each application.

For BabelStream, DPC++ and ComputeCpp closely match the OpenCL per-

formance; this is not surprising since both of these compilers target the OpenCL

runtime. Conversely, hipSYCL is competitive with OpenMP and Kokkos on the

Cascade Lake, but is the worst performing on the Rome platform.

For the two mini-applications the results are more varied; in some cases there

are large differences between the compilers (see Figure 18). In this study,

only hipSYCL was able to target the NVIDIA GPU, due to compatibility with

NVIDIAs outdated OpenCL runtime. Nonetheless, the hipSYCL performance is

not competitive with any of the alternatives. On the CPU platforms, hipSYCL

often achieves the lowest performance of the three SYCL compilers, and DPC++

tends to outperform ComputeCpp slightly.

It is important to note that these results are based on compilers that are cur-

27

Measuring the maturity of SYCL implementations via tracking performance IWOCL’21, April 27–29, 2021, Munich, Germany

Figure 10: BabelStream: SYCL vs alternative framework re-
sults

Figure 11: BUDE: SYCL vs alternative framework results

5.4 Alternative SYCL implementations
Finally, we have compared the latest results for all three of our stud-
ied SYCL implementations versus contemporary parallel program-
ming frameworks. We compare SYCL performance to the follow-
ing frameworks: OpenCL, OpenMP, CUDA, and Kokkos. OpenCL,
OpenMP, and CUDA are all C99 derived frameworks that require
direct compiler support. Kokkos is a C++ derived framework that
is implemented as a library with no speci�c compiler requirements
(although runtime requirements such as CUDA libraries are still
required).

Results for the memory bandwidth-bound BabelStream bench-
mark are shown in Figure 10. The bandwidth achieved on each
platform are in line with existing literature[6]. As expected, the
performance pro�le of SYCL implementations that depended on
Intel’s OpenCL runtime is very similar to OpenCL’s, which share
the same runtime environment. Given the higher abstraction level

Figure 12: CloverLeaf: SYCL vs alternative framework re-
sults

of SYCL, it is encouraging to see performance parity with OpenCL
which focuses more on exposing low-level controls.

For independent implementations such as hipSYCL, we see highly
competitive performance compared to vendor speci�c APIs like
CUDA. Because hipSYCL on the CPU uses LLVM’s OpenMP back-
end, we also observe performance parity with the OpenMP imple-
mentation. We attribute hipSYCL’s lower performance on AMD
Rome to LLVM 10’s immaturity on the Zen2 architecture. As later
revision of hipSYCL supports more up-to-date LLVM releases, fu-
ture versions of this study will attempt to accommodate for this.

The results for the compute-bound BUDE benchmark are shown
in Figure 11. Performance disparity on Intel Cascade Lake and
AMD Rome suggests room for improvement for compute-bound
operations. In particular, hipSYCL performed very poorly compared
to the OpenMP implementation. This is surprising and requires
deeper analysis on the emitted code. Results from OpenCL is also
surprising as the implementation shares the same runtime with
DPC++ and ComputeCpp. Considering BUDE’s OpenCL kernel
versus the SYCL kernel, which is nearly identical, this disparity
likely originates from the code emitted by Intel’s OpenCL runtime
online compiler. This isn’t a problem for DPC++ or ComputeCpp
because the SPIR instructions are generated ahead of time.

The results for the memory-bound CloverLeaf benchmark are
shown in Figure 12. Initial analysis suggests hipSYCL has a relatively
high kernel invocation overhead on CUDA platforms. This is less
obvious in both BabelStream and BUDE as both only invoke a single
kernel with no complex kernel dependency requirements and at
a much lower frequency. On the other hand, CloverLeaf contains
more than 170 unique kernels with complex dependencies which is
called in a tight loop for up to 2955 iterations as shown previously
in algorithm 3.

OpenCL once again performed poorly, we observe a ~25% regres-
sion from SYCL implementations hosted on the same runtime. SYCL
results are closer to what we previously observe in BabelStream
although with a further 20~40% regression. Based on CloverLeaf’s
built-in pro�ling data, we suspect the regression again stems from

Figure 18: CloverLeaf: SYCL vs. alternative frameworks from Lin et al. [5]

rently undergoing significant engineering efforts. It is therefore likely that many

of the performance gaps that currently exist will reduce in time.

4.3 High-level DSL Approaches

Many of the approaches discussed above could be considered low-level DSLs,

and these approaches have formed the majority of our analysis in this project.

However, we also have a small dataset for the OPS DSL, which subsequently

acts as a code-generator for these lower-level DSLs/programming models.

OPS is an approach specifically targeted at structured mesh applications, and

has been used to parallelise TeaLeaf to good effect. The previously seen TeaLeaf

data in Figure 14 demonstrates that OPS is approximately equal with Kokkos

and RAJA in terms of its performance portability. However, the process of

porting an application to OPS is arguable more complex, and therefore may

effect programmer productivity11.

There are a number of other high-level DSLs that we have not explored in this

project, but may form part of our future analyses. In particular, the Unified

Form Language (UFL) that is used by both Firedrake and FEniCS is already

being used in some of the NEPTUNE work packages. UFL is a DSL, embed-

11See: https://op-dsl.github.io/docs/OPS/tutorial.pdf

28

https://op-dsl.github.io/docs/OPS/tutorial.pdf

ded in Python, that allows scientists to express their equations in PDE form.

The Firedrake/FEniCS packages handle the discretisation of these equations,

and uses PyOP2 to generate portable executable code. Although we have not

explored these high-level DSLs in this project, we have analysed many of the

programming models that PyOP2 can target.

4.4 Summary

It is likely that in NEPTUNE, multiple DSLs may be present, with high-level

DSLs allowing scientists to express equations, and low-level DSLs and program-

ming models targeting different parallel architectures. This project has mainly

focused on the latter, since these are likely to be performance-critical.

In this project we have evaluated multiple approaches to developing performance

portable software, ranging from pragma-based code annotations, through to

purpose-built domain specific languages.

In our analysis we have found that pragma-based approaches like OpenMP and

OpenACC are able to achieve high performance on a variety of platforms, but

that OpenMP is typically not portable to GPU accelerators, and OpenACC

is not portable to CPU host platforms. Although the OpenMP 4.5 standard

allows for offloaded computation, achieving high performance across both CPUs

and GPUs often requires different design decisions to be made. However, it is

likely that performance of OpenMP 4.5-compliant codes will improve as compiler

support develops.

Of the performance portable programming models explored, Kokkos and RAJA

are perhaps the most mature currently, with both offering good portability for

a small performance decrease. Furthermore, the APIs are relatively simple,

primarily being a drop-in replacement for loop structures, meaning that the

effort to port applications to these programming models is not great.

Currently, the SYCL programming model suffers many of the same issues as

OpenMP 4.5. In this project, our evaluation has been limited to the hipSYCL

compiler, which uses OpenMP to target CPU platforms, and so this is not en-

tirely surprising. With the recent introduction of a new Intel DPC++ com-

piler, based on LLVM SPIR-V, it is likely performance will improve across

29

many of the platforms benchmarked. Furthermore, the open-standard nature of

SYCL means that it potentially carries slightly less risk than the DoE-supported

Kokkos and RAJA programming models – though it should be noted that

Kokkos can code-generate to SYCL/DPC++ in order to target Intel Xe GPUs.

Our evaluation of purpose-built DSLs has been limited to OPS, evaluated through

the TeaLeaf application. Although it is able to offer good performance porta-

bility, it is limited in the computational methods it can be applied to, i.e.,

multi-block structured mesh algorithms.

30

5 Key Findings and Recommendations

This project has evaluated a number of approaches to performance portability,

many of which have shown promise as possible approaches for NEPTUNE. The

direction of HPC is clearly moving towards heterogeneity, but its not clear which

software development methodology will win out.

The development of a new simulation code for project NEPTUNE presents an

almost unique opportunity to design and build a code with Exascale execution

as a primary concern.

Because of the wealth of choice in approaches to performance portability, and the

required longevity of the NEPTUNE code, it is prudent to consider all available

options prior to, and during, development. With this in mind, we make the

following recommendations for the initial development of NEPTUNE. As the

hardware and software landscape continues to evolve over the next decade, it

is anticipated that this document will likewise need to evolve, and that these

recommendations will tighten as appropriate.

1. Develop in C++

1.1. Focus Core Development on Modern, Standard C++

M In order to enable the most opportunity for performance

portable design and optimisation of NEPTUNE, our first recom-

mendation is that the core of NEPTUNE is initially written in

standard modern C++, making full use of object orientation and

template metaprogramming.

At the present time, the choice of C++ carries a number of advantages over

Fortran (the mainstay of scientific computing).

• Object orientation is at the core of the C++ language, encouraging en-

capsulation, sensible design and code reuse12;

12Although Fortran introduced object orientation in the 2003 standard, it lacks many of
the advanced features present in C++ [13].

31

• Templating and template metaprogramming can enable some advanced

compile-time optimisations, or compile-time code generation (thus im-

proving code reuse);

• New features in the C++ standard are typically implemented in modern

C++ compilers (e.g. Clang) much faster than equivalent Fortran compil-

ers (e.g. Flang);

• A large number of modern mathematical and scientific libraries are written

in C/C++ and provide native APIs. Although it may be possible to

interface with some of these libraries with Fortran, this may come with a

loss of functionality.

In addition to the benefits of the C++ language, there are other reasons to

pursue a C++ code that relate specifically to producing a performance portable

application. The vast majority of new libraries, programming models and porta-

bility layers are developed with C/C++ as their first target language; this means

that an application developed in C++ is more likely to be able to make use of

these libraries and programming models.

A number of these libraries rely specifically on C++ features, such as template

metaprogramming, meaning that C++ is not only the first target, but also

the only target language (e.g. RAJA, Kokkos). Another example of this is

in Intel’s OneAPI, where although many of the libraries are language agnostic

(e.g. Math Kernel Library, Data Analytics Library), the central programming

language, Data Parallel C++ (DPC++), is an extension of the C++ language.

1.2. Use Open Standards and Beware of Vendor Lock-in

M Alongside the recommendation to pursue ISO C++, we recom-

mend that open standards are used where possible (followed by

open source solutions). Additionally, caution is required when

adopting vendor specific abstractions unless wider support is

forthcoming (as is the case with Intel’s DPC++).

There are a number of approaches that are open standards and should remain

portable across a wide range of platforms, such as MPI, OpenMP, OpenACC

and SYCL. In some cases, the support for these open standards is very good

32

(e.g. OpenMP), and some where support significantly lags the standard (e.g.

OpenACC). However, pursuing these approaches offers the best chance for NEP-

TUNE to remain performance portable in the future.

Alongside these programming models, there are a number of proprietary ap-

proaches that target specific hardware, such as CUDA and HIP/ROCm. These

are likely to yield greater performance gains on their target platforms but are

not portable approaches. One possible safeguard against this, is to use an open

source middleware such as Kokkos or RAJA, which can generate native CUDA

or HIP/ROCm code at compile-time.

A vendor-specific approach such as Intel’s OneAPI may also strike a balance

between portability and performance. Many of the libraries in OneAPI are im-

plementations of standard libraries such as BLAS, and the programming model

is heavily based on the SYCL open standard.

Typically, open standards may be less agile for targeting the latest hardware and

hardware features, but proprietary approaches are likely to restrict the choice

of future hardware.

2. Separation of Concerns

2.1. Select a Good High-Level Abstraction

M It is possible that multiple DSLs will be employed within the

NEPTUNE code, and that these DSLs will exist at different levels

of abstraction. Selecting a good high-level abstraction will be vital

to the success of NEPTUNE.

Domain Specific Languages exist at multiple levels of abstraction. Many pro-

gramming models, such as Kokkos, RAJA and SYCL, could be considered low-

level DSLs. They provide functionality targeted at exploiting the parallel hard-

ware resources that are available on a system.

Above these low-level DSLs are programming models that are targeted at par-

ticular algorithmic domains. The OPS and OP2 libraries are two such exam-

ples that provide abstractions for representing computation over structured and

unstructured meshes, respectively. The intermediate compiler can exploit the

33

structure of the problem space to perform a number of code optimisations to

improve performance.

At the highest level are languages such as UFL and BOUT++, that allow

scientists to write partial differential equations (PDEs) directly into the code.

At compile-time, these expressions are used to generate code in lower-level DSLs

such as PyOP2 and RAJA, for execution on a parallel system.

Typically, the more abstract a DSL is the greater the space for synthesis [14].

However, adding new features to, or escaping from, a high-level DSL may be

problematic. For this reason, it is important that a good high level abstraction is

chosen (or developed) that allows scientists to accurately represent their science,

without being overly restrictive, and that where possible, it is extensible to new

operators and features, allowing scientists to step outside of the DSL without

sacrificing performance.

2.2. Abstract Data Storage

M Performant data structures can be very architecture depen-

dent. Especially as we move towards heterogeneous platforms,

every effort should be made to abstract data storage, such that

transformations can be made that are transparent to the under-

lying algorithms.

Exploiting full performance on modern architectures is heavily reliant on how

efficiently data is moved between main memory and the various layers of cache.

For memory-bound applications, the data structures that are used to store sci-

entific data can significantly affect performance, and the best data structure for

one platform may not be the best for another.

For this reason, the NEPTUNE design should abstract data storage away from

algorithms as much as possible, such that it does not harm performance. This,

coupled with the use of appropriate data libraries, will ensure that data struc-

tures can be changed, without requiring significant re-engineering of key com-

putational kernels. It will also enable compile-time transformations based on

execution target.

34

2.3. Prototype, prototype, prototype

M A well modularised design should enable key computational

kernels to be extracted for prototyping. Before applying particu-

lar programming models to the NEPTUNE code, prototyping will

allow rapid evaluation of emerging approaches on kernels that are

performance critical.

Following programmes such as the Exascale Computing Project (ECP) and

the wider adoption of approaches such as SYCL, there are currently a wealth

of approaches to developing performance portable software that are in active

development. Because of this, it is not entirely clear which approaches will win

out.

Therefore to protect against this, it is prudent to develop NEPTUNE alongside

a programme of prototyping key kernels. A well encapsulated, modular design

should allow isolated kernels to be evaluated throughout development.

This will be aided by an inherent similarity in many programming models aimed

at performance portability, where parallelism is largely exposed at the loop-

level. As it becomes clearer which programming models are likely to be most

appropriate for NEPTUNE, code changes can be implemented incrementally.

In some cases, where a high-level DSL has been employed, changes in code

generators will automate much of the required effort.

3. Don’t Reinvent the Wheel

M Code reuse should be at the heart of NEPTUNE, and this

extends to the use of external libraries. There are a number of

libraries that implement functionality commonly found in scien-

tific simulation software, and NEPTUNE should make full use

of these libraries where possible. Vendor-optimised versions of

these libraries often exist, providing performance improvements

for free.

The work in this project has primarily focused on the programming model in use

for parallelisation at a node-level, given the assumption that it is highly likely

35

that MPI will be the defacto standard for inter-node communication (the so

called MPI+X model). Besides the use of the existing MPI standard, it is likely

that there are a number of other libraries that can provide functionality for

NEPTUNE for free, and it is important that these are used wherever possible.

Much of computation in NEPTUNE is likely to be in solving complex linear

systems, and for that there are number of industry-standard libraries (such as

LAPACK and BLAS) that are highly optimised. Where possible, these libraries

should be used to provide functionality, since this reduces the technical burden

and means that we can take advantage of vendor-led optimisations for free.

Beside the algorithmic optimisations in these libraries, the vendor-produced

implementations are often architecturally optimised.

Besides the availability of vendor-optimised libraries, the choice of some libraries

may naturally encourage the adoption of particular parallel programming mod-

els. For example, Intel’s OneAPI Math Kernel Library (MKL) would motivate

the use of DPC++/SYCL; the Trilinos library would perhaps motivate the use

of Kokkos; the HYPRE and MFEM libraries would lend themselves to RAJA.

But, its important that the available libraries are explored by domain specialists

to ensure any library chosen fits its purpose without being overly restrictive.

36

References

[1] John L. Hennessy and David A. Patterson. A new golden age for computer

architecture. Commun. ACM, 62(2):48–60, January 2019.

[2] Thiruvengadam Vijayaraghavan, Yasuko Eckert, Gabriel H. Loh, Michael J.

Schulte, Mike Ignatowski, Bradford M. Beckmann, William C. Brant-

ley, Joseph L. Greathouse, Wei Huang, Arun Karunanithi, Onur Kayi-

ran, Mitesh Meswani, Indrani Paul, Matthew Poremba, Steven Raasch,

Steven K. Reinhardt, Greg Sadowski, and Vilas Sridharan. Design and

analysis of an apu for exascale computing. In 2017 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages

85–96, 2017.

[3] Jack Dongarra, Steven Gottlieb, and William T. C. Kramer. Race to ex-

ascale. Computing in Science and Engg., 21(1):4–5, January 2019.

[4] Michael Feldman. Europe Will Enter Pre-Exascxale Realm With MareNos-

trum 5, 2019.

[5] Wei-Chen Lin, Tom Deakin, and Simon McIntosh-Smith. On measuring

the maturity of sycl implementations by tracking historical performance

improvements. In International Workshop on OpenCL, IWOCL’21, New

York, NY, USA, 2021. Association for Computing Machinery.

[6] Istvan Z. Reguly, Andrew M. B. Owenson, Archie Powell, Stephen A.

Jarvis, and Gihan R. Mudalige. Under the Hood of SYCL – An Initial

Performance Analysis with An Unstructured-Mesh CFD Application. In

Bradford L. Chamberlain, Ana-Lucia Varbanescu, Hatem Ltaief, and Piotr

Luszczek, editors, High Performance Computing, pages 391–410. Springer

International Publishing, 2021.

[7] Robert Bird, Nigel Tan, Scott V Luedtke, Stephen Harrell, Michela Taufer,

and Brian Albright. VPIC 2.0: Next Generation Particle-in-Cell Simula-

tions. IEEE Transactions on Parallel and Distributed Systems, pages 1–1,

2021.

[8] Simon McIntosh-Smith. Performance Portability Across Diverse Computer

Architectures. In P3MA: 4th International Workshop on Performance

Portable Programming models for Manycore or Accelerators, 2019.

37

[9] Tom Deakin, Simon McIntosh-Smith, James Price, Andrei Poenaru,

Patrick Atkinson, Codrin Popa, and Justin Salmon. Performance porta-

bility across diverse computer architectures. In 2019 IEEE/ACM Inter-

national Workshop on Performance, Portability and Productivity in HPC

(P3HPC), pages 1–13, 2019.

[10] T. R. Law, R. Kevis, S. Powell, J. Dickson, S. Maheswaran, J. A. Herdman,

and S. A. Jarvis. Performance portability of an unstructured hydrodynam-

ics mini-application. In 2018 IEEE/ACM International Workshop on Per-

formance, Portability and Productivity in HPC (P3HPC), pages 0–12, Nov

2018.

[11] R. O. Kirk, G. R. Mudalige, I. Z. Reguly, S. A. Wright, M. J. Martineau,

and S. A. Jarvis. Achieving Performance Portability for a Heat Conduction

Solver Mini-Application on Modern Multi-core Systems. In 2017 IEEE

International Conference on Cluster Computing (CLUSTER), pages 834–

841, Sep. 2017.

[12] Matthew T. Bettencourt, Dominic A. S. Brown, Keith L. Cartwright,

Eric C. Cyr, Christian A. Glusa, Paul T. Lin, Stan G. Moore, Duncan A. O.

McGregor, Roger P. Pawlowski, Edward G. Phillips, Nathan V. Roberts,

Steven A. Wright, Satheesh Maheswaran, John P. Jones, and Stephen A.

Jarvis. EMPIRE-PIC: A Performance Portable Unstructured Particle-in-

Cell Code. Communications in Computational Physics, x(x):1–37, March

2021.

[13] John R. Cary, Svetlana G. Shasharina, Julian C. Cummings, John V.W.

Reynders, and Paul J. Hinker. Comparison of C++ and Fortran 90 for

object-oriented scientific programming. Computer Physics Communica-

tions, 105(1):20–36, 1997.

[14] Paul Kelly. Synthesis versus Analysis: What Do We Actually Gain

from Domain-Specificity? Invited talk at The 28th International

Workshop on Languages and Compilers for Parallel Computing, Avail-

able: https://www.csc2.ncsu.edu/workshops/lcpc2015/slide/2015-

09-LCPC-Keynote-PaulKelly-V03-ForDistribution.pdf, 2015.

38

https://www.csc2.ncsu.edu/workshops/lcpc2015/slide/2015-09-LCPC-Keynote-PaulKelly-V03-ForDistribution.pdf
https://www.csc2.ncsu.edu/workshops/lcpc2015/slide/2015-09-LCPC-Keynote-PaulKelly-V03-ForDistribution.pdf

	Executive Summary
	Hardware Targets
	Exascale Efforts
	The United Kingdom
	Europe
	United States

	Hardware Overview
	Summary

	Developing Performance Portable Software
	OpenMP
	Kokkos and RAJA
	SYCL and DPC++
	Other Approaches
	Portable Data Structures
	Summary

	Analysis of Approaches
	Pragma-based Approaches
	Programming Model Approaches
	High-level DSL Approaches
	Summary

	Key Findings and Recommendations
	References

