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1. Introduction

The aim of this report is to describe an investigation into the convergence of 2D edge

plasma model with collisionless kinetic ions and wall boundary conditions. Previous

reports introduced tests using the method of manufactured solutions – these tests

highlighted poor convergence of the numerical implementation of the ‘moment kinetics’

model in the presence of wall boundaries in two spatial dimensions. In this document,

we will demonstrate the causes of the observed poor convergence. One source of poor

convergence is due to the interaction between the choice of numerical scheme and the

form of the ion wall boundary condition. We show that this issue can be adequately

resolved by a judicious choice of numerical resolutions in the simulations that we have

carried out. The second source of convergence issues is due to a wave-like instability

that emerges in simulations with a radial coordinate and a temperature gradient in the

coordinate that measures distance to the wall plate. This instability can be suppressed

with adequate numerical dissipation in the model.

The report is structured as follows. First, in the next section, we introduce the

non-dimensionalised form of the model which we solved numerically. In section 3,

we introduce a manufactured solution test appropriate for testing the evolution of

the charged particle distribution function. In section 4, we show the results of this

test into contrasting cases: first, when there is no radial electric field and we find

good convergence, and second when a constant-in-time-and-space radial electric field is

imposed, causing poor convergence with increasing resolution. In section 5, we propose

an optimisation to address these numerical difficulties in 1D. In section 6 we discuss
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whether or not this solution might be generalised to the full 2D model. In section 7 we

carry out a manufactured solution test in the 2D model that is designed to avoid the

convergence issues highlighted in the rest of this report. We find that the simulation

is dominated by an instability that may be of numerical or physical origin. Radial

numerical diffusion is used to suppress the instability and demonstrate convergence. In

section 8, we utilise the radial numerical diffusion to demonstrate that the numerical

implementation converges in a 2D manufactured solution test which has a nonzero radial

electric field at the wall boundaries. This result demonstrates that the model is correctly

implemented using the chosen methods. In section 9, we test the convergence of physical

solutions to the model equations where the source of ions is due to a constant, uniform

ionisation of neutral particles. Finally, in section 10, we discuss our results.

The input files for the tests presented in this report are named in Appendix A

(grouped by figure) and found in supporting documentation.

2. The model ion drift kinetic equations

The system that we consider consists of a single ion species of charge e and mass mi,

and an electron species that is modelled as having a Boltzmann response. The magnetic

field is taken to be helical, with the form

B = Bzẑ +Bζ ζ̂, (1)

where (r, z, ζ) are cylindrical coordinates, and Bz and Bζ are constant in z, r, and ζ.

See figure 1. The coordinate ζ is the analogue of the toroidal angle in a more realistic

tokamak open-field line geometry, and z is the analogue of the vertical coordinate. We

take the ions to be collisionless for simplicity. We apply wall boundary conditions in z.

In sections 4-6 we solve a 1D model that does not include a radial domain. In section 7,

we solve the model with a radial domain and we impose periodic boundary conditions

in r. We assume that the plasma equilibrium is independent of ζ.

In Table 1, we define normalised and reference quantities. Consistent with previous

reports, normalised variables are denoted with a tilde. In terms of the normalised

variables, the model system of equations takes the following form. The collisionless

drift-kinetic equation for ions is

∂F̃i

∂t̃
+
(
bzṽ‖ −

ρ∗
2
Ẽr

) ∂F̃i
∂z̃

+
ρ∗
2
Ẽz
∂F̃i
∂r̃

+
bzẼz

2

∂F̃i
∂ṽ‖

= S̃i + νr
∂2F̃i
∂r̃2

+ νv
∂2F̃i
∂ṽ2‖

, (2)

where and νr and νv are numerical viscosity coefficients, and ρ∗ = cref/LrefΩref is a small

parameter that measures the size of the ion gyro-orbits compared to the macroscopic

size of the system. Note that bz is also a small parameter in the formal ordering of the

2D model [1, 2]. The quasineutrality condition takes the form

ñi = ñe = Ñe exp

(
φ̃

T̃e

)
, (3)
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Figure 1: The form of the magnetic field and the left-handed coordinates (r, z, ζ) in

terms of the right-handed cartesian (x, y, z). Taken from [1].

and is used to determine the potential φ̃. The normalised electric fields are derived from

the potential, and are defined by

Ẽz = −∂φ̃
∂z̃
, and Ẽr = −∂φ̃

∂r̃
. (4)

and the ion density is defined by

ñi =
1√
π

∫ ∞
−∞

dṽ‖

∫ ∞
0

2dṽ⊥ṽ⊥F̃i. (5)

The boundary condition on the ion distribution function is that no particles return

from the wall, i.e.,

F̃i(z̃ = −L̃z/2, ṽ‖ > ρ∗Ẽr/2bz, ṽ⊥, t̃) = 0

F̃i(z̃ = L̃z/2, ṽ‖ < ρ∗Ẽr/2bz, ṽ⊥, t̃) = 0,
(6)

where L̃z = Lz/Lref . Note that this boundary condition implies that a source of ions is

required for a nontrivial steady-state solution. Since we wish to avoid the complication

of including a neutral species for the purposes of this report, we achieve a steady-

state solution by imposing appropriate sources S̃i. The remainder of this report is an

investigation into how the boundary condition (6) interacts with the spectral-element

numerical method chosen to implement these equations. It is useful to think in terms

of the total ion velocity in the z̃ direction

ṽz(ṽ‖, z̃, r̃) = bzṽ‖ −
ρ∗
2
Ẽr(z̃, r̃), (7)
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norm. variable definition

t̃ t(cref/Lref)

z̃ z/Lref

r̃ r/Lref

ṽ‖ v‖/cref

ṽ⊥ v⊥/cref

ṽz vz/cref

ṽr vr/cref

ṽζ vζ/cref

Ñe Ne/nref

ñs ns/nref

φ̃ eφ/Tref

Ẽr eLrefEr/Tref

Ẽz eLrefEz/Tref

R̃in Rin(nrefLref/cref)

R̃ion Rion(nrefLref/cref)

F̃s Fs(c
3
refπ

3/2/nref)

S̃s Ss(c
3
refπ

3/2Lref/nrefcref)

ρ∗ cref/LrefΩref

bz Bz/B

ref. quantity definition

Lref ref. length (m)

Tref ref. temperature (KeV)

nref ref. density (m−3)

cref
√

2Tref/mi (ms−1)

mi ion mass (kg)

Bref ref. B (T)

Ωref eBref/mi (s−1)

Table 1: Definitions for normalised and reference quantities used in the report.

where we have indicated that ṽz is a function of (ṽ‖, z̃, r̃) because Ẽr is a function of

position. Note that in general, if the magnetic field B varies with position, then (z̃, r̃)

dependence will also arise from the geometrical coefficients appearing in equation (7). It

is important to note that as a consequence of this dependence on position, the boundary

condition (6) must be applied on a potentially non-trivial (ṽ‖, r̃) contour in phase space.

This detail will be important in the following discussion.

The model described above solves for F̃i = F̃i(ṽ‖, ṽ⊥, z̃, r̃). The coordinate ṽ⊥ is a

conserved quantity because of the assumption of a spatially homogeneous magnetic field

strength B. In addition, ṽ⊥ does not appear anywhere explicitly in the coefficients of

the drift kinetic equation. This is a result of the fact that we have neglected the neutral

species. We can reduce the complexity and computational time of our simulations by

marginalising over the ṽ⊥ coordinate by solving for the distribution

f̃i(ṽ‖, z̃, r̃) =

∫ ∞
0

2dṽ⊥ṽ⊥F̃i(ṽ‖, ṽ⊥, z̃, r̃). (8)
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We make use of this reduction in the remainder of this report by choosing the initial

F̃i(ṽ‖, ṽ⊥, z̃, r̃) such that

F̃i(ṽ‖, ṽ⊥ = 0, z̃, r̃) =

∫ ∞
0

2dṽ⊥ṽ⊥F̃i(ṽ‖, ṽ⊥, z̃, r̃), (9)

and evolving F̃i(ṽ‖, ṽ⊥ = 0, z̃, r̃).

3. Testing the numerical implementation with the method of manufactured

solutions

To test the numerical implementation of the system described above, we prescribe a

manufactured solution that satisfies the ion boundary conditions, and then proceed to

compute symbolically the appropriate S̃i that would maintain this solution. Then, we

use this symbolically computed S̃i in our numerical implementation, and confirm that

the numerical solution remains close to the prescribed symbolic solution. For maximum

simplicity, we carry out only steady-state tests with no explicit time dependence in the

manufactured solutions.

In what follows, we perform a numerical simulations for a fixed time t̃ = 1 for

varying resolutions. We check that the numerical solution is consistent with the target

manufactured solution by confirming that the numerical error reduces towards zero as

the resolution increases. To measure the error between the numerical solution and the

target manufactured solution, we introduce the following measures. We define an error

on the ion density

ε(ñi) =

√∑
i,j |ñi(zi, rj)− ñMS

i (zi, rj)|2

NrNz

, (10)

where ñMS
i is the target manufactured density, and Nr and Nz are the total number of

points in the r and z grids, respectively. We define similar errors on the φ̃ and Ẽz, these

are

ε(φ̃) =

√∑
i,j |φ̃(zi, rj)− φ̃MS(zi, rj)|2

NrNz

, (11)

and

ε(Ẽz) =

√∑
i,j |Ẽz(zi, rj)− ẼMS

z (zi, rj)|2

NrNz

, (12)

respectively. We define an error on the ion distribution function

ε(F̃i) =

√√√√∑i,j,k,l |F̃i(v‖i, v⊥j, zk, rl)− F̃MS
i (v‖i, v⊥j, zk, rl)|2

Nv‖Nv⊥NrNz

, (13)

where Nv‖ and Nv⊥ are the total number of points in the v‖ and v⊥ grids, respectively.

The errors ε(ñs), ε(F̃i), and ε(F̃n) measure the average error per point in the array of

the numerical solution.
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As noted previously [3], Julia has support for elements of symbolic algebra via

the Symbolics.jl package [4, 5]. This allows us to partially automate the process of

calculating the manufactured sources. Currently, the Symbolics.jl package supports

symbolic differentiation, allowing for a great reduction in the effort of developing

manufactured solutions tests. Unfortunately, symbolic integration is not yet supported

by the Symbolics.jl package, so the target manufactured solutions must be chosen to

be sufficiently simple to integrate by hand.

We must construct a manufactured ion distribution function that satisfies the

necessary boundary conditions. We can achieve this by constructing a distribution

function from the velocity coordinate v‖ = ṽ‖ − αρ∗Ẽr/2bz, where α takes the values of

0 or 1 depending on the type of test carried out. We choose

F̃i =

[
H
(
v‖
)
vp‖

(
1

2
+

z̃

L̃z

)
n+(z̃, r̃) +H

(
−v‖

)
vp‖

(
1

2
− z̃

L̃z

)
n−(z̃, r̃)

+

(
1

2
− z̃

L̃z

)(
1

2
+

z̃

L̃z

)
n0(z̃, r̃)

]
exp

(
−v2‖ − ṽ2⊥

)
,

(14)

with p a power chosen to be either p = 2 or 4, and H (x) the Heaviside function, taking

the values 1 for x > 0 and 0 for x < 0. In the Julia implementation H (0) = 1/2. Note

that the forward going part of the distribution vanishes at z̃ = −Lz/2 and the backward

going part vanishes at z̃ = Lz/2 – ensuring that condition (6) holds. The velocity space

dependence is chosen so that ∂F̃i/∂ṽ‖ = 0 at ṽz(ṽ‖, z̃ = ±Lz/2, r̃) = 0. This also has

the effect that this manufactured solution marginally satisfies the Chodura condition

[6] for α = 0 and p = 2, and oversatisfies the Chodura condition for α = 0 and p = 4.

See appendix Appendix B for a further discussion. The option of using p = 4 has been

introduced to permit the later addition of a ṽ‖ diffusion operator into the drift kinetic

equation. For p = 2, the manufactured solution is only continuous at ṽ‖ = 0 up to

and including the first derivative in ṽ‖, whereas for p = 4 the manufactured solution is

continuous at ṽ‖ up to and including the third derivative in ṽ‖. In principle, we could

specify any functions for n+(z̃, r̃), n−(z̃, r̃) and n0(z̃, r̃) that satisfy the radial boundary

conditions.

To specify the ion density, needed to compute the potential via quasineutrality, we

compute the velocity integral of equation (14) analytically. The result is

ñi = an+(z̃, r̃)

(
1

2
+

z̃

L̃z

)
+ an−(z̃, r̃)

(
1

2
− z̃

L̃z

)
+ n0(z̃, r̃)

(
1

2
+

z̃

L̃z

)(
1

2
− z̃

L̃z

)
,

(15)

where a = 1/4 if p = 2 and a = 3/8 if p = 4. Finally, we specify forms for n± and n0

that allow us to study cases with periodic boundary conditions in r̃. These are

n± = exp

[(
ε+

1

2
∓ z̃

L̃z

)1/2
]
n0, (16)
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and

n0 = exp

[
1 +

1

20
sin

(
2πr̃

L̃r

)(
(1− α) cos

(
πz̃

L̃z

)
+ α

)]
, (17)

with L̃r = Lr/Lref .

4. Tests in 1D: neglecting the radial dimension

The simplest test of the model is to examine the case where we assume that the plasma

is homogeneous in the radial direction. Then, Ẽr = 0 and v‖ = ṽ‖. For this test, we

take r̃ = 0 and hence

n± = exp

[
1 +

(
ε+

1

2
∓ z̃

L̃z

)1/2
]
, (18)

with ε = 0.1, and

n0 = exp[1]. (19)

These functions are chosen so that Ẽz = O

((
ε+ 1/2∓ z̃/L̃z

)−1/2)
as z̃ → ±L̃z/2 –

this is inspired by the properties of collisional sheaths [7] and magnetic presheaths [6].

The parameter ε is required to prevent Ẽz diverging to infinity within the numerical

simulation domain. We take νr = νv = 0 for simplicity. In figure 2, we show the result

of carrying out this test for Ngrid = 17 points per element and equal number of elements

in each coordinate dimension. We take the time step to be ∆t̃ = 0.004/Nelement. We

note the excellent convergence shown in figure 2: the scaling of the numerical errors is

linear on a log-log plot, consistent with spectral accuracy.

The high-order spectral convergence seen in figure 2 is extremely sensitive to the

location in ṽ‖ where the boundary condition (14) is imposed. Recall that this location is

determined by the algebraic equation ṽz(ṽ‖, r̃) = 0, where ṽz is defined in equation (7).

We can see how a nonzero radial electric field interacts with the boundary condition (14)

by imposing a constant Ẽr = 0.5 in the manufactured solution test described above. We

take α = 1 so that the manufactured solution satisfies the ion wall boundary condition.

The results of this test are shown in figure 3. Note that we keep the same resolution

parameters as the test described in figure 2, and we keep the same formulae for n±, and

n0. Despite using the same numerical resolutions, figure 3 shows much larger numerical

errors than figure 2. We can see that the errors are reducing slowly with increasing

numerical resolution, but the trends of the errors are troubling, potentially indicating

that the errors will not reach machine precision levels even with very large resolution.

The errors in Ẽz are much larger than in the other fields, suggesting that any physics

simulation with a nonzero Ẽr would suffer severe numerical difficulties. This is consistent

with behaviour reported previously when a radial domain and nonzero Ẽr were included.

We can improve on the trend of the convergence shown in figure 3 by using low-

order elements. In figure 4 we show the results of the MMS test where we have used

Ngrid = 5 in the ṽ‖ and z̃ dimensions, and increased the number of elements to match

the number of points as in the cases in figure 3 for a fair comparison. We see that
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Figure 2: Manufactured solution test using the prescribed solution (14) as an initial

condition with consistent source Si computed analytically from equation (2). We take

Ẽr = 0 and neglect the radial dimension by taking n± and n0 as in equations (18) and

(19). We take ρ∗ = bz = T̃e = Ñe = 1.0. Each element has Ngrid = 17 points in and we

take the ṽ‖ and z̃ dimensions to have an equal number of elements Nelement. We take

the maximum ṽ‖ = 6. We run for 250×Nelement steps with ∆t̃ = 0.004/Nelement so that

the final t̃ = 1.

Figure 3: The same test a presented in figure 2 but with Ẽr = 0.5. We continue to

neglect other aspects of the radial dimension – only a constant Ẽr is imposed. This

is equivalent to shifting the ṽ‖ grid by an amount ρ∗Ẽr/2bz. Note that the spectral

convergence of the code is destroyed by this shift, with particularly troubling errors in

Ẽz, and no clear linear trend on the log-log scale.
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using low-order elements allows us to recover an almost linear scaling for the errors

on the log-log scale, although the absolute values of the errors are not improved for

the resolutions used here. It is expected that a low-order method should require more

points to reach the same level of residual errors. A further improvement can clearly be

Figure 4: The same test a presented in figure 3 but with Ngrid = 5 instead of Ngrid = 17.

Using these low-order elements, we recover an almost linear scaling of the errors,

suggesting that with adequate resolution, the nonspectral behaviour due to the wall

boundary condition can be avoided.

obtained by simply using higher resolution in the low-order scheme. We find that it is

most important to use high ṽ‖ resolution. In figure 5 we show the result of increasing

the number of ṽ‖ elements by a factor of 4 compared to the number of z̃ elements, at

fixed Ngrid = 5. The errors are reduced by almost two orders of magnitude. We adopt

this partition between spatial and velocity resolution when we simulate 2D cases.

5. Resolution of the inaccurate behaviour of spectral methods on

nonpolynomial functions

We can understand the behaviour seen in the 1D-1V manufactured solutions test if we

consider a simple test case. Noting that the manufactured solution involves the Heaviside

function H (x), we anticipate that numerical differentiation of the manufactured solution

is likely to introduce numerical artifacts into the solution. This is not entirely artificial,

as the real solution must obey the boundary condition (14), and so the real solution will

have a discontinuity in a higher order derivative when a spectral representation is used.

With this in mind, we consider the function

f(x) = H (x)x2, (20)
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Figure 5: The same test a presented in figure 3 but with Ngrid = 5 instead of Ngrid = 17

and Nelement(z̃) = Nelement(ṽ‖)/4.

represented on the Chebyshev polynomial colocation grid in a single element. We

then compare the numerical result of differentiating this function using the Chebyshev

transforms to the exact result

df

dx
=

{
0 x < 0

2x x ≥ 0
. (21)

This comparison is given in figure 6 using Ngrid = 9 points in the Chebyshev grid.

We note that whilst the first derivative is continuous at the origin x = 0, the second

derivative of the function f(x) is discontinuous at x = 0. The result is that the

differentiation using the spectral method introduces Gibbs phenomena everywhere

within the element. This phenomenon can be avoided if we take care to take the

derivative with information from the region of the function where f(x) > 0. This

could be achieved by using a cubic spline within the element to fit the function in the

appropriate region of x and then take the derivative to be that given by the cubic spline

fit. This is illustrated in figure 7, where the Dierckx package is used to compute a

derivative using only data from within the spline fit domain.

6. Complications arising in the 2D case

In the previous section, we proposed a solution to the problem of taking a derivative of a

function that has the form given by equation (20). Although we have not implemented

this solution in ‘moment kinetics’, this optimisation could increase the accuracy of

derivatives within the elements where a boundary condition is applied on internal points.

In this section we demonstrate that there is a more subtle problem in generalising this

solution to the 2D case where we must include a radial dimension r̃. Consider figure
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Figure 6: Simple test using the spectral method to calculate df/dx (df num) with a

comparison to the exact derivative (df exact). Note the presence of Gibbs ringing

because the element boundary does not coincide with where f(x) = 0.

Figure 7: Simple test using the spectral method to calculate df/dx (df num) with a

comparison to the exact derivative (df exact) and a derivative taken using a cubic

spline over the positive data (df spline).
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8. The figure shows the phase space of the distribution function Fi at the wall plates

z̃ = ±L̃z/2. We note that the radial electric field Ẽr(z̃, r̃) will have a different functional

form at each of the wall plates, and that the sign of the ṽ‖ axis depends on whether one

inspects the upper or lower wall plate in z̃. In the 1D problem previously considered in

this report, we have attempted to address the situation where the contour of ṽz(ṽ‖, r̃) = 0

is a straight line in the (ṽ‖, r̃) plane, parallel to the r̃ axis crossing r̃ = 0 at a fixed value

of ṽ‖ 6= 0. In the 2D case the ṽz(ṽ‖, r̃) = 0 contour may take a nontrivial form, meaning

that we must take care when taking r̃ derivatives of F̃i. This is because we have observed

that it is important to avoid taking a derivative on F̃i data that is enforced to be zero

by the boundary condition, and a radial derivative in the region of ṽ‖ near the boundary

will necessarily do this using the default spectral element method.

The resolution of this problem is not obvious. One possible solution would be to use

the cubic spline method proposed in the last section for both the r̃ and ṽ‖ coordinates

separately. However, care would be required to make sure that multiple crossings of

the ṽz(ṽ‖, r̃) = 0 contour did not occur in each r̃ element. This may be difficult to

ensure in a turbulent problem when oscillations in Ẽr in r̃ should be expected. Another

solution could be to change from ṽ‖ to ṽz coordinates when solving the ion drift kinetic

equation. This is also problematic for an explicit code, because changing to these

coordinates would require the knowledge of ∂Ẽr/∂t̃ before integrating F̃i(t̃
n) in time to

find F̃i(t̃
n+1). A final solution could be to regrid the distribution function ṽ‖ elements

near the ṽz(ṽ‖, r̃) = 0 boundary so that the radial derivatives could be computed by first

taking ∂F̃i/∂r̃|ṽz and then use the chain rule to compute ∂F̃i/∂r̃|ṽ‖ . In light of the fact

that Ẽr varies with z̃, the regriding must necessarily be local to each of the wall plates.

Whether or not this method will improve the convergence in practice is not clear until

an implementation is attempted.

Finally, we comment that the convenient assumption of ∂F̃i/∂ṽ‖ on ṽz(ṽ‖, r̃) = 0

that was built into the manufactured solution (14) also implies that ∂F̃i/∂ṽ‖ = 0 on

ṽz(ṽ‖, r̃) = 0. This fact means that for solutions of the form of (14) we are able to treat

the r̃ and ṽ‖ derivatives using the same boundary conditions in the elements including

the ṽz(ṽ‖, r̃) = 0 contour.

7. Extending the 1D test to 2D whilst avoiding discontinuities off element

boundaries

Having developed some intuition for the limitations inherent in the spectral-element

scheme, it is interesting to consider a test of the 2D model that avoids the problems

associated with having Ẽr 6= 0 at the wall boundaries. Choosing α = 0 and p = 4

in the manufactured solution (14) provides such a test. The distribution function is

constructed with H
(
ṽ‖
)
, meaning that the discontinuities in the ṽ‖ derivatives of the

function are on element boundaries. With the choice of α = 0, using the quasineutrality

relation (3) , and the definition (4), one can use equations (15)-(17) to verify that Ẽr = 0

at z̃/L̃z = ±1/2. This ensures that the manufactured solution is consistent with the
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increasing

Figure 8: Illustration of the form of the distribution function at z̃ = ±Lz/2, as a

consequence of the wall boundary condition (6). The fact that Ẽr = Ẽr(r̃) at z̃ = ±Lz/2
means that the contour at which F̃i = 0 may not be a straight line in the (ṽ‖, r̃)

plane. Note that because Ẽr(r̃) does not necessarily have the same functional form at

z̃ = ±Lz/2, this phase space map will be different at each of z̃ = ±Lz/2.

wall boundary condition (14).

Choosing α = 0 and p = 4, the manufactured solution (14) has none of the features

that caused poor numerical convergence in the 1D test cases with a nonzero Ẽr. The

radial electric field is allowed to be nonzero in the plasma, but it vanishes at the wall,

and the distribution function has no discontinuous derivatives except at v‖ element

boundaries. Therefore, we might expect that numerical simulations of this manufactured

solution should show the same convergence properties as in figure 2. However, we find

that this manufactured solution is unstable in the absence of numerical diffusion, as we

now discuss.

In the 1D case described in figure 2, we were able to obtain good numerical

convergence for relatively few elements in the spatial and velocity dimensions. This

is not observed in the 2D case. Instead, regardless of the resolution, if νr = 0, we

typically see an exponential growth in the error with time, coinciding with the growth

of oscillatory structures in Ẽr and Ẽz. The simulation eventually crashes when these

structures become large enough to force the pressure to be negative.

To illustrate this behaviour with a concrete example, we choose νr = νv = 0,

ρ∗ = bz = T̃e = Ñe = 1.0, Nelement = 16 and Ngrid = 5 for the spatial (z̃, r̃) dimensions,
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and we take Nelement = 64 and Ngrid = 5 for the ṽ‖ dimension. These resolution choices

are based on the desire to use a lower order method in (z̃, r̃, ṽ‖) as discussed in section

4. In figure 9, we show the results of integrating to a time t̃ = 0.65 with a timestep

size of ∆t̃ = 0.001. We find exponentially growing errors between the numerical and

symbolic functions, and a wave-like structure in the (z̃, r̃) plane. This may indicate the

presence of a physical instability to the target solution (15). We note that increasing

the (z̃, r̃) resolutions causes the spatial period of the wave form to get smaller and the

growth of the errors to be faster. Typically the wave occurs on a scale comparable to the

individual elements. This may be consistent with the fact that drift-kinetic instabilities

have no cut-off at high wavenumbers.

A full demonstration of the nature of the instability seen in figure 9c requires

a micro-stability calculation around the equilibrium (14). This exercise is left for

future work. For now, we carry out the manufactured solutions test for the case

with α = 0, p = 4, taking Ngrid = 5 for the z̃, r̃ and ṽ‖ dimensions, scanning in

Nelement(z̃) = Nelement(r̃) = Nelement(ṽ‖)/4 taking ∆t̃ = 0.016/Nelement(z̃) and evolving

the solution until a time of t̃ = 1. We suppress the instability using radial diffusion with

νr = 0.01, keeping νv = 0. The result of this scan is shown in figure 10. We can see

that the radial numerical dissipation has allowed us to obtain a performance in this 2D

example that is comparable to the performance obtained in 1D in figure 5.

8. The 2D MMS test where Ẽr 6= 0 at the wall

We are now in a position to turn to the MMS test where we allow Ẽr to be non-

zero at the wall boundaries. This means that we choose α = 1 in the manufactured

solution (14). We continue to take p = 4 and ρ∗ = bz = T̃e = Ñe = 1.0 as in the

other tests presented in this report. We use identical numerical resolutions as for the

test presented in figure 10, to generate a like-for-like comparison. The result is shown

in figure 11, which demonstrates that the numerical implementation of the model is

adequate provided that sufficient numerical resolution and low-order elements are used

to resolve the physical phenomena of interest. Here, we have applied radial numerical

dissipation with νr = 0.01 (and νv = 0.0) to suppress the instability described in the

last section.

It is interesting to plot the ion distribution function F̃i(ṽ‖, r̃) at the wall boundary

to connect to the discussion in section 6. Figure 12 shows a sinusoidal structure in

the distribution function which corresponds to the form of v‖ = ṽ‖ − ρ∗Ẽr/2bz. The

distribution is plotted at t̃ = 1 for the highest resolution given in figure 11. It is clear that

sufficient resolution must be supplied to adequately resolve the v‖ = 0 contour using the

rectangular (ṽ‖, r̃) spectral-element grid. Whether or not the numerical optimisations

described in section 6 are ultimately required will be determined by experience using

the current numerical implementation in situations where the model includes radial

inhomogeneity and Dirichlet boundary conditions. We will explore this question with

these features in future work.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Plots of ε(f̃i), ε(Ẽr), and Ẽr at t̃ = 0.65 for the manufactured solutions test

described in section 7 using (14). Note the exponential growth in the errors (plots (a)

& (b)) suggestive of an instability, and (c) the wave-like structure forming in Ẽr. When

radial numerical diffusion is imposed with νr = 0.01 (d), the wave is stabilised and the

simulation can be extended to t̃ = 1.0, with minimal errors ((e) & (f)).
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Figure 10: The MMS test with α = 0, p = 4, ρ∗ = bz = T̃e = Ñe = 1.0, with Ngrid = 5

and Nelement(z̃)Nelement(r̃) = Nelement(ṽ‖)/4. Numerical diffusion in the radial direction

is applied, with νr = 0.01, and νv = 0. Performance comparable to that shown in figure

5 is obtained at Nelement(z̃) = 16.

Figure 11: The MMS test with α = 1, p = 4, ρ∗ = bz = T̃e = Ñe = 1.0, with

Ngrid = 5 and Nelement(z̃)Nelement(r̃) = Nelement(ṽ‖)/4. Performance is demonstrated

that is comparable to that shown in figure 10.
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Figure 12: The ion distribution function F̃i as a function of (ṽ‖, r̃) at the wall boundary

z̃/L̃z = −1/2. Compare to figure 8.

9. Convergence of physical solutions sourced by a constant ionisation rate:

a cautionary tale

So far in this report, we have considered manufactured solutions where the distribution

function is carefully chosen to satisfy the boundary conditions and source an electric

field that does not diverge anywhere. However, in sheath problems it is typical for the

electric field to diverge near the wall [6].

In this section, we examine simulations where the source is a constant, and uniform

fuelling of ions through electron-neutral ionisation collisions. We take the source

function to be

Si = 2 exp[−4ṽ2‖]. (22)

We consider a 1D simulation where (14) is the initial condition (with α = 0) and

p = 4, ρ∗ = bz = T̃e = Ñe = 1.0, Ngrid(r̃) = Nelement(r̃) = 1, Ngrid = 5 for the

z̃ and ṽ‖ dimensions, and take Nelement(z̃) = Nelement(ṽ‖)/4. We take νr = 0 and

νv = 0.01. We run for 1250Nelement(z̃) steps with ∆t̃ = 0.016/Nelement(z̃). The total

normalised time of t̃ = 20 was found to be adequate to reach a steady-state solution.

In figure 13, we show the result of scanning in Nelement(z̃) = Nelement(ṽ‖)/4. Figure

13a shows that φ̃ converges in the domain. The slowest convergence is observed at the

wall boundaries: figure 13b indicates that φ̃ will converge with sufficient z̃ resolution.

However, figure 13c Ẽz is diverging near the wall boundaries, although good convergence

is observed in most of the domain. Figure 13d shows that Ẽz will become infinite at the

wall as Nelement(z̃) → ∞. The fact that φ̃ does appear to converge indicates that the

residual errors in the numerical approximation of the solution are reducing, and so the

numerical solution can plausibly represent a physical solution where φ̃ ∝
(

1/2∓ z̃/L̃z
)q
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(a) (b)

(c) (d)

Figure 13: Plots showing the behaviour of the electrostatic potential φ̃ and the electric

field Ẽz in 1D simulations where the source of ions is given by equation (22) and the

initial condition is given by (14) with r̃ = 0, α = 0 p = 4, and ρ∗ = bz = T̃e = Ñe = 1.0.

We take νr = 0 and νv = 0.01. We take Ngrid = 5 for both the z̃ and ṽ‖ dimensions, with

Nelement(z̃) = Nelement(ṽ‖)/4, and we use ∆t̃ = 0.016/Nelement(z̃) with a total normalised

time of t̃ = 20. The curves are labelled by Nelement(z̃). Note that whilst φ̃ appears to

be converging for increasing resolution, Ẽz is diverging at the wall boundaries.

as z̃L̃z → ±1/2, with q real and satisfying 1 > q > 0. The fact that Ẽz diverges in these

solutions should be taken into account when making benchmarks or comparisons.

10. Discussion

In this report we have explored in detail the convergence of the spectral-element

numerical implementation of the drift-kinetic ‘moment kinetics’ model. We have focused

on the difficulties in solving the ion drift kinetic equation in the standard drift kinetic

representation in 1D-1V (z̃, ṽ‖) and 2D-1V (z̃, r̃, ṽ‖) cases with wall boundary conditions.

We have found that the most robust convergence in our manufactured solutions test can

be achieved using low-order elements and high ṽ‖ resolution. We have demonstrated that

the ion drift kinetic 2D1V model shows only small residual errors when a radial electric
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field is included in the model, provided that adequate radial numerical dissipation is

imposed to stabilise a wave-like instability. Increasing the size of the radial variation

in the manufactured solutions requires a greater level of radial numerical dissipation

for a successful test. This is consistent with the wave-like instability having a physical

drive in the imposed manufactured solution. In addition to the manufactured solution

tests, we have also shown the result of evolving the ion distribution function to steady

state using a constant, uniform ionisation source. These simulations require the use of

parallel velocity numerical dissipation to avoid oscillations in the profiles as a function

of z̃, perhaps due to phase mixing or a bump-on-tail instability.

Future work will involve exploring the addition of radial inhomogeneity, vertical

inhomogeneity, and a hierarchy of ion-ion collision operators. The ion-ion collision

operator is crucial for providing a physical justification for the numerical diffusion

imposed in the simulations described here. Radial diffusion naturally arises from ion-ion

collisions interupting Larmor and radial magnetic drift orbits, whereas parallel velocity

diffusion arises directly from pitch angle scattering. As our simulations here have no

clear reference length scale, it is difficult to estimate whether or not the numerical

diffusion that we have imposed this consistent with the physical rate of collisions in a

realistic device – realistic geometry and more accurate collision models will address this

issue.

Appendix A. Supporting documentation for the manufactured solutions

tests

The simulations used to create the data presented in this report were gen-

erated by the branch https://github.com/mabarnes/moment_kinetics/compare/

radial-vperp-standard-DKE-Julia-1.7.2-mpi, with the latest commit at the time

of writing being 15d4b3a.

In this appendix we give URL links to the input files used to generate the simulation

data. To run a simulation use the following command

$ julia -O3 --project run_moment_kinetics.jl input.toml

To post process the simulation data and to generate the plots in this report run

the following commands (after selecting the appropriate test options):

$ julia -O3 --project run_MMS_test.jl

$ julia -O3 --project run_evolve_convergence_test.jl

In supplementary data (data/input_file_data) we include input files simulations

presented here and a script for plotting figures 6 and 7 (data/scripts/run_derivatives_test.jl).

The simulation inputs used to generate figure 2 were

1D-wall_MMS_nel_r_1_z_2_vpa_2_vperp_1

1D-wall_MMS_nel_r_1_z_4_vpa_4_vperp_1

https://github.com/mabarnes/moment_kinetics/compare/radial-vperp-standard-DKE-Julia-1.7.2-mpi
https://github.com/mabarnes/moment_kinetics/compare/radial-vperp-standard-DKE-Julia-1.7.2-mpi
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1D-wall_MMS_nel_r_1_z_8_vpa_8_vperp_1

1D-wall_MMS_nel_r_1_z_16_vpa_16_vperp_1.

The simulation inputs used to generate figure 3 were

1D-wall_MMSEr_nel_r_1_z_2_vpa_2_vperp_1

1D-wall_MMSEr_nel_r_1_z_4_vpa_4_vperp_1

1D-wall_MMSEr_nel_r_1_z_8_vpa_8_vperp_1

1D-wall_MMSEr_nel_r_1_z_16_vpa_16_vperp_1.

The simulation inputs used to generate figure 4 were

1D-wall_MMSEr_ngrid_5_nel_r_1_z_8_vpa_8_vperp_1

1D-wall_MMSEr_ngrid_5_nel_r_1_z_16_vpa_16_vperp_1

1D-wall_MMSEr_ngrid_5_nel_r_1_z_32_vpa_32_vperp_1

1D-wall_MMSEr_ngrid_5_nel_r_1_z_64_vpa_64_vperp_1.

The simulation inputs used to generate figure 5 were

1D-wall_MMSEr_ngrid_5_nel_r_1_z_8_vpa_32_vperp_1

1D-wall_MMSEr_ngrid_5_nel_r_1_z_16_vpa_64_vperp_1

1D-wall_MMSEr_ngrid_5_nel_r_1_z_32_vpa_128_vperp_1

1D-wall_MMSEr_ngrid_5_nel_r_1_z_64_vpa_256_vperp_1.

The simulation inputs used to generate figure 9 were

2D-wall_MMS_ngrid_5_nel_r_16_z_16_vpa_64_vperp_1

2D-wall_MMS_ngrid_5_nel_r_16_z_16_vpa_64_vperp_1_diss.

The simulation inputs used to generate figure 10 were

2D-wall_MMS_ngrid_5_nel_r_2_z_2_vpa_8_vperp_1_diss

2D-wall_MMS_ngrid_5_nel_r_4_z_4_vpa_16_vperp_1_diss

2D-wall_MMS_ngrid_5_nel_r_8_z_8_vpa_32_vperp_1_diss

2D-wall_MMS_ngrid_5_nel_r_16_z_16_vpa_64_vperp_1_diss.

The simulation inputs used to generate figure 11 were

2D-wall_MMSEr_ngrid_5_nel_r_2_z_2_vpa_8_vperp_1_diss

2D-wall_MMSEr_ngrid_5_nel_r_4_z_4_vpa_16_vperp_1_diss

2D-wall_MMSEr_ngrid_5_nel_r_8_z_8_vpa_32_vperp_1_diss

2D-wall_MMSEr_ngrid_5_nel_r_16_z_16_vpa_64_vperp_1_diss.

The simulation inputs used to generate figure 12 were

2D-wall_MMSEr_ngrid_5_nel_r_16_z_16_vpa_64_vperp_1_diss.

The simulation inputs used to generate figure 13 were

1D-wall_evolve_ngrid_5_nel_r_1_z_8_vpa_32_vperp_1

1D-wall_evolve_ngrid_5_nel_r_1_z_16_vpa_64_vperp_1

1D-wall_evolve_ngrid_5_nel_r_1_z_32_vpa_128_vperp_1

1D-wall_evolve_ngrid_5_nel_r_1_z_64_vpa_256_vperp_1.
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Appendix B. Oversatisfying the Chodura condition in the Wall BC MMS

test

For a stable sheath to exist at the wall boundary of a 2D configuration where

Er = 0 on the wall boundary, the ion distribution function at the sheath entrance

(z = ±Lz/2) must satisfy the kinetic Chodura condition [6]. The Chodura condition is

the requirement that

Z

∫
v2BFi(z = zw,v)

v2‖
d3v ≤ Te

e

dne
dφ

∣∣∣
φ=φw

, (B.1)

where Z is the ion charge and vB =
√
ZTe/mi is the Bohm velocity. The integration

range in (B.3) is taken appropriately depending on which of the z = ±Lz/2 boundaries

are under consideration.

We now consider the manufactured solution (14). We also assume Te = Ti = Tref
and Z = 1. Note that for a Boltzmann electron response the quantity

Te
e

dne
dφ

∣∣∣
φ=φw

= ni(z = zw). (B.2)

In terms of normalised variables, the Chodura condition thus becomes the constraint

1

2

∫ ∫
F̃i(z = zw)

ṽ2‖

2ṽ⊥√
π
dṽ⊥dṽ‖ ≤ ñi(z = zw), . (B.3)

We choose to inspect the condition at z = Lz/2. We must evaluate the integral

1√
π

∫ ∞
0

exp
(
−ṽ2‖

)
dṽ‖ =

1

2
. (B.4)

With this, we see that

1

2

∫ ∫
F̃i(z = Lz/2)

ṽ2‖

2ṽ⊥√
π
dṽ⊥dṽ‖ =

1

4
n+(r). (B.5)

Comparing to the result for the ion density, equation (15), we see that the condition

(B.3) is satisfied with the equality when α = 0 and p = 2 – in other words, the condition

is marginally satisfied.

It is interesting to try to construct a distribution function where the condition (B.3)

is oversatisfied. One candidate distribution function is (14) with α = 0 and p = 4. Using

the integrals
1√
π

∫ ∞
0

ṽ2‖ exp
(
−ṽ2‖

)
dṽ‖ =

1

4
, (B.6)

and
1√
π

∫ ∞
0

ṽ4‖ exp
(
−ṽ2‖

)
dṽ‖ =

3

8
, (B.7)
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we find the results (15) (for p = 4) and

1

2

∫ ∫
F̃i(z = Lz/2)

ṽ2‖

2ṽ⊥√
π
dṽ⊥dṽ‖ =

1

8
n+(r). (B.8)

These results allow us to see that the Chodura condition is oversatisfied, by virtue of

the fact that n+/8 < 3n+/8.

We can also evaluate the particle fluxes, with the results that when p = 4

Γ̃−Lz/2 =
bzn−(r)√

π
, and Γ̃Lz/2 =

bzn+(r)√
π

. (B.9)

To evaluate the fluxes, we have used the integrals

1√
π

∫ ∞
0

ṽ‖ exp
(
−ṽ2‖

)
dṽ‖ =

1

2
√
π
, (B.10)

1√
π

∫ ∞
0

ṽ3‖ exp
(
−ṽ2‖

)
dṽ‖ =

1

2
√
π
, (B.11)

and
1√
π

∫ ∞
0

ṽ5‖ exp
(
−ṽ2‖

)
dṽ‖ =

1√
π
. (B.12)
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