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1 Introduction

In this report, we extend the class of constraint preconditioners from symmetric problems to non-symmetric
problems. We consider the theoretical properties and demonstrate their effectiveness on a set of test problems
inspired by the Hasegawa-Wakatani problem.

2 Constraint-style preconditioners

Let us assume that

A =
(

H C
B −D

)
, (1)

where H ∈ Rn×n , B ,C T ∈ Rm×n and D ∈ Rm×m subject to m ≤ n. We always assume that A is non-singular. We
consider the use of a preconditioner of the form

P =
(

G C
B −D

)
, (2)

where G ∈Rn×n .

2.1 Constraint-style preconditioners: symmetric case

The case when D = 0, B =C T and H = H T was analysed by Keller, Gould and Wathen [6]:

Theorem 2.1. Let A ∈R(n+m)×(n+m) be a symmetric and indefinite matrix of the form

A =
(

H B T

B 0

)
,

where H ∈ Rn×n is symmetric and B ∈ Rm×n is of full rank. Assume Z is an n × (n −m) basis for the nullspace of
B. Preconditioning A by a matrix of the form

P =
(

G B T

B 0

)
,

where G ∈Rn×n is symmetric, and B ∈Rm×n is as above, implies that the matrix P −1A has
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1. an eigenvalue at 1 with multiplicity 2m;

2. n −m eigenvalues λ which are defined by the generalized eigenvalue problem

Z T H Z xz =λZ T G Z xz . (3)

This accounts for all of the eigenvalues.
Assume, in addition, that Z T G Z is positive definite. Then P −1A has the following m + i + j linearly inde-

pendent eigenvectors:

1. m eigenvectors of the form
[
0T , yT

]T
corresponding to the eigenvalue 1 of P −1A ;

2. i (0 ≤ i ≤ n) eigenvectors of the form
[
wT , yT

]T
corresponding to the eigenvalue 1 of P −1A , where the

components w arise from the generalized eigenvalue problem H w =Gw ;

3. j
(
0 ≤ j ≤ n −m

)
eigenvectors of the form

[
xT

z ,0T , yT
]T

corresponding to the eigenvalues of P −1A note
equal to 1, where the components xz arise from the generalized eigenvalue problem Z T H Z xz =λZ T G Z xz

with λ 6= 1.

The case when when B =C T , H = H T and D symmetric and positive definite has been analysed by a num-
ber of different authors [2, 3, 4] and can be summarised in the following theorems:

Theorem 2.2. Let A ∈R(n+m)×(n+m) be a symmetric and indefinite matrix of the form

A =
(

H B T

B −D

)
,

where H ∈Rn×n is symmetric, B ∈Rm×n is of full rank and D ∈Rm×m is symmetric and positive definite. Precon-
ditioning A by a matrix of the form

P =
(

G B T

B −D

)
,

where G ∈Rn×n is symmetric, and B ∈Rm×n and D ∈Rm×m are as above, implies that the matrix P −1A has

1. an eigenvalue at 1 with multiplicity m;

2. n eigenvalues λ which are defined by the generalized eigenvalue problem(
H +B T D−1B

)
x =λ(

G +B T D−1B
)

x. (4)

This accounts for all of the eigenvalues.

Dollar et al. [4] have extended Theorem 2.2 to the case when D is symmetric and positive semi-definite:

Theorem 2.3. Let A ∈R(n+m)×(n+m) be a symmetric and indefinite matrix of the form

A =
(

H B T

B −D

)
,

where H ∈Rn×n is symmetric, B ∈Rm×n is of full rank and D ∈Rm×m is symmetric and positive semi-definite with
rank l , where 0 < l < m. Assume that D is factored as D = ESE T , where E ∈ Rm×l and S ∈ Rl×l is nonsingular,
F ∈ Rm×(m−l ) is a vasis for the nullspace of E T and

[
E F

]
is orthogonal. Let the columns of N ∈ Rn×(n−m+l )

span the nullspace of F T B. Preconditioning A by a matrix of the form

P =
(

G B T

B −D

)
,

where G ∈Rn×n is symmetric, and B ∈Rm×n and D ∈Rm×m are as above, implies that the matrix P −1A has

1. an eigenvalue at 1 with multiplicity 2m − l ;

2. n −m + l eigenvalues λ which are defined by the generalized eigenvalue problem

N T (
H +B T ES−1E T B

)
N z =λN T (

G +B T ES−1E T B
)

N z. (5)

This accounts for all of the eigenvalues.
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2.2 Constraint-style preconditioners: nonsymmetric case

We will now extend Theorems 2.1 and 2.2 to the non-symmetric case.

2.3 D non-singular

Theorem 2.4. Let A ∈R(n+m)×(n+m), m ≤ n, be a matrix of the form

A =
(

H C
B −D

)
,

where H ∈ Rn×n , B ∈ Rm×n and C ∈ Rn×m are of full rank and D ∈ Rm×m is non-singular. Preconditioning A by
a matrix of the form

P =
(

G C
B −D

)
,

where G ∈Rn×n , and B ∈Rm×n , C ∈Rn×m and D ∈Rm×m are as above, implies that the matrix P −1A has

1. an eigenvalue at 1 with multiplicity m;

2. n eigenvalues λ which are defined by the generalized eigenvalue problem(
H +C D−1B

)
x =λ(

G +C D−1B
)

x. (6)

This accounts for all of the eigenvalues.

Proof. The eigenvalues of P −1A may be derived by considering the generalized eigenvalue problem(
H C
B −D

)(
x
y

)
=λ

(
G C
B −D

)(
x
y

)
(7)

Premultiplying (7) by the non-singular matrix (
I C D−1

0 −D−1

)
gives the equivalent generalized eigenvalue problem(

H +C D−1B 0
−D−1B I

)(
x
y

)
=λ

(
G +C D−1B 0
−D−1B I

)(
x
y

)
Thus, there are m eigenvalues equal to 1 and the remaining n eigenvalues are defined by the generalized eigen-
value problem (

H +C D−1B
)

x =λ(
G +C D−1B

)
x. (8)

2.4 D = 0

Theorem 2.5. Let A ∈R(n+m)×(n+m), m ≤ n, be a matrix of the form

A =
(

H C
B 0

)
,

where H ∈ Rn×n , and B ∈ Rm×n and C ∈ Rn×m are of full rank. Let the columns of ZB ∈ Rn×(n−m) span the
nullspace of B and the columns of ZC ∈Rn×(n−m) span the nullspace of C T . Preconditioning A by a matrix of the
form

P =
(

G C
B 0

)
,

where G ∈Rn×n , and B ∈Rm×n , C ∈Rn×m are as above, implies that the matrix P −1A has

3



1. 2m eigenvalues of equal to 1;

2. the remaining n −m eigenvalues, λ, are defined by the generalized eigenvalue problem

Z T
C H ZB xz =λZ T

C G ZB xz . (9)

This accounts for all of the eigenvalues.

Proof. The eigenvalues of P −1A may be derived by considering the generalized eigenvalue problem(
H C
B 0

)(
x
y

)
=λ

(
G C
B 0

)(
x
y

)
, (10)

where λ ∈C, λ ∈Cn and λ ∈Cm . Let

B =UB
(
ΣB 0

)( Y T
B

Z T
B

)
, C T =UC

(
ΣC 0

)( Y T
C

Z T
C

)
be the singular-value decompositions of B and C with YB ,YC ∈ Rn×m . Note that ZB , ZC ∈ Rn×(n−m) span the
nullspace of B and C T , respectively.

If we substitute in x = YB xY +ZB xZ into (10) and premultiply the equation by the nonsingular matrix Y T
C 0

Z T
C 0
0 I

 ,

where YB and YC are n by m matrices whose columns span the range space of B T and C , respectively, then we
obtain  Y T

C HYB Y T
C H ZB Y T

C C
Z T

C HYB Z T
C H ZB 0

BYB 0 0

 xY

xZ

y

=λ
 Y T

C GYB Y T
C G ZB Y T

C C
Z T

C GYB Z T
C G ZB 0

BYB 0 0


︸ ︷︷ ︸

P̃

 xY

xZ

y

 . (11)

If we pre-multiply (11) by P̃ −1, then we obtain an equivalent eigenvalue problem of the form I 0 0
Θ1 (Z T

C G XB )−1Z T
C H ZB 0

Θ2 Θ3 I

 xY

xZ

y

=λ
 xY

xZ

y

 , (12)

where the exact definition of Θ1, Θ2 and Θ3 are not important for the proof. Hence, P −1A has 2m eigenval-
ues equal to 1 and the remaining eigenvalues are defined by the eigenvalue problem generalized eigenvalue
problem (9).

We note that when A and P are no-longer symmetric, some of the non-unitary eigenvalues may be com-
plex.

3 Implicit-factorization constraint preconditioners

In [4], the authors derive a number of factorizations for generating symmetric constraint preconditioners. In
the following, we will assume that the rows and columns of H have been ordered in such a manner that we can
partition B ∈Rm×n , C ∈Rn×m , G ∈Rn×n and H ∈Rn×n as

B = (
B1 B2

)
, (13)

C =
(

C1

C2

)
, (14)

G =
(

G1,1 G1,2

G2,1 G2,2

)
, (15)

H =
(

G1,1 G1,2

G2,1 G2,2

)
, (16)
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where B1 ∈ Rm×m and C1 ∈ Rm×m are non-singular, G1,1 ∈ Rm×m and H1,1 ∈ Rm×m . For coupled multi-physics
problems, this ordering is implicitly available through the nature of the problems. As in [4], we form factors of
the form

L =
 L1,1 L1,2 L1,3

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

 ,

N =
 N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N3,1 N3,2 N3,3

 ,

R =
 R1,1 R1,2 R1,3

R2,1 R2,2 R2,3

R3,1 R3,2 R3,3


set some of the sub-blocks to zero whilst assuming other sub-blocks are invertible and relatively easy to solve
with, and the sub-blocks are such that the product LN R forms a non-symmetric constraint preconditioner of
the form

P =
(

G C
B −D

)
.

Without loss of generality, we fix L1,3, L2,2, L2,3, R2,2, R3,1 and R3,2 to be non-zero with L2,2 and R2,2 both non-
singular. We use a Matlab script (see Appendix A) to generate all 62 possible implicit-factorization constraint
preconditioners. We note that if B = C T , R3,1 = B1, R3,2 = B2, L1,3 = B T

1 and L2,3 = B T
2 , then we obtain the

families given in [4].
Some of the non-symmetric implicit factorizations are only suitable for the case D = 0, for example

L =
 L1,1 0 L1,3

L2,1 L2,2 L2,3

L3,1 0 0

 ,

N =
 0 0 N1,3

0 N2,2 N2,3

N3,1 N3,2 N3,3

 ,

R =
 R1,1 R1,2 R1,3

0 R2,2 0
R3,1 R3,2 0


subject to

L3,1N1,3R3,1 = B1,

B1R−1
3,1R3,2 = B2,

L1,3N3,1R1,3 = C1,

L2,3L−1
1,3C1 = C2

produces

G1,1 = L1,1N1,3R3,1 +L1,3N3,3R3,1 +L1,3N3,1R1,1,

G1,2 = L1,1L−1
3,1B2 +L1,3N3,3R3,1B−1

1 B2 +C1R−1
1,3R1,2 +L1,3N3,2R2,2,

G2,1 = L2,1L−1
3,1B1 +L2,2N2,3R3,1 +C2C−1

1 L1,3N3,3R3,1 +C2R−1
1,3R1,1,

G2,2 = L2,2N2,2R2,2 +C2C−1
1 L1,3N3,2R2,2 +L2,1L−1

3,1B2 +C2C−1
1 L1,3N3,3R3,1B−1

1 B2

+L2,2N2,3R3,1B−1
1 B2.
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There are also some that are only suitable for non-singular D, for example,

L =
 L1,1 0 L1,3

L2,1 L2,2 L2,3

L3,1 0 0

 ,

N =
 0 0 N1,3

0 N2,2 N2,3

N3,1 N3,2 N3,3

 ,

R =
 R1,1 R1,2 0

0 R2,2 0
R3,1 R3,2 R3,3


subject to

L3,1N1,3R3,1 = B1,

B1R−1
3,1R3,2 = B2,

L3,1N1,3R33 = D,

−(
L1,1N1,3 +L1,3N3,3

)
R3,1 = C1D−1B1,

−(
L2,1N1,3 +L2,3N3,3 +L2,2N2,3

)
R3,1R3,1 = C1D−1B1

produces

G1,1 = −C1D−1B1 +L1,3N3,1R1,1,

G1,2 = −C1D−1B2 +
(
G1,1 +C1D−1B1

)
R−1

1,1R1,2 +L1,3N3,2R2,2,

G2,1 = −C2D−1B1 +L2,3N3,1R1,1,

G2,2 = L2,2N2,2R2,2 +L2,3N3,2R2,2 +C2C−1B2 +L2,3N3,1R1,2.

4 Numerical tests

We will consider a test problem inspired by the 2D problem known as the Hasegawa-Wakatani problem, which
is similar to incompressible fluid dynamics:

∂n

∂t
= −{φ,n}+α(φ−n)−κ∂φ

∂z
+Dn∇2

⊥n

∂ω

∂t
= −{ω,n}+α(ω−n)+Dω∇2

⊥ω

∇2φ = ω .

Here n is the plasma number density, ω := ~b0 · ∇×~v is the vorticity with ~v being the ~E × ~B drift velocity in
a constant magnetic field and ~b0 is the unit vector in the direction of the equilibrium magnetic field. The
operator {·, ·} is the Poisson bracket.

The discretized version of the problem is described in [1] but we will consider a split implicit-explicit
method where the Jacobian that needs solving at each Newton iteration is of the following form:

J =
 A 0 B

0 C E
−M K 0

 , (17)

where the constituent matrices are the following

A = M +∆t (−DωK ) ,

B = α∆t M ,

C = ∆t (−αM) ,

E = M +∆t (αM −DnK ) .
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Here K and M are the stiffness and mass matrices, respectively. Note that we have permuted the rows and
columns so the matrix will not directly map to that given in [1]. We tried to use BOUT++[5] directly to solve
the Hasegawa-Wakatani problem and test our preconditioners but using PETSc with a constraint and precon-
ditioner resulted in runtime errors, which might be due to the manner that PETSc was installed on the Hartree
Centre’s Scafell Pike cluster. Instead, we took advantage of the situation and created mass and stiffness matri-
ces that use a finite-element discretization instead of finite difference. We used the same values of constants as
used within the BOUT++ implementation and set ∆t to be equal to the inverse of the number of rows in M .

We will compare the following preconditioning strategies:

• A block-diagonal preconditioner

PD =
 A 0 0

0 C 0
0 0 I

 ;

• A constraint preconditioner with G = I

P1 =
 I 0 B

0 I E
−M K 0

 ;

• A constraint preconditioner with G2,2 = I and the remainder of G zero:

P2 =
 0 0 B

0 I E
−M K 0

 ;

• A constraint preconditioner with G2,2 =C and the remainder of G zero:

P3 =
 0 0 B

0 C E
−M K 0

 ;

• An implicit-factorization constraint preconditioner with:

L =
 −I 0 I

−DωDn∆t
α K M−1K M−1 I 1

α∆t

(
(1+αγ)M −γDnK

)
M−1

I 0 0

 ,

N =
 0 0 −M

0 − 1
α∆t

(
(1+αγ)M −γDnK

)
M−1K Dω(1+α∆t )

α K
α∆t M K −γDωK

 ,

R =
 0 −Dω

α M−1K M−1K I
0 I 0
I −M−1K 0

 .

Note that, with the exception of preconditioner P1, we do not explicitly form the preconditioner and we in-
stead apply them by exploiting the block structures. In Tables 1 and 2, we report the number of iterations
to reduce the relative residual by a factor of 10−6 and the times for solving our test problems using Matlab’s
GMRES function with no restarting. Note that the preconditioners have not been optimized with respect to
time so these values are only indicative. Preconditioners P1 and P5 produce the best iteration counts but we
note that for larger problems, factoring P1 via a direct method will become extremely expensive. Addition-
ally, alternative choices for the blocks in the implicit factorization preconditioner may increase the number
of iterations but make the preconditioner much cheaper to apply. For example, solves with the mass matrix
can be well-approximated using the Chebyshev semi-iteration [7] and solves involving the stiffness matrix may
be approximated with a multigrid method: this was very successfully done within the symmetric constraint
preconditioner context for PDE-constrained problems [8].

In Tables 1 and 2, we report the number of iterations to reduce the relative residual by a factor of 10−6

and the times for solving our test problems using Matlab’s GMRES function with restarting set to 10. Here,
preconditioner P2 failed to converge but we see similar results to non-restarted GMRES for preconditioners P1

and P5. Note that by using the restarted version of GMRES, we were able to solve larger problems.
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n m PD P1 P2 P3 P4

450 225 57 3 43 61 2
1922 961 103 2 86 122 2
7938 3969 192 2 172 239 2

Table 1: Number of preconditioned GMRES iterations to reduce the relative residual by a factor of 10−6.

n m PD P1 P2 P3 P4

450 225 0.029 0.020 0.037 0.051 0.015
1922 961 0.21 0.077 0.17 0.31 0.27
7938 3969 2.18 0.37 0.37 3.97 8.63

Table 2: Time (in seconds) for preconditioned GMRES to reduce the relative residual by a factor of 10−6.

n m PD P1 P2 P3 P4

450 225 404 3 - 15 2
1922 961 725 2 - 649 2
7938 3969 2078 2 - 2255 2

32258 16129 4514 2 - 7875 2

Table 3: Number of preconditioned GMRES(10) iterations to reduce the relative residual by a factor of 10−6.

n m PD P1 P2 P3 P4

450 225 0.17 0.020 - 0.12 0.015
1922 961 1.19 0.083 - 1.58 0.27
7938 3969 20.3 0.37 - 33.4 8.70

32258 16129 214 1.83 - 622 324

Table 4: Time (in seconds) for preconditioned GMRES(10) to reduce the relative residual by a factor of 10−6.

5 Conclusions

We conclude by observing that our results demonstrate the effectiveness of using non-symmetric constraint
preconditioners. By careful selection of the constraint preconditioner, we have shown that they can be applied
in an operator-based manner either by using very simple choices of G or by using an implicit-factorization. The
next step will be to incorporate these preconditioners into BOUT++ and Nektar++ [9] to see how they perform
within a non-linear simulation.
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Appendix A: Matlab Script

% Generates non-symmetric implicit-factorization constraint preconditioner
% families
format compact
Ll = [sym(’l11’),sym(’l12’), sym(’l13’),sym(’l21’),sym(’l22’),...

sym(’l23’),sym(’l31’),sym(’l32’),sym(’l33’) ];
Rr = [sym(’r11’),sym(’r12’), sym(’r13’),sym(’r21’),sym(’r22’),...

sym(’r23’),sym(’r31’),sym(’r32’),sym(’r33’) ]
Mm = [sym(’m11’),sym(’m12’), sym(’m13’),sym(’m21’),sym(’m22’),...

sym(’m23’),sym(’m31’),sym(’m32’),sym(’m33’) ]
total = 0;

for i=1:5
for j=1:3

for k=1:5
L = [Ll(1:3);Ll(4:6);Ll(7:9)];
R = [Rr(1:3);Rr(4:6);Rr(7:9)];
M = [Mm(1:3);Mm(4:6);Mm(7:9)];
switch i

case 1
L(1,1:2)=0; L(2,1)=0;

case 2
L(1,1:2)=0; L(3,2)=0;

case 3
L(1,2)=0; L(3,1:2)=0;

case 4
L(2,1)=0; L(3,1:2)=0;

case 5
L(1,2)=0; L(3,2:3)=0;

end

switch j
case 1

M(3,2:3)=0; M(2,3)=0;
case 2

M(1,1:2)=0; M(2,1)=0;
case 3

M(1,2)=0; M(2,1)=0; M(2,3)=0; M(3,2)=0;
end

switch k
case 1

R(1:2,1)=0; R(1,2)=0;
case 2

R(1:2,1)=0; R(2,3)=0;
case 3

R(2,1)=0; R(2:3,3)=0;
case 4

R(2,1)=0; R(1:2,3)=0;
case 5

R(1,2)=0; R(1:2,3)=0;
end
p = 1;
F = L*M*R;
if ((F(1,3)==0) | (F(2,3)==0) | (F(3,1)==0) | (F(3,2)==0))
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p=0;
end

if (p==1)
total = total+1;

% [i,j,k]
factor = total
struct=[L,M,R]
F

end
end

end
end
total
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