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1. Introduction

We expect that one of the biggest challenges in numerically solving drift kinetic equations

in the plasma edge is treating the motion of electrons along the magnetic field. Because

the electrons are light, they move rapidly along the field, placing a severe stability

restriction on the step size for explicit time advance schemes. Unfortunately, an implicit

treatment is not straightforward due to an implicit dependence of the electrostatic

potential on the charged particle distribution functions. One of the main aims of

our research is to develop and test a novel analytical model and associated numerical

algorithm for relaxing this restriction. As a first step towards this goal, we developed

a new code in the programming language Julia to simulate a simple model for parallel

dynamics (described in our Feb 2021 report [1]) without the novel moment-based

approach that we intend to explore. We have now extended the code to simulate a

modified set of equations in which the density is removed from the particle distribution

function and is evolved separately using the continuity equation. In this report we give

an overview of this moment-based approach and discuss the numerical issues around its

implementation.

2. Model equations

A detailed derivation of the model we consider is provided in our Jan 2021 report [2].

Here we reproduce a brief overview of the model from our Feb 2021 report [1] for the

Reader’s convenience. The model we consider consists of a single ion species of charge

e, a single neutral species, and an electron species modelled as having a Boltzmann

response, all immersed in a straight, uniform magnetic field in the z direction. We

allow for charge exchange collisions between ions and neutrals but do not account for

intra-species collisions. Finally, we assume that the plasma is homogeneous in the plane

perpendicular to the magnetic field. With these assumptions, our model system of
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equations is
∂fi
∂t

+ v‖
∂fi
∂z
− e

mi

∂φ

∂z

∂fi
∂v‖

= −Rin (nnfi − nifn) , (1)

∂fn
∂t

+ v‖
∂fn
∂z

= −Rin (nifn − nnfi) , (2)

ns(z, t) =

∫ ∞

−∞
dv‖fs(z, v‖, t), (3)

and

ni = Ne exp

(
eφ

Te

)
, (4)

with fs
.
=
∫
dϑdv⊥v⊥Fs the marginalized particle distribution function for species s,

v‖ and v⊥ the components of the particle velocity parallel and perpendicular to the

magnetic field, respectively, ϑ the gyro-angle, mi the ion mass, t the time, φ the

electrostatic potential, and Rin the charge exchange collision frequency.

For our boundary conditions, we impose periodicity on fs in both z and v‖, with

periods Lz and Lv‖ , respectively. There is also the option to impose zero boundary

conditions on z and v‖ at the upwind boundary of the domain. As fs should go to zero

at v‖ → ±∞, imposition of zero boundary conditions and periodic boundary conditions

should be equivalent as long as Lv‖ is sufficiently large. Note that with either choice of

boundary conditions, the line-averaged density
∫ Lz

0
dz ns is conserved.

We normalize Eqs. (1)-(4) by defining

f̃s
.
= fs

vth,i

√
π

Ne

, (5)

t̃
.
= t

vth,i

Lz
, (6)

z̃
.
=

z

Lz
, (7)

ṽ‖
.
=

v‖
vth,i

, (8)

ñs
.
=
ns
Ne

, (9)

φ̃
.
=
eφ

Te
, (10)

and

R̃in
.
= Rin

NeLz
vth,i

(11)

with vth,i
.
=
√

2Te/mi. In terms of these normalised quantities, Eqs (1)-(4) become

∂f̃i

∂t̃
+ ṽ‖

∂f̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂f̃i
∂ṽ‖

= −R̃in

(
ñnf̃i − ñif̃n

)
, (12)
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∂f̃n

∂t̃
+ ṽ‖

∂f̃n
∂z̃

= −R̃in

(
ñif̃n − ñnf̃i

)
, (13)

eφ̃ = ñi =
1√
π

∫ ∞

−∞
dṽ‖f̃i, (14)

and

ñn =
1√
π

∫ ∞

−∞
dṽ‖f̃n. (15)

2.1. Moment approach: density

We now define the modified distribution function gs
.
= fs/ns so that

∫
dv‖gs = 1. In

terms of gs, the system of equations given by Eqs. (1)-(4) becomes

ni

(
∂gi
∂t

+ v‖
∂gi
∂z
− e

mi

∂φ

∂z

∂gi
∂v‖

)
+ gi

(
∂ni
∂t

+ v‖
∂ni
∂z

)
= −Rinninn (gi − gn) , (16)

nn

(
∂gn
∂t

+ v‖
∂gn
∂z

)
+ gn

(
∂nn
∂t

+ v‖
∂nn
∂z

)
= −Rinninn (gn − gi) , (17)

ni = Ne exp

(
eφ

Te

)
, (18)

∂ns
∂t

+
∂nsus
∂z

= 0, (19)

and

us =

∫ ∞

−∞
dv‖gsv‖. (20)

Note that the 1D continuity equation (19) has replaced the moment equation (3) as a

means of computing the density for each species.

Substituting the continuity equation (19) into the drift kinetic equations (16)

and (17) gives

∂gi
∂t

+ v‖
∂gi
∂z
− e

mi

∂φ

∂z

∂gi
∂v‖

= −Rinnn (gi − gn) + gi

(
∂ui
∂z
−
(
v‖ − ui

) ∂ lnni
∂z

)
(21)

and
∂gn
∂t

+ v‖
∂gn
∂z

= −Rinni (gn − gi) + gn

(
∂un
∂z
−
(
v‖ − un

) ∂ lnnn
∂z

)
, (22)

We normalize Eqs. (18)-(22) by using Eqs. (6)-(11) and by further defining

g̃s
.
= gsvth,i

√
π (23)

and

ũs
.
=

us
vth,i

. (24)

In terms of these normalised quantities, Eqs (18)-(22) become

∂g̃i

∂t̃
+ ṽ‖

∂g̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂g̃i
∂ṽ‖

= −R̃inñn (g̃i − g̃n) + g̃i

(
∂ũi
∂z̃
−
(
ṽ‖ − ũi

) ∂ ln ñi
∂z̃

)
, (25)
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∂g̃n

∂t̃
+ ṽ‖

∂g̃n
∂z̃

= −R̃inñi (g̃n − g̃i) + g̃n

(
∂ũn
∂z̃
−
(
ṽ‖ − ũn

) ∂ ln ñn
∂z̃

)
, (26)

∂ñs

∂t̃
+
∂ñsũs
∂z̃

= 0, (27)

eφ̃ = ñi, (28)

and

ũs =
1√
π

∫ ∞

−∞
dṽ‖g̃nṽ‖. (29)

The above form for the equations is appealing because it maintains the form of

an advection equation with the only modification being the addition of source terms.

However, it can pose challenges for numerical conservation of quantities such as the

0th velocity moment of gs. This is because parts of the source terms must cancel

upon velocity space integration with some of the advective terms. To ease the task of

preserving conservation properties numerically, the equations can be manipulated into

the following form in which such cancellations can be built into the discretisation:

∂g̃i

∂t̃
+
ṽ‖
ñi

∂ñig̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂g̃i
∂ṽ‖

= −R̃inñn (g̃i − g̃n) +
g̃i
ñi

∂ñiũi
∂z̃

, (30)

∂g̃n

∂t̃
+
ṽ‖
ñn

∂ñng̃n
∂z̃

= −R̃inñi (g̃n − g̃i) +
g̃n
ñn

∂ñnũn
∂z̃

, (31)

∂ñs

∂t̃
+
∂ñsũs
∂z̃

= 0, (32)

eφ̃ = ñi, (33)

and

ũs =
1√
π

∫ ∞

−∞
dṽ‖g̃nṽ‖. (34)

3. Numerical implementation

The algorithms described in this Section have been implemented in the code, written in

the Julia programming language, currently available on GitHub at https://github.

com/mabarnes/moment_kinetics.

3.1. Time advance

We evolve Eqs. (12)-(15) or Eqs. (30)-(34) using a member of the family of Strong

Stability Preserving (SSP) Runge-Kutta (RK) schemes; see, e.g., [3, 4, 5]. Current

SSPRK options implemented in the code are SSPRK1 (forward Euler), SSPRK2 (Heun’s

method) SSPRK3 (Shu-Osher method) and four-stage SSPRK3. The user can also

specify the use of ‘flip-flop’ Lie operator splitting. Operator splitting limits the time

advance scheme to second order accuracy in step size, but could be useful for separately

https://github.com/mabarnes/moment_kinetics
https://github.com/mabarnes/moment_kinetics
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treating different pieces of physics. Here we describe the current default option, which

is the four-stage SSPRK3 method without operator splitting.

For convenience of notation, we express the normalised drift kinetic equations for

the ions and neutrals in the vector form

∂f

∂t
= G[f ], (35)

with f the solution vector containing the evolved quantities: f =
(
f̃i, f̃n

)T
if Eqs. (12)-

(15) are solved, and f = (g̃i, g̃n, ñi, ñn)T if Eqs. (30)-(34) are solved. The operator G

accounts for parallel streaming, parallel acceleration (for the ions) and charge exchange

collisions, as well as for the divergence of the particle flux if the density is separately

evolved. The four-stage SSPRK3 method for advancing this system of equations is 3rd

order accurate in time step size ∆t, with a Courant number of two. It is given by

f (1) =
1

2
fn +

1

2
(fn + ∆tG [fn]) ,

f (2) =
1

2
f (1) +

1

2

(
f (1) + ∆tG

[
f (1)
])
,

f (3) =
2

3
fn +

1

6
f (2) +

1

6

(
f (2) + ∆tG

[
f (2)
])
,

fn+1 =
1

2
f (3) +

1

2

(
f (3) + ∆tG

[
f (3)
])
,

(36)

where the superscript n denotes the time level.

We have tested our implementation of SSP RK2 and 4-stage SSP RK3 by calculating

the rms error in the distribution function after it is advected in one dimension with

constant advection speed ṽ = 1 for 10 transits of the domain with length L = 1:

εrms
.
=

√√√√ 1

Nz

Nz∑

j=1

|fi(zj, t = 10)− fi(zj, t = 0)|2. (37)

The results when paired with a finite difference discretisation (third order upwind) are

given in Fig. 1. For Chebyshev pseudospectral on a single element with 4-stage SSPRK3,

see Fig. 2.

3.2. Spatial discretisation

There are two discretisation schemes implemented in the code: finite differences and

Chebyshev (pseudo)spectral elements. The user can choose at run-time which scheme

to use for each of the z and v‖ coordinates.

3.2.1. Finite difference discretisation. For the finite difference discretisation, the

corresponding coordinate grid is uniform on the domain [−L/2, L/2], with L the

coordinate box length. The default method employed for derivatives is 3rd order upwind
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Figure 1. RMS error as a function of time step size ∆t and varying values for Nz

for both SSP RK2 (solid lines and circles) and for 4-stage SSP RK3 (dashed lines

and squares). Due to the CFL restriction that ties temporal resolution to spatial

resolution, the range in ∆t over which time domain errors dominate is limited for RK2

and is effectively non-existent for RK3.

differences, though 1st and 2nd order schemes are also available as options. For an

overview of upwind differences and a discussion of the merits of the different upwind

schemes, see, e.g. [6]. The associated integration weights used for field-line averages in z

and/or for the v‖ integration required for obtaining fields/moments are obtained using

the composite Simpson’s rule (sometimes referred to as composite Simpson’s 1/3 rule):

∫ L

0

dx f(x) ≈ h

3

(N−1)/2∑

j=1

(f(x2j−1) + 4f(x2j) + f(x2j+1)) , (38)

where N is the number of grid points in the coordinate x, and h = L/(N − 1) is the

uniform grid spacing. The composite rule (38) is only applicable for N odd, so it is

supplemented at the boundary by Simpson’s 3/8 rule when N is even.

3.2.2. Chebyshev spectral elements. When using Chebyshev spectral elements, the

corresponding coordinate grid is the Gauss-Chebyshev-Lobatto grid on each element.

For a description of Chebyshev-Gauss quadrature, see, e.g. [7]. Inclusion of the endpoints
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Figure 2. RMS error as a function of time step size ∆t for 4-stage SSP RK3 with a

Chebyshev pseudospectral discretisation.

within each element facilitates enforcement of continuity at element boundaries, and the

use of Chebyshev polynomials as a basis enables the use of Fast Fourier Transforms.

In our code, these transforms are done using the widely-used FFTW library [8].

The associated integration weights used for field-line averages in z and/or for the v‖
integration required for obtaining fields/moments are obtained using Clenshaw-Curtis

quadrature rules [9]. Clenshaw-Curtis quadrature is convenient, as it allows for the

use of endpoints in the integration domain (which is dictated by the use of a Gauss-

Chebyshev-Lobatto grid) while still exactly integrating polynomials up to degree N −1,

with N the number of points within the element.

A 1D advection test demonstrating the spectral accuracy of the Chebyshev scheme

on a single element is given in Fig. 3, where the rms error is given by Eq. (37). The

maximum stable time step subject to the CFL restriction is plotted as a function of the

number of z grid points on a single element in Fig. 4 and as a function of the number

of elements Nelem with Nz = 9 fixed in Fig. 5. Slight deviations from the expected

scalings are likely due to the numerical dissipation that is introduced by the use of the

derivative from the upwind element at the overlapping point at element boundaries and

at the boundary of the periodic domain.
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Figure 3. RMS error as a function of the number of grid points Nz. The time advance

scheme used is 4-stage SSP RK3.

3.3. conservation properties

The field-line-averaged density,
∫
dz n, should be conserved, as should

∫
dv‖g = 1.

We consider two approaches to ensuring that these properties are preserved by the

numerical scheme: carefully chosen discretisation of the equations in conservative form

and conserving corrections applied at the end of each time level.

3.3.1. conservative differencing To conserve particle number, the discretisation must

satisfy

0 =

Nelem∑

j=1

∂

∂t

∫

Ωj

dzj nj = −
∫

Ωj

dzj
∂Γj

∂zj

= −
Nelem∑

j=1

Nz∑

k=1

wjk

(
∂Γj

∂zj

)

k

,

(39)

where Γ = nu is the particle flux, Nelem is the number of elements, Nz is the number

of grid points per element, Ωj is the domain in z corresponding to the jth element, the

superscript j denotes evaluation on the jth element, and wjk is the integration weight
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Figure 4. Maximum stable time step subject to the CFL restriction as a function of

the number of Gauss-Chebyshev-Lobatto grid points. The max stable time step scales

a bit more weakly than 1/N2
z , as expected.

associated with the kth grid point within the jth element. For expression (39) to be

satisfied, there are three requirements that must be met. First, the contributions

to the integral from interior points on each element must cancel with one another.

This requires a centred difference scheme if finite differences are used. As shown

in Appendix A, it is automatically satisfied if the flux derivative is obtained using the

Chebyshev pseudo-spectral method, and the integral is computed using Clenshaw-Curtis

quadrature. Second, the fluxes must be continuous across element boundaries. For this

to be guaranteed, the derivative of the flux itself must be single-valued at the element

boundaries. This forces one to choose the flux derivative at the boundary between

elements to be the average of the flux derivatives on each element. Finally, the fluxes

must vanish or cancel one another at the boundaries of the simulation domain. This

forces one to use either zero boundary conditions or to again use the average of the flux

derivatives on each element with the assumption of periodicity.

Next we consider how to ensure
∫
dv‖g = 1. The terms involving z derivatives

of g on each side of the drift kinetic equation will cancel as long as the differencing is

done consistently for each term, as well as using g and u at the same time level. The

charge exchange term should also vanish as long as gi and gn are used at the same time
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Figure 5. Maximum stable time step subject to the CFL restriction as a function of

the number of elements with the number of grid points per element fixed at 9. The

minimum grid spacing scales inversely with the number of elements, leading to a max

stable time step that is inversely proportional to the number of elements Nelem.

level. The only non-trivial term then is the parallel acceleration. For this term to vanish

upon v‖ integration, the fundamental theorem of calculus must hold numerically; i.e.,∫
dv‖(∂g/∂v‖) = g(v‖,max)− g(v‖,min) = 0, where v‖,max and v‖,min are the maximum and

minimum values of v‖ included in the grid. For the last equality, the values of g at the

boundaries in v‖ must be the same. This could be achieved either with periodic BCs or

with zero BCs. However, there is the complication that the drift kinetic equation drives

non-periodic solutions that only decay to zero at v‖ → ±∞. To enforce periodicity

without modifying
∫
dv‖g, we set the boundary values to be the average of the nominal

values at the endpoints in v‖.

Taken together, these requirements remove the possibility of using numerical

dissipation via, e.g., upwind differencing or upwind fluxes at element boundaries, to

improve numerical stability. This is problematic for advection-dominated problems like

the one we are considering, as in the absence of some form of numerical dissipation the

scheme is unstable.



Numerical study of moment-based drift kinetic model with periodic BCs 11

3.3.2. conserving corrections The second approach to ensuring numerically the desired

conservation properties is to correct the numerical solutions for n and g at the end of

each time step. For the density, one can set

nm+1 = n̂m+1 + nm
(

1−
∫
dz n̂m+1

∫
dz nm

)
, (40)

where n̂m+1 is the updated solution (at time level m + 1) to the continuity equation

before applying any conserving correction. This guarantees that
∫
dz (nm+1 − nm) = 0.

Note that the superscripts here refer to the time level, not the element index. The

additional error in the density introduced by this correction is

nm
(

1−
∫
dz n̂m+1

∫
dz nm

)
= nm

(
1−

∫
dz
(
nm+1

exact + εm
)

∫
dz nm

)

= nm
∫
dz εm∫
dz nm

= O(εm),

(41)

where εm is the error due to numerical discretisation, and nm+1
exact is the solution for n̂m+1

in the limit εm = 0.

A similar technique can be applied to conserve
∫
dv‖g. In particular, we set

gm+1 = ĝm+1 + gm
(

1−
∫
dv‖ĝ

m+1

)
, (42)

where ĝm+1 is the updated solution to the drift kinetic equation before applying any

conserving correction. This ensures
∫
dv‖gm+1 = 1, provided

∫
dv‖gm = 1. Again,

the additional error in g associated with this correction is O(δm), where δm is the

discretisation error.

This approach is simple, does not change the order of accuracy of the discretisation

scheme and allows for the use of numerical dissipation to improve numerical stability

properties. Results showing its efficacy are given in Sec. 4

4. Numerical results

To benchmark our numerical implementation of the moment-based approach

encapsulated in Eqs. (30)-(34), we compare our simulation results with the analytical

benchmarks developed in [2] and with the numerical results obtained by directly solving

the kinetic system corresponding to Eqs. (12)-(15). The results reported here were

obtained using the conservative differencing detailed in Sec. 3.3.1 for the continuity

equation and for the source terms, while the conserving correction given by Eq. 42 is

applied to ensure that
∫
dv‖gs = 1.

We have initialised the distribution functions for the ions and neutrals to be of the

form

g̃s =

(
Te

T s

)1/2

exp

(
−ṽ2
‖
Te

T s

)
, (43)



Numerical study of moment-based drift kinetic model with periodic BCs 12

with ns = ns + δns and Ts = T s + δTs, and an overline denoting a field line average.

The piece of the density that varies along z, δns, is chosen to be small compared

to ns (δns/ns = 0.001) so that the system of equations can be linearised to a good

approximation. This facilitates comparisons with the linear analytical theory presented

in [2]. For all cases shown here, ni = nn = Ne/2, T i = T n = Te and mi = mn. The

charge exchange collision frequency is varied, and damping rates and frequencies are

extracted by considering the time evolution of the spatially-varying component of the

electrostatic potential, δφ. In particular, a least-squares fit for δφ(t)/δφ(t0) is done for

each simulation to a function of the form exp(−γ(t − t0)) cos(ωt − ϕ)/ cos(ωt0 − ϕ) to

obtain the damping rate γ, frequency ω and phase ϕ. The results are given in Fig. 6.

There is good agreement across a wide range of charge exchange collision frequencies,

both for the damping of finite frequency modes (corresponding to the solid lines) and to

a zero frequency mode that appears at larger collisionalities (dashed-dotted lines). The

minor discrepancy between the analytical and numerical damping rates that is apparent

for the case with normalised charge exchange collision frequency near 0.7 is due to the

simultaneous presence of both modes with similar damping rates.
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∣∣∣

analytical
kinetic

moment-based

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0 0.5 1 1.5 2

γ
/k

‖v
th

(ni + nn)Rin/
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Figure 6. Normalized damping rate and real frequency as a function of the charge

exchange collision frequency. Note that the normalising vth employed here differs from

the vth,i employed in the text: It is chosen to be vth =
√

2Ti/mi to facilitate comparison

with the analytical results obtained in [2].

In Figure 7 we show the difference in conservation properties between cases for

which the mixed conservative differencing and conservative corrections indicated at the

beginning of the Section are employed and those for which no conserving correction is

applied. With the conservative implementation, both the particle number and
∫
dv‖g

are conserved to machine precision, regardless of numerical resolution.

5. Future plans

Now that we have a proof-of-concept implementation of the moment-based approach to

solving the 1+1D kinetic problem, we plan to extend the treatment to include separate
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Figure 7. Time evolutions of the conservation error for
∫
dv‖g (left) and for the

particle number (right). The velocity moment of g is guaranteed to be unity in the blue

case because the conserving corrections described in Sec. 3.3 are applied. Conservative

differencing in the continuity equation and the use of average fluxes at element

boundaries ensures particle conservation for both simulations. Both simulations were

run for T i = Tn = Te, normalised Rin ≈ 0.3 and used very low resolution to

enhance the non-conservation: a Chebyshev pseudo-spectral discretisation was used

with Nz = 5 on one element and Nv = 9 on five elements.

evolution of the parallel flow and parallel pressure. Inclusion of a separately evolved

parallel flow should enable us to include kinetic electrons in our model and test various

numerical approaches to obtaining the electrostatic potential in an efficient way.

Appendix A. Conservative differencing of the continuity equation

We start with the continuity equation,

∂n

∂t
+
∂Γ

∂z
= 0, (A.1)

and we expand the particle flux Γ in Chebyshev polynomials on each of Nelem elements

so that

Γji
.
=

N−1∑

n=0

Γ̂jnTn(zi) (A.2)

is the particle flux at the ith grid point within the jth element, and Tn(zi) is a Chebyshev

polynomial of the first kind. The derivative appearing in the continuity equation is then

∂Γj

∂z
=

N−1∑

n=0

Γ̂jn
∂Tn(z)

∂z
=

N−2∑

n=0

djnTn(z), (A.3)

with djn related to Γ̂jn via

djn−1 =
1

cn−1

(
2nΓ̂jn + djn+1

)
, (A.4)
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where djN−1 = djN = 0 and cn = 2 if n = 0 and cn = 1 for n > 0.

The field-line-averaged density should be conserved according to the continuity

equation. This can be achieved by carefully choosing the discretisation to be of a

conservative form. In particular, the discretisation must satisfy

0 =
∂

∂t

∫

Ωj

dz n = −
∫

Ωj

dzj
∂Γj

∂zj

= −
Nz∑

i=1

wji

(
∂Γj

∂zj

)

i

= ΓjNz
− Γj1,

(A.5)

where the integration weights are given by the set {whi }, and the equality in the last

line holds as long as the integration scheme is chosen to exactly integrate polynomials

of degree less than Nz − 1. The Clenshaw-Curtis quadrature satisfies this requirement.

However, there is one more issue to consider: continuity of the density across

element boundaries. If we enforce continuity, the derivative of the flux must be single-

valued at the element boundaries. Let the flux derivative at the element boundaries

be
∂Γjb
∂zj

= α
∂ΓjNz

∂zj
+ (1− α)

∂Γj+1
1

∂zj+1
, (A.6)

with α ∈ [0, 1].

The time rate of change of the field-line-averaged density is thus

∂

∂t

∫
dz n =

Ne∑

j=1

∫

Ωj

dzjnj =
Ne∑

j=1

(
ΓjNz
− Γj1

)

+
Ne−1∑

j=1

(
(
wjNz

+ wj+1
1

) ∂Γjb
∂zj
− wjNz

∂ΓjNz

∂zj
− wj+1

1

∂Γj+1
1

∂zj+1

)
.

(A.7)

Because Γ is single-valued at element boundaries, each of the interior terms in the first

sum on the RHS above cancel, leaving only the contribution from j = 1 and j = Nelem.

The final sum is then the deviation from exact particle conservation. This can be made

to vanish by choosing α in Eq. (A.6) to be

α =
wjNz

wjNz
+ wj+1

1

, (A.8)

which evaluates to 1/2 if the grids are identical in neighbouring elements. The same

treatment must also be applied at the exterior boundaries to ensure exact numerical

conservation. Note that this is possible with periodic BCs but not with a zero BC.
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