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1. Introduction

In previous reports, we proposed 1D drift kinetic equations with periodic boundary
conditions, adequate for the closed field line region of the edge. In this report, we discuss
a minimal 1D drift kinetic model with wall boundary conditions that represents open
field lines. The basic drift kinetic model is presented in section 2, and the wall boundary
conditions are discussed in section 3. We then proceed to determine the novel moment
drift kinetic equations for ions and neutrals in section 4, and for electrons in section 5.
The electrons have to be treated differently so that we can exploit the expansion in the
electron-ion mass ratio. We finish with a discussion in section 6. Some of the details of the
collision operators in the moment drift kinetic formulation are relegated to appendices
to make the main text easier to read.

2. 1D electrostatic drift kinetics

We consider a plasma with one ion species with charge e and mass mi, electrons with
charge −e and mass me, and one species of neutrals with mass

mn = mi. (2.1)

The plasma is magnetized by a constant magnetic field B = Bẑ, and we assume that
the plasma only varies along magnetic field lines. In this case, the electric field produced
by the plasma is electrostatic, E = −(∂φ/∂z)ẑ. The potential φ(z, t) depends on the
position along magnetic field lines z and on time t.

If we assume that the gyroradii are small compared to the length scales of interest,
and that the gyrofrequencies are much larger than the frequencies that we want to model
(Hazeltine 1973), the distribution functions fs(z, v‖, v⊥, t) of the different species s =
i, e, n only depend on the component of the velocity parallel to the magnetic field v‖ and
the magnitude of the velocity perpendicular to the magnetic field v⊥, and are independent
of the direction of the velocity perpendicular to the magnetic field. Thus, the distribution
functions that in general can depend on three spatial variables r, three components of
the velocity v and the time t depend only on z, v‖, v⊥ and t,

fs(r,v, t) = fs(z, v‖, v⊥, t). (2.2)

The equations for the distribution functions of the different species are

∂fi
∂t

+ v‖
∂fi
∂z
− e

mi

∂φ

∂z

∂fi
∂v‖

= Cii[fi] + Cin[fi, fn] + Ci,ion[fe, fn] + Cie[fi, fe] + Si, (2.3)
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∂fe
∂t

+ v‖
∂fe
∂z

+
e

me

∂φ

∂z

∂fe
∂v‖

= Cee[fe] + Cei[fe, fi]

[
1 +O

(
me

mi

)]
+Cen[fe, fn]

[
1 +O

(
me

mi

)]
+ Ce,ion[fe, fn] + Se (2.4)

and
∂fn
∂t

+ v‖
∂fn
∂z

= Cni[fn, fi] + Cne[fn, fe] + Cn,ion[fn, fe] + Sn. (2.5)

The sources Ss(z, w‖, w⊥, t) with s = i, e, n represent heating, fueling and the effect of
transport perpendicular to the magnetic field line.

We have included the following collisions.
• Ion-ion and electron-electron collisions are modeled by the Fokker-Planck collision

operators Cii[fi] and Cee[fe] (Rosenbluth et al. 1957),

Css[fs] :=
2πe4 ln Λ

(4πε0)2m2
s

∇v · (D[fs] · ∇vfs + P[fs]fs) , (2.6)

where the matrix D is

D[fs] :=

∫
|v − v′|2I− (v − v′)(v − v′)

|v − v′|3
fs(v

′) d3v′ (2.7)

and the vector P is

P[fs] := −2

∫
v − v′

|v − v′|3
fs(v

′) d3v′. (2.8)

Here, I is the 3D unit matrix, ε0 the vacuum permittivity and ln Λ ≈ 15 the Coulomb
logarithm.
• The effect of electron-ion and elastic electron-neutral collisions on the electron distri-

bution function can be simplified in the limit of small electron-ion mass ratio,me/mi � 1.
With this expansion, we find the simplified Fokker-Planck collision operator

Cei[fe, fi] :=
2πe4ni ln Λ

(4πε0)2m2
e

∇v ·
[
|v − ui|2I− (v − ui)(v − ui)

|v − ui|3
· ∇vfe

]
(2.9)

for electron-ion collisions (Braginskii 1958), and the simplified Boltzmann collision oper-
ator

Cen[fe, fn] :=
nn
4π

∫ π

0

dχ

∫ 2π

0

dϕ sinχRen(|v − un|, χ) [fe(v(v, χ, ϕ,un))− fe(v)]

(2.10)
for electron-neutral collisions. Here

ns(z, t) := 2π

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥fs(z, v‖, v⊥, t). (2.11)

is the density of species s, us := n−1s
∫

vfs d3v is the average velocity of species s,

v(v, χ, ϕ,un) := un + cosχ(v − un) + |v − un| sinχ(cosϕ ê1 + sinϕ ê2) (2.12)

is a rotation of the vector v centered around un, Ren(|v−un|, χ) is a function determined
by the physics of the electron-neutral collisions, and the unit vectors ê1 and ê2 are chosen
to form an orthonormal basis with the vector (v − un)/|v − un|. In equation (2.4),
we have indicated that both Cei and Cen are missing pieces small in me/mi. These
pieces can become important because they represent collisional energy exchange and
collisional heating, but they are cumbersome. The moment method that we propose in
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this document will allow us to keep these important effects even with the simplified
collision operators (2.9) and (2.10).
• The expansion in electron-ion mass ratio also implies electron-ion collisions and

electron-neutral collisions have a very small effect on fi and fn – the terms Cie and
Cne in equations (2.3) and (2.5) are small compared with Cii and Cni by a factor of√
me/mi � 1,

Cie ∼
√
me

mi
Cii, Cne ∼

√
me

mi
Cni. (2.13)

Like the mass ratio corrections to Cei and Cen, these terms can become important because
they contain the collisional energy exchange between electrons and the heavier species.
We will keep these effects in a simplified form in our moment formulation.
• Charge-exchange collisions are represented by the simplified Boltzmann collision

operators

Cin[fi, fn] := −
∫
Rin(|v − v′|) [fi(v)fn(v′)− fi(v′)fn(v)] d3v′ (2.14)

and

Cni[fn, fi] := −
∫
Rin(|v − v′|) [fn(v)fi(v

′)− fn(v′)fi(v)] d3v′. (2.15)

• To model ionization, we use the collision operators

Ci,ion[fe, fn] := fn

∫
Rion(v′)fe(v

′) d3v′ (2.16)

and

Cn,ion[fe, fn] := −fn
∫
Rion(v′)fe(v

′) d3v′. (2.17)

We also need to include a collision operator Ce,ion in the electron equation to model the
increase in the number of electrons and the energy loss due to ionization. This operator
is complicated because it involves three particles (the resulting ion and two electrons),
but we will be able to avoid giving it a definite form. Instead, we will use the expansion
in me/mi � 1 and the fact that

Ce,ion[fe, fn] ∼ nnRionfe. (2.18)

• We have neglected neutral-neutral collisions because, in current fusion devices, the
neutral density is sufficiently small that the neutral-neutral collisions are rare. It is pos-
sible that the higher densities expected in fusion reactors will make neutral-neutral colli-
sions more relevant. To include neutral-neutral collisions, a Boltzmann collision operator
is in principle required, but using a simplified collision may be possible if the exact shape
of the neutral distribution function is not important for the physics of interest.

To simplify our equations, we assume that the functions Ren, Rin and Rion are constant
(Connor 1977; Hazeltine et al. 1992; Catto 1994), finding

Cen[fe, fn] = nnRen

[
1

2

∫ π

0

fe(z, un‖ + |v − un| cosχ, |v − un| sinχ, t) sinχdχ

−fe(z, v‖, v⊥, t)

]
, (2.19)
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with |v − un| =
√

(v‖ − un‖)2 + v2⊥,

Cin[fi, fn] = −Rin (nnfi − nifn) , (2.20)

Cni[fn, fi] = −Rin (nifn − nnfi) , (2.21)

Ci,ion[fe, fn] = fnneRion (2.22)

and

Cn,ion[fe, fn] = −fnneRion. (2.23)

The potential φ(z, t) is determined by the quasineutrality equation

ni = ne. (2.24)

To solve this equation, we need to treat the equations implicitly as the potential enters
only via its effect on ∂fi/∂t and ∂fe/∂t. The need to use implicit methods is one of the
reasons why we are trying to extract some of the low order moments from the distribution
function.

3. Wall boundary conditions

The kinetic equations will be solved in the interval z ∈ [0, L], and we will impose wall
boundary conditions at z = 0 and z = L. We assume the wall to be exactly perpendicular
to the magnetic field lines to be able to impose a set of simplified boundary conditions:
the logical sheath boundary conditions of Parker et al. (1993). When the magnetic field
is at an angle to the wall, one needs to consider a thin boundary layer with a width of
the order of the ion gyroradius that forms on the wall and is known as the magnetic
presheath (Chodura 1982). The complicated boundary conditions that this layer imposes
on drift kinetic models are an active area of research (Geraldini et al. 2017, 2018, 2019;
Geraldini 2021). These works indicate that the magnetic presheath and the Debye sheath
must be solved in conjunction with the quasineutral plasma, but this is not necessarily
computationally expensive as the presheath and sheath models are 1D or at most 2D,
and hence cheaper than the 5D drift kinetic models that one needs for edge turbulence.
The technique proposed by Geraldini et al. (2018), for example, solves the magnetic
presheath in a single processor in seconds, and this technique can be parallelized.

Logical sheath boundary conditions make use of the fact that a thin sheath of non-
neutral plasma with a width of the order of the Debye length forms on walls to ensure
quasineutrality. The potential drop across this sheath repels electrons away from the wall
because otherwise electrons would flow to the wall at much greater rate than ions due to
their lower mass and higher thermal speed. In our model, φ(0, t) and φ(L, t) are not the
potential of the wall, but the potential at the entrance of the sheath. In this report, we
choose the potential of the wall at z = 0 to be 0 without loss of generality. We denote
the potential of the wall at z = L as φw. Then, for the sheaths to repel electrons, φ(0, t)
must be larger than 0 and φ(L, t) must be larger than φw.

The value of the potential at z = 0 and z = L is determined by requiring that the
current towards the wall at both z = 0 and z = L vanishes. We consider the sheath at
z = L first, and we will then apply the results that we obtain to the sheath at z = 0.
Since the thin sheath at z = L imposes a large electric field perpendicular to the wall,
which in this case is along the magnetic field B = Bẑ, the sheath only modifies the
parallel velocity of electrons. Within the sheath, the parallel energy E‖ := mev

2
‖/2−eφ is

conserved, and as a result an electron that has velocity v‖ at the entrance of the sheath
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is slowed down to a parallel velocity
√
v2‖ − 2e(φ(L, t)− φw)/me when it reaches the

wall. Thus, electrons with parallel velocity larger than
√

2e(φ(L, t)− φw)/me reach the
wall, where they recombine with ions, whereas electrons with parallel velocity smaller
than

√
2e(φ(L, t)− φw)/me are repelled back into the quasineutral plasma. Thus, the

boundary condition on the electron distribution function at z = L is

fe(L, v‖ < 0, v⊥, t) =

{
fe(L,−v‖, v⊥, t) for v‖ > −

√
2e(φ(L, t)− φw)/me,

0 for v‖ < −
√

2e(φ(L, t)− φw)/me,
(3.1)

i.e. the electron distribution is mirrored with respect to v‖ = 0 and a cut-off is imposed
for sufficiently negative parallel velocities. Note that no boundary condition is needed for
v‖ > 0 at z = L because of the direction of the characteristics of the kinetic equation.
Expression (3.1) also gives the electron current density towards the wall at the entrance
of the sheath at z = L,

Je‖(L, t) = −2πe

∫ ∞
√

2e(φ(L,t)−φw)/me

dv‖

∫ ∞
0

dv⊥ v⊥v‖fe(L, v‖, v⊥, t). (3.2)

This is the electron current density at the wall because electron flow is conserved across
the sheath. Imposing that the electron current cancels the ion current gives us a nonlinear
equation for the potential difference φ(L, t)− φw,

2π

∫ ∞
√

2e(φ(L,t)−φw)/me

dv‖

∫ ∞
0

dv⊥ v⊥v‖fe(L, v‖, v⊥, t)

= 2π

∫ ∞
0

dv‖

∫ ∞
0

dv⊥ v⊥v‖fi(L, v‖, v⊥, t). (3.3)

To obtain the ion current, we have used the fact that the sheath attracts ions and hence
no ions can have negative parallel velocity at the entrance of the sheath at z = L.

The conditions at z = 0 for the electron distribution and the potential are similar to
those for z = L. For the electron distribution function, we find

fe(0, v‖ > 0, v⊥, t) =

{
fe(0,−v‖, v⊥, t) for v‖ 6

√
2eφ(0, t)/me,

0 for v‖ >
√

2eφ(0, t)/me,
(3.4)

and for the potential we obtain

2π

∫ −√2eφ(0,t)/me

−∞
dv‖

∫ ∞
0

dv⊥ v⊥v‖fe(0, v‖, v⊥, t)

= 2π

∫ 0

−∞
dv‖

∫ ∞
0

dv⊥ v⊥v‖fi(0, v‖, v⊥, t), (3.5)

Note that conditions (3.3) and (3.5) imply that no net electrical current is leaving the
system. Thus, the total source of charge in the magnetic field line of interest must be
zero, ∫ L

0

dz

∫
Si d3v =

∫ L

0

dz

∫
Se d3v. (3.6)

We still need boundary conditions for the ion and neutral distribution functions. Ions
recombine when they hit the wall, so no ions come back, giving

fi(0, v‖ > 0, v⊥, t) = 0, fi(L, v‖ < 0, v⊥, t) = 0. (3.7)

The neutrals hit the wall and thermalize at the temperature of the wall Tw, while also
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receiving back the ions that have recombined at the wall,

fn(0, v‖ > 0, v⊥, t) = Γ0fKw(v‖, v⊥), fn(L, v‖ < 0, v⊥, t) = ΓLfKw(v‖, v⊥), (3.8)

where

Γ0 :=
∑
s=i,n

2π

∫ 0

−∞
dv‖

∫ ∞
0

dv⊥ v⊥|v‖|fs(0, v‖, v⊥, t) (3.9)

and

ΓL :=
∑
s=i,n

2π

∫ ∞
0

dv‖

∫ ∞
0

dv⊥ v⊥v‖fs(L, v‖, v⊥, t) (3.10)

are the fluxes of neutrals and ions towards the walls at z = 0 and z = L. Here,

fKw(v‖, v⊥) :=
3

4π

(
mi

Tw

)2 |v‖|√
v2‖ + v2⊥

exp

(
−
mi(v

2
‖ + v2⊥)

2Tw

)
(3.11)

is the Knudsen cosine distribution (Knudsen 1916) that assumes that the particles have
entered the wall lattice, have reached thermodynamic equilibrium with it, and have then
left the wall. Knudsen showed that this distribution function fits experimental measure-
ments well.

4. 1D moment drift kinetics for ions and neutrals

Instead of solving for fs(z, v‖, v⊥, t) with s = i, n, we solve for

Fs(z, w‖, w⊥, t) :=
v3ts(z, t)

ns(z, t)
fs

(
z, us‖(z, t) + vts(z, t)w‖, vts(z, t)w⊥, t

)
, (4.1)

where we have defined the normalized velocities

w‖(z, v‖, t) :=
v‖ − us‖(z, t)
vts(z, t)

(4.2)

and

w⊥(z, v⊥, t) :=
v⊥

vts(z, t)
, (4.3)

the average parallel velocity

us‖(z, t) :=
2π

ns

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥v‖fs(z, v‖, v⊥, t) (4.4)

and the thermal speed

vts(z, t) :=

√
2Ts(z, t)

ms
, (4.5)

with

Ts(z, t) :=
2π

ns

∫ ∞
−∞

dv‖

∫ ∞
0

dv⊥ v⊥
ms[(v‖ − us‖(z, t))2 + v2⊥]

3
fs(z, v‖, v⊥, t) (4.6)

the temperature of species s. According to its definition, Fs(z, w‖, w⊥, t) must satisfy the
conditions

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥Fs(z, w‖, w⊥, t) = 1, (4.7)
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2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w‖Fs(z, w‖, w⊥, t) = 0 (4.8)

and

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥(w2
‖ + w2

⊥)Fs(z, w‖, w⊥, t) =
3

2
(4.9)

at every point z and time t.

4.1. Ion equations

The equations for ni, ui‖ and Ti are

∂ni
∂t

+
∂

∂z

(
niui‖

)
= nnneRion +

∫
Si d3v, (4.10)

nimi

(
∂ui‖

∂t
+ ui‖

∂ui‖

∂z

)
= −

∂pi‖

∂z
− eni

∂φ

∂z
+ nimi(nnRin + neRion)(un‖ − ui‖)

+

∫
mi(v‖ − ui‖)Si d3v (4.11)

and

3

2
ni

(
∂Ti
∂t

+ ui‖
∂Ti
∂z

)
= −

∂qi‖

∂z
− pi‖

∂ui‖

∂z
+

3

2
ni(nnRin + neRion)(Tn − Ti)

+
1

2
nimi(nnRin + neRion)(un‖ − ui‖)2 +

∫
1

2
mi|v − ui‖ẑ|2Cie d3v

+

∫ (
1

2
mi|v − ui‖ẑ|2 −

3

2
Ti

)
Si d3v. (4.12)

Here, we have defined the parallel pressure

ps‖[Fs, ns, vts](z, t) := 2πnsmsv
2
ts

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w
2
‖Fs(z, w‖, w⊥, t) (4.13)

and the parallel heat flux

qs‖[Fs, ns, vts](z, t) := πnsmsv
3
ts

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w‖(w
2
‖ + w2

⊥)Fs(z, w‖, w⊥, t).

(4.14)
We have also included the term (1/2)

∫
mi|v − ui‖ẑ|2Cie d3v due to collisions with elec-

trons. Collisions with electrons are negligible to lowest order in
√
me/mi in the ion

kinetic equation and thus cannot determine the lowest order distribution function Fi,
but when collisions are sufficiently frequent that νiiL/vti &

√
mi/me � 1, the term

(1/2)
∫
mi|v− ui‖ẑ|2Cie d3v becomes comparable to the other terms in the energy equa-

tion. Here,

νii :=
8
√

2π

3

e4ni ln Λ

(4πε0)2m2
i v

3
ti

(4.15)

is the ion-ion collision frequency as defined by Braginskii (Braginskii 1958). At the large
collision frequencies required for the term (1/2)

∫
mi|v−ui‖ẑ|2Cie d3v to be relevant, the

ion and electron distribution functions become close to a Maxwellian,

fs ' fMs :=
ns

π3/2v3ts
exp

(
−

(v‖ − us‖)2 + v2⊥
v2ts

)
. (4.16)
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Thus, we can use the approximation∫
1

2
mi|v − ui‖ẑ|2Cie[fi, fe] d3v '

∫
1

2
mi|v − ui‖ẑ|2Cie[fMi, fMe] d3v

' 3nemeνei
mi

(Te − Ti), (4.17)

where

νei :=
16
√
π

3

e4ni ln Λ

(4πε0)2m2
ev

3
te

(4.18)

is the electron-ion collision frequency as defined by Braginskii (Braginskii 1958). Note
that Braginskii’s definitions of νii and νei differ by a factor of

√
2.

The ion kinetic equation is

∂Fi
∂t

+ żi
∂Fi
∂z

+ ẇ‖i
∂Fi
∂w‖

+ ẇ⊥i
∂Fi
∂w⊥

= Ḟi + Cii + Cin + Ci,ion + Si. (4.19)

Here, we have defined the coefficients

żs[Fs, us‖, vts](z, w‖, t) := us‖ + vtsw‖, (4.20)

ẇ‖s[Fs, ns, us‖, vts](z, w‖, t) :=
1

nsmsvts

∂ps‖

∂z

+
2w‖

3nsmsv2ts

[
∂qs‖

∂z
+

(
ps‖ −

3

2
nsmsv

2
ts

)
∂us‖

∂z

]
− w2

‖
∂vts
∂z

, (4.21)

ẇ⊥s[Fs, ns, us‖, vts](z, w‖, w⊥, t) :=
2w⊥

3nsmsv2ts

(
∂qs‖

∂z
+ ps‖

∂us‖

∂z

)
− w‖w⊥

∂vts
∂z

(4.22)

and

Ḟs[Fs, ns, us‖, vts](z, w‖, w⊥, t) :=

[
w‖

(
3
∂vts
∂z
− vts
ns

∂ns
∂z

)

− 2

nsmsv2ts

(
∂qs‖

∂z
+

(
ps‖ −

1

2
nsmsv

2
ts

)
∂us‖

∂z

)]
Fs. (4.23)

We have also defined a modified source Si and several modified collision operators. The
modified source is given by

Ss[Ss, Fs, ns, us‖, vts](z, w‖, w⊥, t)

:=−
[
Fs
ns

∫
Ss d3v − v3ts

ns
Ss(z, us‖ + vtsw‖, vtsw⊥, t)

]
+

∂

∂w‖

[
Fs

(
1

nsvts

∫
(v‖ − us‖)Ss d3v +

w‖

3nsv2ts

∫ (
|v − us‖ẑ|2 −

3

2
v2ts

)
Ss d3v

)]
+

1

w⊥

∂

∂w⊥

[
w2
⊥Fs

3nsv2ts

∫ (
|v − us‖ẑ|2 −

3

2
v2ts

)
Ss d3v

]
. (4.24)

Note that the differential terms in this modified source could have been included in the
definitions of the coefficients ẇ‖i, ẇ⊥i and Ḟi, but we have decided to make them part
of a modified source instead to separate the effect of the source clearly. We will do the
same for collisions. This split should not be taken as a suggestion on how to implement
these terms in a code. The modified collisions operators are described in Appendix A.
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4.2. Neutral equations

The fluid equations for the neutrals are

∂nn
∂t

+
∂

∂z

(
nnun‖

)
= −nnneRion +

∫
Sn d3v, (4.25)

nnmi

(
∂un‖

∂t
+ un‖

∂un‖

∂z

)
= −

∂pn‖

∂z
+ nnminiRin(ui‖ − un‖)

+

∫
mi(v‖ − un‖)Sn d3v (4.26)

and

3

2
nn

(
∂Tn
∂t

+ un‖
∂Tn
∂z

)
= −

∂qn‖

∂z
− pn‖

∂un‖

∂z
+

3

2
nnniRin(Ti − Tn)

+
1

2
nnminiRin(un‖ − ui‖)2 +

∫
1

2
mi|v − un‖ẑ|2Cne d3v

+

∫ (
1

2
mi|v − un‖ẑ|2 −

3

2
Tn

)
Sn d3v. (4.27)

As with electron-ion collisions, the term (1/2)
∫
mi|v− un‖ẑ|2Cne d3v only becomes im-

portant when the collisions are sufficiently frequent that the distribution functions are
close to Maxwellians, giving∫

1

2
mi|v − un‖ẑ|2Cne[fn, fe] d3v '

∫
1

2
mi|v − un‖ẑ|2Cne[fMn, fMe] d3v

' 3nemennRen
mi

(Te − Tn), (4.28)

The neutral kinetic equation is

∂Fn
∂t

+ żn
∂Fn
∂z

+ ẇ‖n
∂Fn
∂w‖

+ ẇ⊥n
∂Fn
∂w⊥

= Ḟn + Cni + Sn. (4.29)

The modified charge exchange collision operator Cni is described in Appendix B.

Equations (4.19) and (4.29) for Fi and Fn are constructed such that conditions (4.7),
(4.8) and (4.9) are satisfied at all times if they are satisfied at t = 0. In practice, this
property has to be enforced in the numerical method. We have found an algorithm that
works well and we have discussed it in report 2047357-TN-04-02 M2.2.

4.3. Boundary conditions

These equations for ions and neutrals have to be solved with the boundary conditions in
equations (3.7) and (3.8). For ns, us‖, vts and Fs known at time t, we can construct fs
at z = 0 and z = L, and we can apply boundary conditions (3.7) and (3.8). We can then
use the resulting fs to obtain ns, us‖, vts and Fs, and to calculate ps‖ and qs‖, closing
the system of equations.

We note that this is the only place where the full distribution function fs is needed.
Depending on the numerical method chosen to solve these equations, reconstructing fs
could be expensive. This is one of the problems that needs to be addressed in the proxy
apps.
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5. 1D moment drift kinetics for electrons

The equation for Fe can be significantly simplified using the expansion in
√
me/mi.

The electron source Se is usually of order

Se ∼
vtife
L

(5.1)

because the ions control the dynamics due to their large mass, and the electrons adapt
to the ions because of collisions and quasineutrality. Thus, Se is a small term in equa-
tion (2.4) by a factor of vti/vte ∼

√
me/mi � 1. Moreover, the electron parallel flow

ue‖ is of the order of the ion parallel flow because boundary conditions (3.3) and (3.5)
impose that these two velocities be equal at z = 0 and z = L, and quasineutrality keeps
the difference of the order of vti. As a result, ue‖ ∼ ui‖ ∼ vti � vte and we can neglect
ue‖ to lowest order in most terms in equation (2.4) – the two exceptions in which ue‖
cannot be neglected are given in Appendix C. Finally, the effect of ionization, modeled
by Ce,ion ∼ nnRionfe is, according to equation (4.10), of the order of fevti/L and thus
also small.

5.1. Electron kinetic equation

Employing the expansion in
√
me/mi � 1, the kinetic equation for electrons becomes

że
∂Fe
∂z

+ ẇ‖e
∂Fe
∂w‖

+ ẇ⊥e
∂Fe
∂w⊥

= Ḟe + Cee + Cei + Cen, (5.2)

where

że[Fe, vte](z, w‖, t) := vtew‖, (5.3)

ẇ‖e[Fe, ue‖, vte](z, w‖, t) :=
1

nemevte

∂pe‖

∂z
+

2w‖

3nemev2te

∂qe‖

∂z
− w2

‖
∂vte
∂z

, (5.4)

ẇ⊥e[Fe, ue‖, vte](z, w‖, w⊥, t) :=
2w⊥

3nemev2te

∂qe‖

∂z
− w‖w⊥

∂vte
∂z

(5.5)

and

Ḟe[Fe, ue‖, vte](z, w‖, w⊥, t) :=

[
w‖

(
3
∂vte
∂z
− vte
ne

∂ne
∂z

)
− 2

nemev2te

∂qe‖

∂z

]
Fe. (5.6)

The modified collision operators Cee, Cei and Cen are described in Appendix C. Note that,
in equations (C 1) and (C 6), we have kept small terms that scale with (us‖ − ue‖)/vte ∼√
me/mi � 1, where s = i, n. These terms are kept to ensure that we recover the

Braginskii equations in the appropriate limit (see subsection 5.4).
We have ensured that equation (5.2) is compatible with conditions (4.7), (4.8) and (4.9)

by keeping terms that are second order in ue‖ in the collision operators in Appendix C.
Indeed, multiplying equation (5.2) by 1, w‖ and w2

‖ +w2
⊥ and integrating over velocities

gives 0 = 0. Despite the fact that we do not keep all possible terms that are second order
in
√
me/mi in the collision operator, we will see in subsection 5.4 that proposed model

recovers the regimes of interest.
Conditions (4.7), (4.8) and (4.9) have to be imposed on Fe when solving the kinetic

equation (5.2). One possible way to impose these conditions is to include the term ∂Fe/∂t
in equation (5.2) so that we can evolve Fe to a steady state solution. With this approach,
if Fe satisfies conditions (4.7), (4.8) and (4.9) at t = 0, it will satisfy them at all times.
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5.2. Electron fluid equations

Once we know Fe, we can calculate the fluid equations for electrons.
• The electron continuity equation is

∂ne
∂t

+
∂

∂z

(
neue‖

)
= −nennRion +

∫
Se d3v. (5.7)

Subtracting this equation from equation (4.10) and using quasineutrality, we obtain the
current conservation equation

∂

∂z

[
ne
(
ui‖ − ue‖

)]
=

∫
Si d3v −

∫
Se d3v. (5.8)

This equation can be used to calculate ue‖.
• The electron parallel momentum equation simplifies to

0 = −
∂pe‖

∂z
+ ene

∂φ

∂z
+ Fei‖ + nemennRen(un‖ − ue‖), (5.9)

where

Fei‖[Fe, ne, ni, ue‖, ue‖, vte, vti](z, t)

:=− 8π2e4neni ln Λ

(4πε0)2mev2te

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥
w⊥(w‖ − (ui‖ − ue‖)/vte)Fe

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

(5.10)

is the friction force between electrons and ions. Equation (5.9) can be used to calculate
the potential φ. Since the potential at φ(0, t) is determined by equation (3.5), we can start
integrating φ at z = 0. With the potential φ(L, t) that we obtain from this integration
and condition (3.3), we can calculate the potential difference between the two walls, φw.
• The electron energy equation is

3

2
ne

(
∂Te
∂t

+ ue‖
∂Te
∂z

)
= −

∂qe‖

∂z
− pe‖

∂ue‖

∂z
+

∫
1

2
me|v − ue‖ẑ|2Ce,ion d3v

+

∫
1

2
me|v − ue‖ẑ|2Cei

[
1 +O

(
me

mi

)]
d3v

+

∫
1

2
me|v − ue‖ẑ|2Cen

[
1 +O

(
me

mi

)]
d3v

+

∫ (
1

2
me|v − ue‖ẑ|2 −

3

2
Te

)
Se d3v. (5.11)

For the integral over the ionization collision operator, we use the model∫
1

2
me|v − ue‖ẑ|2Ce,ion d3v = −nennRionEion, (5.12)

where Eion is the ionization energy cost that includes in it radiation from excited states.
The integrals over Cei and Cen are only sufficiently large when collisions are large. In
this limit, all the species are Maxwellian and we can easily calculate the integrals over
Cei and Cen to higher order in the mass ratio expansion, finding∫

1

2
me|v − ue‖ẑ|2Cei[fe, fi]

[
1 +O

(
me

mi

)]
d3v ' 3nemeνei

mi
(Ti − Te)

+Fei‖(ui‖ − ue‖) (5.13)
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and∫
1

2
me|v − ue‖ẑ|2Cen[fe, fn]

[
1 +O

(
me

mi

)]
d3v ' 3nemennRen

mi
(Tn − Te)

+nemennRen(un‖ − ue‖)2. (5.14)

5.3. Boundary conditions

These equations for electrons have to be solved with the boundary conditions in equa-
tions (3.1) and (3.4). As for ions and neutrals, the best way to impose these boundary
conditions is to transform back to fe, apply the boundary conditions and then calculate
Fe, ne, me, vte, pe‖ and qe‖ from fe.

5.4. Some limits of interest

We finish by showing that these equations recover the desired result in the two limits of
interest: a modified Braginskii limit with neutrals, and a collisionless limit.

5.4.1. Braginskii-like equations

For the Braginskii-like limit, we use the orderings suggested in (Catto 1994; Helander
et al. 1994): we assume that the ion-ion, ion-neutral, electron-electron, electron-ion and
electron-neutral collisions are so frequent that their collision frequencies νss′ satisfy

νss′L

vts
∼
√
mi

me
� 1, (5.15)

whereas the ionization frequencies neRion and nnRion are of order vti/L.
In this limit, the charge exchange collisional terms dominate in the ion and neutral

momentum and energy equations, forcing ui‖ = un‖ and Ti = Tn. We use uh‖ and Th to
denote the average flow and temperature of the heavy species. By summing the ion and
neutral momentum equations (4.11) and (4.26), we find the equation for uh‖,

(ni + nn)mi

(
∂uh‖

∂t
+ uh‖

∂uh‖

∂z

)
= − ∂

∂z
(pi‖ + pn‖)− eni

∂φ

∂z

+

∫
mi(v‖ − uh‖)(Si + Sn) d3v. (5.16)

By summing the ion and neutral energy equations (4.12) and (4.27), we find the equation
for Th,

3

2
(ni + nn)

(
∂Th
∂t

+ uh‖
∂Th
∂z

)
= − ∂

∂z
(qi‖ + qn‖)− (pi‖ + pn‖)

∂uh‖

∂z

+
3neme(νei + nnRen)

mi
(Te − Th) +

∫ (
1

2
mi|v − uh‖ẑ|2 −

3

2
Th

)
(Si + Sn) d3v.

(5.17)

Note that in this energy equation, the terms due to electron-ion and electron-neutral
collisions are of the same order as the other terms.

In the electron fluid equations, the collisional friction terms in the electron momentum
equation (5.9) are comparable to the pressure and electric field terms. The electron heat
flux term and the terms related to the electron-ion and electron-neutral collisions in the
electron energy equation (5.11) are also comparable to the rest of the terms.

In the kinetic equations, the collisions dominate and lead to distribution functions that
are Maxwellian to lowest order. We can use the kinetic equations to find the corrections
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to the Maxwellian. For ions and neutrals, the corrections to the Maxwellian do not give
large contributions to either the parallel pressure or the heat flux. For the electrons, how-
ever, the correction gives important contributions to the friction force in the momentum
equation (5.9) and to the electron heat flux in the energy equation (5.11). If we write
Fe = FM + Fe1 + . . ., with FM := π−3/2 exp(−w2

‖ − w
2
⊥), we can find the equation for

Fe1 (Braginskii 1958),

C(`)ee [Fe1] + C(`)ei
[
Fe1 −

2(uh‖ − ue‖)w‖
vte

FM

]
+ C(`)en

[
Fe1 −

2(uh‖ − ue‖)w‖
vte

FM

]
+

16π2e4ni ln Λ

(4πε0)2m2
ev

3
te

w‖FM

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥w

′
‖Fe1(z, w′‖, w

′
⊥, t)

(w′2‖ + w′2⊥)3/2

=

[
vtew‖

(
w2
‖ + w2

⊥ −
5

2

)
∂

∂z
lnTe +

32
√
πe4ni ln Λ(uh‖ − ue‖)w‖

3(4πε0)2m2
ev

4
te

+
2nnRen(uh‖ − ue‖)w‖

vte

]
FM . (5.18)

Here we have neglected the electron heat flux qe‖ because it is proportional to Fe1.

The collision operators C(`)ee , C(`)ei and C(`)en are the linearized collision operators, given
in Appendix D. Note that the terms proportional to uh‖ − ue‖, needed to recover the
friction force and electron heat flux in Braginskii (1958) (see subsection 5.4), come from
the electron-ion and electron-electron collision operators in equations (C 1) and (C 6).

We finish by pointing out that Fe satisfies conditions (4.7), (4.8) and (4.9) to the order
that we have calculated it. Since FM satisfies these conditions, the conditions for Fe1
become

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥Fe1(z, w‖, w⊥, t) = 0, (5.19)

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥w‖Fe1(z, w‖, w⊥, t) = 0 (5.20)

and

2π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w⊥(w2
‖ + w2

⊥)Fe1(z, w‖, w⊥, t) = 0. (5.21)

These conditions determine the pieces of Fe1 that are in the kernel of the operators in
the left side of equation (5.18).

5.4.2. Collisionless electron equations

We call this limit collisionless in contraposition to the collisional Braginsikii-like limit
discussed above, but we still keep collisions. We assume that ion-ion, ion-neutral, electron-
electron, electron-ion, electron-neutral and ion-neutral collisions satisfy

νss′L

vts
∼ 1. (5.22)

The ionization frequencies neRion and nnRion are still assumed to be of order vti/L.
In this limit, we can neglect the collisional coupling between the heavy species (ions

and neutrals) and electrons in the fluid equations. In the electron energy equation (5.11),
the dominant term is ∂qe‖/∂z, giving

∂qe‖

∂z
' 0 (5.23)
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In the electron momentum equation (5.9), the friction forces are negligible, giving

∂pe‖

∂z
' ene

∂φ

∂z
. (5.24)

Using these results in the electron kinetic equation (5.2) and neglecting ui‖ − ue‖ and
un‖ − ue‖ in the collision operators in equation (C 1) and (C 6), we find[

vtew‖
∂

∂z
+

(
e

mevte

∂φ

∂z
− w2

‖
∂vte
∂z

)
∂

∂w‖
− w‖w⊥

∂vte
∂z

∂

∂w⊥

](
neFe
v3te

)
=
ne
v3te

(
Cee + C(`)ei + C(`)en

)
. (5.25)

The collision operators C(`)ei and C(`)en are defined in Appendix D.
We can use entropy production of the electron-electron, electron-ion and electron-

neutral collision operators to solve equation (5.25). We multiply equation (5.25) by
− ln(neFe/v

3
te) to find[

vtew‖
∂

∂z
+

(
e

mevte

∂φ

∂z
− w2

‖
∂vte
∂z

)
∂

∂w‖
− w‖w⊥

∂vte
∂z

∂

∂w⊥

] [
neFe
v3te

(
1− ln

(
neFe
v3te

))]
= − ne

v3te
ln

(
neFe
v3te

)(
Cee + C(`)ei + C(`)en

)
.

(5.26)

Multiplying by v3te and integrating over velocity space, we obtain

∂

∂z

[
nevte

∫ (
1− ln

(
neFe
v3te

))
Few‖w⊥ dw‖ dw⊥

]

= −ne
∫

ln

(
neFe
v3te

)(
Cee + C(`)ei + C(`)en

)
w⊥ dw‖ dw⊥. (5.27)

Integrating equation (5.27) over z gives[
nevte

∫ (
1− ln

(
neFe
v3te

))
Few‖w⊥ dw‖ dw⊥

]z=L
z=0

= −ne
∫ L

0

dz

∫
ln

(
neFe
v3te

)(
Cee + C(`)ei + C(`)en

)
w⊥ dw‖ dw⊥. (5.28)

Conditions (3.3) and (3.5) impose that only a few electrons leave the system towards the
wall. The number of electrons that leave is small by a factor of

√
me/mi � 1 and thus,

the left side of equation (5.28) can be neglected, finally giving

−
∫ L

0

dz

∫
ln

(
neFe
v3te

)(
Cee + C(`)ei + C(`)en

)
w⊥ dw‖ dw⊥ ' 0. (5.29)

The integrand under the integral over z is the entropy production, and it is positive
unless the distribution function Fe is the Maxwellian FM . Hence, Fe is a Maxwellian to
lowest order in the expansion in

√
me/mi.

Substituting the Maxwellian into equation (5.25), we find that the right side of the
equation vanishes. For the left side of the equation to be zero for all w‖ and w⊥, we need
∂vte/∂z = 0 and

ne(z, t) = Ne(t) exp

(
eφ(z, t)

Te(t)

)
. (5.30)
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The value of Ne(t) is calculated from quasineutrality,

Ne(t)

∫ L

0

exp

(
eφ(z, t)

Te(t)

)
dz =

∫ L

0

ni(z, t) dz. (5.31)

The value of Te(t) is obtained from the electron energy equation. Integrating the energy
equation (5.11) over z, we find

3

2

d

dt

[
NeTe

∫ L

0

exp

(
eφ

Te

)
dz

]
= −

[
5

2
neue‖Te + qe‖

]z=L
z=0

+

∫ L

0

(
ene

∂φ

∂z
− nennRionEion +

∫
1

2
mev

2Se d3v

)
dz. (5.32)

It might seem that the heat flux should vanish here because the distribution function is
a Maxwellian to lowest order. In reality, the real Fe is sufficiently far from a Maxwellian
at large velocities to induce a significant heat flux. Indeed, to satisfy boundary condi-
tions (3.1) and (3.4), the distribution function must vanish exactly in certain regions of
phase space. Since these regions are at large velocities, the techniques used to calculate
the collisional losses into the loss cones of mirror machines can be used (Pastukhov 1974).

6. Discussion

The model that we propose is comprised of:
• the three fluid equations (4.10), (4.11) and (4.12) for ions that have to be solved in

conjunction with the ion kinetic equation (4.19);
• the three fluid equations (4.25), (4.26) and (4.27) for neutrals that have to be solved

in conjunction with the neutral kinetic equation (4.29);
• the two fluid equations (5.8) and (5.11) for electrons that have to be solved in

conjunction with the electron kinetic equation (5.2) with the modified coefficients (5.3),
(5.4), (5.5) and (5.6); and
• the electron parallel momentum equation (5.9) for the potential.

The boundary conditions for this system of equations are described in section 3.
To test the model proposed in this report, we will first extend the existing code based

on adiabatic electrons, which we prove to a be a good approximation for collisionless
plasmas in section 5.4, to wall boundary conditions. We will then explore the effect of
adding electrons. For most physics of interest, it is sufficient to use simplified ion-ion and
electron-electron collision operators, and for this reason we do not expect to implement
a full Fokker-Planck collision operator.

Appendix A. Modified collision operators for the ion kinetic equation

The modified Fokker-Planck like-particle collision operator is

Css[Fs,ns, vts](z, w‖, w⊥, t)

:=
2πe4ns ln Λ

(4πε0)2m2
sv

3
ts

{
∂

∂w‖

(
D‖‖[Fs]

∂Fs
∂w‖

+D‖⊥[Fs]
∂Fs
∂w⊥

+ P‖[Fs]Fs
)

+
1

w⊥

∂

∂w⊥

[
w⊥

(
D‖⊥[Fs]

∂Fs
∂w‖

+D⊥⊥[Fs]
∂Fs
∂w⊥

+ P⊥[Fs]Fs

)]}
. (A 1)
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The coefficients needed for this collision operator are

D‖‖[Fs](z, w‖, w⊥, t) := 4

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
K(κ)−

(w‖ − w′‖)
2E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2

)
Fs(z, w

′
‖, w

′
⊥, t), (A 2)

D‖⊥[Fs](z, w‖, w⊥, t) := 2

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥(w‖ − w′‖)

w⊥
√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
[(w‖ − w′‖)

2 − w2
⊥ + w′2⊥]E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2
−K(κ)

)
Fs(z, w

′
‖, w

′
⊥, t), (A 3)

D⊥⊥[Fs](z, w‖, w⊥, t) := 2

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥

w2
⊥

√
(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

{
2w⊥

[
w⊥(w‖ − w′‖)

2

(w‖ − w′‖)2 + (w⊥ − w⊥)2
− w′⊥

]
E(κ)

+[(w‖ − w′‖)
2 + w2

⊥ + w′2⊥][K(κ)− E(κ)]

}
Fs(z, w

′
‖, w

′
⊥, t), (A 4)

P‖[Fs](z, w‖, w⊥, t) := 8

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥(w‖ − w′‖)√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
K(κ)− E(κ)

(w‖ − w′‖)2 + (w⊥ + w′⊥)2
− E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2

)
Fs(z, w

′
‖, w

′
⊥, t)

(A 5)

and

P⊥[Fs](z, w‖, w⊥, t) := 4

∫ ∞
−∞

dw′‖

∫ ∞
0

dw′⊥
w′⊥

w⊥
√

(w‖ − w′‖)2 + (w⊥ + w′⊥)2

×

(
[(w‖ − w′‖)

2 − w2
⊥ + w′2⊥]E(κ)

(w‖ − w′‖)2 + (w⊥ − w′⊥)2
−K(κ)

)
Fs(z, w

′
‖, w

′
⊥, t). (A 6)

Here, K(κ) :=
∫ π/2
0

(1− κ2 sin2 α)−1/2 dα and E(κ) :=
∫ π/2
0

(1− κ2 sin2 α)1/2 dα are the
elliptic integrals, and the function κ is

κ(w‖, w⊥, w
′
‖, w

′
⊥) :=

√
4w⊥w′⊥

(w‖ − w′‖)2 + (w⊥ + w′⊥)2
. (A 7)
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The modified charge exchange collision operator for the ion kinetic equation is

Cin[Fi, Fn, nn, ui‖, un‖, vti, vtn](z, w‖, w⊥, t)

:=− nnRin
[
Fi −

v3ti
v3tn

Fn

(
z,
ui‖ − un‖

vtn
+
vti
vtn

w‖,
vti
vtn

w⊥, t

)]
+ nnRin

∂

∂w‖

[(
un‖ − ui‖

vti
+
w‖

2

(
v2tn
v2ti
− 1 +

2(un‖ − ui‖)2

3v2ti

))
Fi

]
+
nnRin
w⊥

∂

∂w⊥

[
w2
⊥
2

(
v2tn
v2ti
− 1 +

2(un‖ − ui‖)2

3v2ti

)
Fi

]
. (A 8)

Finally, the modified ionization collision operator for the ion kinetic equation is

Ci,ion[Fn, ne, ui‖, un‖, vti, vtn](z, w‖, w⊥, t)

:=− neRion

[
Fi −

v3ti
v3tn

Fn

(
z,
ui‖ − un‖

vtn
+
vti
vtn

w‖,
vti
vtn

w⊥, t

)]
+ neRion

∂

∂w‖

[(
un‖ − ui‖

vti
+
w‖

2

(
v2tn
v2ti
− 1 +

2(un‖ − ui‖)2

3v2ti

))
Fi

]
+
neRion

w⊥

∂

∂w⊥

[
w2
⊥
2

(
v2tn
v2ti
− 1 +

2(un‖ − ui‖)2

3v2ti

)
Fi

]
. (A 9)

Appendix B. Modified collision operators for the neutral kinetic
equation

The modified charge exchange collision operator for the neutral kinetic equation is

Cni[Fn, Fi, ni, un‖, ui‖, vtn, vti](z, w‖, w⊥, t)

:=− niRin
[
Fn −

v3tn
v3ti

Fi

(
z,
un‖ − ui‖

vti
+
vtn
vti

w‖,
vtn
vti

w⊥, t

)]
+ niRin

∂

∂w‖

[(
ui‖ − un‖

vtn
+
w‖

2

(
v2ti
v2tn
− 1 +

2(un‖ − ui‖)2

3v2tn

))
Fn

]
+
niRin
w⊥

∂

∂w⊥

[
w2
⊥
2

(
v2ti
v2tn
− 1 +

2(un‖ − ui‖)2

3v2tn

)
Fn

]
. (B 1)

Appendix C. Modified collision operators for the electron kinetic
equation

The electron-electron collision operator is described in equation (A 1).
The modified ion-electron collision operator is

Cei[Fe, ni, ui‖, ue‖, vte](z, w‖, w⊥, t)

:=
2πe4ni ln Λ

(4πε0)2m2
ev

3
te

{
∂

∂w‖

[
M‖‖

∂Fe
∂w‖

+M‖⊥
∂Fe
∂w⊥

+

(
1 +

2(ui‖ − ue‖)w‖
3vte

)
F‖Fe

]

+
1

w⊥

∂

∂w⊥

[
w⊥

(
M‖⊥

∂Fe
∂w‖

+M⊥⊥
∂Fe
∂w⊥

+
2(ui‖ − ue‖)w⊥

3vte
F‖Fe

)]}
, (C 1)
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where

M‖‖[ue‖, vte, ui‖](z, w‖, w⊥, t) :=
w2
⊥

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

, (C 2)

M‖⊥[ue‖, vte, ui‖](z, w‖, w⊥, t) := −
(w‖ − (ui‖ − ue‖)/vte)2w⊥

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

, (C 3)

M⊥⊥[ue‖, vte, ui‖](z, w‖, w⊥, t) :=
(w‖ − (ui‖ − ue‖)/vte)2

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

(C 4)

and

F‖[Fe, ue‖, vte, ui‖](z, t)

:= −4π

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥
w⊥[w‖ − (ui‖ − ue‖)/vte]Fe(z, w‖, w⊥, t)

[(w‖ − (ui‖ − ue‖)/vte)2 + w2
⊥]3/2

. (C 5)

The modified electron-neutral collision operator is

Cen[Fe, nn, un‖, ue‖, vte](z, w‖, w⊥, t) := −nnRen
[
Fe −

1

2

∫ π

0

sinχFe(z, w‖, w⊥, t) dχ

]
+
nnRen(un‖ − ue‖)

vte

∂

∂w‖

[(
1 +

2(un‖ − ue‖)w‖
3vte

)
Fe

]
+

2nnRen(un‖ − ue‖)2

3v2tew⊥

∂

∂w⊥

(
w2
⊥Fe

)
,

(C 6)

where

w‖[ue‖, vte, un‖](χ, z, w‖, w⊥, t) :=
un‖ − ue‖

vte
+ cosχ

√(
w‖ −

un‖ − ue‖
vte

)2

+ w2
⊥ (C 7)

and

w⊥[ue‖, vte, un‖](χ, z, w‖, w⊥, t) := sinχ

√(
w‖ −

un‖ − ue‖
vte

)2

+ w2
⊥. (C 8)

Appendix D. Linearized collision operators for electrons

The linearized electron-electron collision operator is given by

C(`)ee [Fe1, ne, vte](z, w‖, w⊥, t)

:=
2πe4ne ln Λ

(4πε0)2m2
ev

3
te

{
∂

∂w‖

(
D‖‖[FM ]

∂Fe1
∂w‖

+D‖⊥[FM ]
∂Fe1
∂w⊥

+ P‖[FM ]Fe1

− 2w‖D‖‖[Fe1]FM − 2w⊥D‖⊥[Fe1]FM + P‖[Fe1]FM

)

+
1

w⊥

∂

∂w⊥

[
w⊥

(
D‖⊥[FM ]

∂Fe1
∂w‖

+D⊥⊥[FM ]
∂Fe1
∂w⊥

+ P⊥[FM ]Fe1

− 2w‖D‖⊥[Fe1]FM − 2w⊥D⊥⊥[Fe1]FM + P⊥[Fe1]FM

)]}
. (D 1)



1D drift kinetic models with wall boundary conditions 19

The coefficients are defined in Appendix A.
The linearized electron-ion collision operator is

C(`)ei [Fe1, ni, vte](z, w‖, w⊥, t)

:=
2πe4ni ln Λ

(4πε0)2m2
ev

3
te

{
∂

∂w‖

[
w2
⊥

(w2
‖ + w2

⊥)3/2
∂Fe1
∂w‖

−
w‖w⊥

(w2
‖ + w2

⊥)3/2
∂Fe1
∂w⊥

]

+
1

w⊥

∂

∂w⊥

[
w⊥

(
−

w‖w⊥

(w2
‖ + w2

⊥)3/2
∂Fe1
∂w‖

+
w2
‖

(w2
‖ + w2

⊥)3/2
∂Fe1
∂w⊥

)]}
. (D 2)

Finally, the linearized electron-neutral collision operator is

C(`)en [Fe1, nn, vte](z, w‖, w⊥, t) := −nnRen

[
Fe1

− 1

2

∫ π

0

sinχFe1

(
z, cosχ

√
w2
‖ + w2

⊥, sinχ
√
w2
‖ + w2

⊥, t
)

dχ

]
. (D 3)
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