
Excalibur-Neptune report

2047356-TN-05-2

Task 4.2 BOUT++ multifluid implementation

Ben Dudson, Peter Hill, Ed Higgins, David Dickinson, and Steven
Wright

University of York

David Moxey

University of Exeter

October 28, 2021



Contents

1 Executive summary 1

2 Introduction 2

3 Subclassing 4

3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1.1 Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1.2 Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Advantages and disadvantages . . . . . . . . . . . . . . . . . . . 7

4 State-Command pattern 8

4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Advantages and disadvantages . . . . . . . . . . . . . . . . . . . 10

5 Alternatives 12

5.1 Entity Component Systems . . . . . . . . . . . . . . . . . . . . . 13

5.2 Task graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6 Conclusions 14

7 References 15

1 Executive summary

In this report BOUT++ [1] is used as a platform to test design patterns which

enable plasma simulations models to be extended from single ion species to

multiple species. The aims are to:
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1. Evaluate code designs which enable single-species plasma simulations to

be extended to multiple species, in terms of their flexibility and complexity

of implementation. This can inform the design of models built on other

frameworks, including finite element and spectral libraries.

2. Explore Domain Specific Languages (DSLs) for specifying complex multi-

fluid models, and provide a platform for further development.

2 Introduction

An important feature of tokamak edge plasmas is that they consist of a mixture

of different species. Physics studies of some phenomena, such as plasma turbu-

lence, have frequently treated the plasma as if it consisted of a single ion species

(eg. deuterium). In order to make predictions of phenomena important to the

performance and design of the divertor, models must capture the interactions

between plasma and neutral gas species (deuterium and tritium in a reactor),

as well as radiation from impurity species (eg. Be, C, Ne, Ar, W). Efficient

pumping of helium “ash” is also an important aspect of the design. In many

cases none of these species can be treated as “trace”, but are all coupled, so

that all should be considered self-consistently in the same simulation. For each

of these atomic species, the density and dynamics of multiple states may need

to be considered, for example the ground state, multiple ionisation stages, and

molecular species. In some cases it may also be necessary to track metastable

states, such as vibrationally excited states or charged molecules. The result is

a potentially large number of species types which must be solved for, together

with a complex set of reactions between them.

If the number of species states to be solved for is relatively small, such as

electrons, ions and a single atomic species as in Hermes-2 [2] and recent versions

of STORM [3], then code can be written for each species. Unfortunately with

this design the size of the code (number of lines) grows linearly with the number

of species states, becoming increasingly error prone, difficult to test, and hard

to maintain, as the number of species is increased. Experience with Hermes-2

indicated that this was not a viable path to multi-species simulations.

Some desirable features of a software design for this problem are:
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1. The number and type of species to be solved for, and the reactions be-

tween them, should be customisable. Either at run-time with a user-

friendly configuration language (DSL), or at compile time with minimal

code changes.

2. The code must be modular such that it can be tested in small pieces.

This makes finding and fixing errors more efficient than tests which run

the whole of a large model.

3. Code modules must be reusable: Where the evolution equations for two

species are the same, the same code should be used to perform those

calculations. This is needed to limit growth of code size with number of

species, and reduce the amount of code which needs to be tested.

4. The composition of these modules should be reliable: The configuration

method (e.g. input DSL) should prevent unphysical or erroneous combi-

nations of components, or these should be caught quickly at run-time. In

particular the system design should prevent the following scenarios:

• Incorrect use: A value is used in a way which is inconsistent, for

example the units or normalisations are different.

• Set after use: Calculating a quantity after it is used, so that it is

either assumed to be zero (missing) or incorrect values are used (e.g

uninitialised values, or values from a previous timestep).

• Update after use: Similar to set after use, a term or quantity

(e.g collision rate) is modified after it has been used. The result is

inconsistent with what the user likely intended.

• Unused values: A term which the user intends to be used, such as

a source or sink, is calculated but never used.

In this report we describe two multi-fluid implementations, both built on top

of BOUT++: In section 3 a 1D model developed from SD1D is described,

which uses inheritance to define species behaviour, and a centralised system to

coordinate interactions between species. In section 4 a more flexible code design

is presented, which is capable of 1,2 or 3-dimensional multi-fluid simulations,

and coordinates inputs and outputs of code components through a state object.

The advantages and disadvantages of these approaches will be discussed. Finally

in section 5.1 the Entity Component System (ECS) approach to solving similar

problems is discussed, which was originally developed for game development.
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3 Subclassing

In this section we describe an approach to building a multi-fluid simulation

model using a class hierarchy, where object-oriented inheritance is used to adapt

and specialise behaviour. This development started from the SD1D single-fluid

code [4].

3.1 Architecture

In this design, the model is divided into Species, which represent particular

evolving atomic or ion species, and Reactions, which represent all interactions

between species. Species hold the data representing the state of the system

(density, temperatures etc.), and have no knowledge of other species or inter-

actions between them; all interactions are represented by externally specified

sources and sinks of particles, momentum and energy. Reactions here repre-

sent all interactions between species, including effects such as ionisation and also

things like thermal forces which would not normally be considered to be “reac-

tions”. The interaction between Species and Reactions objects is orchestrated

by a central object representing the whole system, which creates and contains

lists of the participating species and reactions objects. This is illustrated in

figure 1

Species Reaction

getDensity()

getTemperature()

getVelocity()

addParticleSource()

addMomentumSource()

addEnergySource()

updateSpecies(species[])

getParticleSources()

getMomentumSources()

getEnergySources()

n

T

v

state

Figure 1: Subclassing architecture, in which Species objects describe plasma
species, and Reactions represent interactions between them. All interactions
are carried out through exchange of sources.

4



An implementation of this design is provided in SD1D-multifluid available at

https://github.com/boutproject/SD1D/tree/new-multifluid. The evalu-

ation of the time derivatives is done in the following steps:

1. Call the evolve() method for each species. The species updates its own

density, velocity and temperature by taking values from the BOUT++

time integrator, which advances the entire system of all species syncronously.

2. Call the updateSpecies() method for each reaction, passing in the state of

all species in the simulation. The reaction updates its own rates, using

the state of all the species

3. The mass, momentum and energy sources and sinks are requested from

each reaction, and added to the required species by passing the sources/sinks

to the species objects.

Details of these steps are given below, starting with a description of the Species

class.

3.1.1 Species

Every species has an atomic mass number and charge, and a density, tempera-

ture and velocity at every point in the domain. To distinguish between model

equations for different types of species, the Species class can be subclassed.

The FluidSpecies class evolves three equations for the density, momentum

and pressure. These equations do not include coupling to other species, but

are updated by a call to an evolve() function which is implemented for each

Species class.

∂n

∂t
= −∇ ·

[
bv||n

]
(1)

∂

∂t

(
3

2
p

)
= −∇ · qe + v||∂||p (2)

∂

∂t

(
minv||

)
= −∇ ·

[
minv||bv||

]
− ∂||p (3)

qe =
5

2
pbv|| − κ||∂||Te (4)
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As with all BOUT++ models, the whole system is evolved together in time,

so that the time integrator treats all time-evolving variables as part of a single

state vector.

3.1.2 Reactions

The evolve() function for each species is not passed information on the other

species present, and so cannot calculate interactions between species. The equa-

tions 1-4 for each species are therefore decoupled. To couple species together,

additional terms need to be added to the right hand side of these equations.

To represent reactions, collisions, and other interactions between species, a set of

Reaction classes are defined. Each reaction defines a method updateSpecies(),

which is passed a collection (a C++ map) of all species in the simulation. The

intention is that this function calculates all reaction rates, and exchanges of

particles, momentum and energy between species.

Each reaction can also implement methods which return density, momentum and

energy sources (densitySources(), momentumSources() and energySources()).

These return C++ maps of species→ Field3D, where a Field3D represents a

spatially dependent scalar field, here representing the net source for the species

due to the reaction.

In terms of python-like pseudo-code, the main loop of the SD1D multifluid

implementation, which calculates the time derivatives of all evolving quantities,

consists of:

for species in species_list:

species.evolve()

for reaction in reaction_list:

# Calculate reaction rates using all species

reaction.updateSpecies(species_list)

for species_name, source in reaction.densitySources():

# Check that the species is in species_list
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species_list[species_name].addDensity(source)

for species_name, source in reaction.momentumSources():

species_list[species_name].addMomentum(source)

for species_name, source in reaction.energySources():

species_list[species_name].addEnergy(source)

3.2 Advantages and disadvantages

In terms of the desirable characteristics described in the introduction (section 2

(with subjective score)):

1. Customisable (medium): The species and reactions to be created can

be specified at run-time: A list of species and a list of reactions are built

during initialisation, and iterated over. The interaction between species is

however limited to a single round, meaning that some interactions which

depend on multiple steps (e.g. calculating electromagnetic fields, or colli-

sion rates, then using those quantities in a further calculation) are difficult

to customise.

2. Modular (low): Each species can be largely tested in isolation, because

it is self-contained and all interactions are through sources which can be

specified as part of the test. Reactions similarly don’t depend on each

other, though do depend on Species. This provides some coarse grained

modularity, but is not sufficient to simplify testing: The Species objects

are however complex internally, and are coupled to the time integrator,

making them hard to test with frameworks like GoogleTest. Furthermore

creating Species objects to test Reactions can be quite complex.

3. Reusable (medium): The code for Species is quite reusable; the code to

solve the fluid moment equations is the same for all species. Where there

are species-specific terms, these can be added as Reactions (even though

they only involve one species). The code for Reactions is however harder

to reuse, and so there are many implementations of essentially the same

reaction but using different rates. This is something which could likely
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be improved, using inheritance for classes of reactions, but needs further

design work.

4. Reliable (high): The coordination of interactions between species in a sin-

gle centralised place enables a number of useful checks to be performed:

The code can ensure that sources and sinks are always balanced between

species. The simple interaction between components involving a single

interaction (species state to reactions, then reaction sources to species)

means there is little room for unexpected behaviour, but also limited abil-

ity to incorporate more complex multi-step calculations.

The two main disadvantages of this structured approach are that

1. The dependencies between components are very restricted. Complex in-

teractions between different parts of the code should be minimised, but

the scheme used here with only two steps (species evolve, reaction update)

is overly restrictive: There is no way to, for example, modify the calcula-

tion of the collision frequency or electric field, and have that affect other

calculations.

2. The class hierarchy of Species isn’t really used: Only a single species type

(FluidSpecies) is actually used, and all modifications to that species are

represented as reactions. Thus composition of behaviour turns out to be

more useful than inheritance.

Building on this experience, a different design which emphasises composition

was developed for Hermes-3, described in the following section.

4 State-Command pattern

Following experience with the inheritance pattern used in SD1D-multifluid, a

more abstract and general software architecture has been developed. This was

done so that a wider variety of interactions and effects could be incorporated,

than were possible with a single pass from species state to reactions. One of the

key aspects considered was how to enable mutual dependencies between code

components, while keeping code complexity manageable. This design has been
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implemented in Hermes-3 [5], which has been developed starting from an exist-

ing Hermes-2 single-fluid model [2] with a manual hosted on ReadTheDocs [6]

which describes in detail the code implemented. It is capable of 1-, 2-, and

3-dimensional simulations, and wide range of plasma models, configured by an

input text file.

The following sections describe the overall architecture (sec 4.1), and discuss

the advantages and disadvantages of this approach (sec 4.2).

4.1 Architecture

The main features of the state-command design are:

• A flexible store or database, into which values (e.g. spatially dependent

fields like densities, temperatures) can be inserted and later retrieved. In

Hermes-3 this is a nested dictionary strucure (a tree), using C++ variant

to enable different data types to be stored. A schema defines a convention

for where values are stored, for example state["species"]["h+"]["density"]

would be the number density of hydrogen ions.

• A collection of composable model components, which set and use values in

the store. For example there is a component which evolves an equation for

the density, another component which evolves an equation for pressure.

These components are configured when they are created, so that the same

code is used to evolve every species which needs that component. Every

component can access the whole state, so some perform calculations for a

single species, while others perform calculations involving multiple species

(e.g. collisions, sheath boundary conditions).

The flow of information carried by a state through a sequence of components is

shown in figure 2.

An important distinction between this design and one with a shared global state

is that the state is an object which is passed to components in a user-defined

order. This has two advantages:

1. It facilitates unit testing, because the inputs to the components can be
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Component Component Component

transform() transform() transform()

finally() finally() finally()

DoneState

Figure 2: State-Command pattern: The State of the simulation system is
passed through a sequence of Components in two passes. In the first pass
(transform() calls), components can modify the state; in the second pass
(finally() calls) the state cannot be modified, but is used to update com-
ponent internal states.

precisely specified with no hidden side-channels or large setup/teardown

procedures.

2. Access to the state can be controlled, making the logic of the program

easier to follow. In Hermes-3 each component is passed the state twice:

The first time the state is mutable, and the component can insert values

into it. After all components have been called in this way, the state is

“frozen”, and passed to each component again as const and so cannot

be modified. Each component can then use this final state to update

its own internal state, such as time derivatives to be passed to the time

integrator. This means that components can depend on each other, but

all modifications must be in the first function (called transform()), and

in the second function (called finally()) all components can assume that

the state will not subsequently change1.

4.2 Advantages and disadvantages

In terms of the desirable characteristics described in the introduction (section 2),

with subjective scoring:

1. Customisable (medium): The species and reactions to be created can

be specified at run-time: A list of components is built at run-time, and

can in principle represent a system of equations for an arbitrary number

1This could be used to enable all component finally() functions to be called in parallel,
but this is not currently done in Hermes-3.
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of species. Components can interact with each other in complex, though

not arbitrarily complex ways in order to simplify debugging.

2. Modular (high): The inputs to the components can be quite straightfor-

wardly created in tests, and because the components don’t interact with

global variables or other shared state, the number of different tests re-

quired to cover all possible code paths is minimised. As a result of this,

Hermes-3 has a collection of 50 unit tests (using GoogleTest) which cover

most of the code.

3. Reusable (high): The code is broken up into smaller pieces than the

SD1D-multifluid (subclassing) design, aiding reuse of components. Im-

provements to how the components and their configuration are specified

in Hermes (a Domain Specific Language of sorts) make reusing compo-

nents for reactions quite straightforward.

4. Reliable (low-medium): The flexible data structure used to store the

state does not by itself provide many checks to ensure consistency and

correctness. As implemented in Hermes-3, the user could specify an incor-

rect ordering of components, since dependencies are not explicitly specified

in a way that would enable automatic ordering.

To mitigate some potential reliability issues (“set after use” and “update after

use”), the setting and getting of values in the state is further controlled: If a

component requests (get) a value from the state, then by default that value

cannot be further modified. The assumption is that the component will treat

the value as final, rather than a preliminary value which might be modified later

by another component. In order to get a value which might be modified later,

the more verbose getNonFinal function can be used.

An important corner case is components such as boundary conditions, where the

value of the boundary cells is modified. The solution described above doesn’t

distinguish between cells in the boundary and in the domain, and therefore

doesn’t catch modifications after the boundary condition is applied. We there-

fore need to distinguish between boundary conditions and values in the domain;

at any point in the calculation one or both of these could be considered “final”.

The design used in Hermes-3 is that each value has two flags which can be set:

final-domain means that the values in the domain are final and cannot be
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modified; final means that all cells are final and cannot be modified. There

are three ways to get values from the store: get() means the caller assumes

the value everywhere (including boundaries) is final; getNoBoundary() means

the boundary cells are not assumed final, and getNonFinal() means all values

may be further modified later. There are also two ways to set values: set() can

modify any cells, and checks that neither final nor final-domain flags have

been set; setBoundary() modifies only the boundary, and checks that final

flag has not been set.

After making these correctness improvements, failure modes described in sec-

tion 2 are considered here:

• Incorrect use: The meaning and units for each quantity are not enforced

automatically, but follow a documented schema. Automatic enforcement

of compatible units is usually difficult because the equations being solved

are made dimensionless. Further improvements might be possible if code

and data were annotated, so that the type of data expected can be checked

(e.g. is this data a rate, a density, a temperature?)

• Set after use: This failure is mostly prevented by marking values as final

when they are used. This includes data which is missing (and so may be

assumed to be zero in the consuming component), so that setting a value

after it is used results in an error.

• Update after use: The same comments apply as for “set after use”.

• Unused values: This is currently not prevented. It would be possible to

check after all components have been run that all values have been used.

There are cases where components can set values which are not used in

the particular (perhaps simplified) model that the user is solving.

5 Alternatives

In the previous sections (3 and 4) two designs have been described and im-

plemented using the BOUT++ framework to produce flexible plasma models

which can be configured at run-time based on input settings. There are other

software designs which aim to solve similar issues, which have been developed
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within scientific computing and in other fields. Here we briefly describe some of

these.

5.1 Entity Component Systems

Entity Component Systems (ECS) are a design pattern commonly used in game

development. It is intended to describe a set of “Entities” which represent things

which have defined sets of behaviour, and can interact with each other.

To define the behaviour of thse entities, an ECS enables components to be de-

fined and composed, rather than defining a class hierarchy to represent different

types of behaviour. These ECS systems also enable components to be iter-

ated over in an efficient manner, by managing the mapping of components to

contiguous memory structures.

A prominent and high-performance implementation of an ECS is EnTT [7]. Like

the state-command pattern, it offers flexibility through composition rather than

inheritance, and considerable run-time configurability.

For high performance scientific simulation codes, it is debatable whether run-

time configuration is essential or even beneficial: Once the simulation is set

up, it is performing the same set of operations repeatedly, calculating time

derivatives given different system states. Run-time configuration enables the

user (scientist) to modify the equations without recompiling, but means that

errors are only caught at runtime, which might have been caught quicker at

compile time. Compile-time configuration of the equations solved might enable

more optimisations, since conditionals can be known and optimised out by the

compiler. It is possible that Just-In-Time (JIT) compilation might offer the best

of both worlds; since the operations are the same with different data, run-time

analysis of the performance might enable real-time tuning to identify bottlenecks

and optimise throughput.

5.2 Task graphs

The majority of the code lines and computation cost of a simulation consists of

calculating the time derivatives of a system of equations, turning a PDE into an
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ODE which can be then integrated by standard explicit or implicit ODE solvers.

The outputs (the time derivatives) depend on quantities such as collision times

and flows, which in turn may depend on calculations of electromagnetic fields

or boundary conditions. The whole calculation can be viewed as a task graph.

Task graphs are a set of tasks, each with inputs and outputs; the outputs from

some tasks act as the input to other tasks. This is quite a general way of think-

ing about computations, and how to break them up into pieces. An advantage

from a performance perspective is that these tasks can be automatically sched-

uled, and in some cases moved between CPU and GPU depending on available

resources. Examples of task-based systems include StarPU [8] and TaskFlow[9]

which can use SYCL as an implementation language for cross-platform pro-

gramming.

6 Conclusions

Two multi-fluid plasma models have been implemented on top of the BOUT++

framework, using different architectures to achieve the flexibility and code reuse

needed for practical multi-fluid implementations. The desirable qualities of such

architectures have been discussed, and the implementations evaluated against

them. Lessons learned include that composition is a better model than inheri-

tance, and that plasma models quite naturally fit into a model of interconnected

tasks. Ideas for further refinement, and alternative directions to explore have

been suggested.
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