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1. Introduction

Calculation of the electrostatic potential is a challenge within the drift kinetic

approximation. This is because, without further manipulation of the drift kinetic system

of equations, there is no explicit equation to be solved for the potential: Instead, it

appears as a parameter in the drift kinetic equations for both electrons and ions, which

are then related to one another via quasineutrality. In report 2047357-TN-07-01 [1],

we showed how the electrostatic potential could be calculated self-consistently for a 2D

drift kinetic model with a helical magnetic field and with wall boundary conditions

appropriate for open field lines. Considerable care had to be taken to obtain an

expression for the electrostatic potential. In particular, a set of fluid equations had

to be formulated for the electron dynamics, with closure via coupling to the kinetic

equation for a modified electron particle distribution function. In this moment-kinetic

formulation, the parallel electron momentum equation becomes the equation for the

electrostatic potential, with an additional complication that the boundary value for the

potential must be determined implicitly as it enters in the limits of integration for the

parallel current at the plasma boundary.

Thus far we have side-stepped the issue of calculating the potential in our

ProxyApps by using a Boltzmann response for the electron dynamics so that no electron

equations need to be solved at all. We are now seeking to address this limitation, as we

describe in this report. In particular, we have implemented the electron fluid equations

for the 1+1D system described in report 2047357-TN-05-01 [2], with a Braginskii fluid

closure for the electrons [3]. The main advantage of restricting our attention to the

1+1D case is the fact that in such a system there is no need to solve for the electrostatic

1



2 DRIFT KINETIC SYSTEM OF EQUATIONS 2

potential itself: Instead, we need only compute the parallel electric field, and this allows

us to avoid for the moment the issue of how to solve for the electrostatic potential at

the boundary of the domain.

To begin we will provide a brief overview of the physical system we aim to model,

and provide the system of evolution equations for the various plasma species. We then

demonstrate that the implementation appears to be working by providing numerical

results and comparing with a test case.

2. Drift kinetic system of equations

We consider a plasma consisting of a single ion species of charge e and mass mi, a single

neutral species with mass mn = mi, and electrons with charge −e and mass me. The

plasma is immersed in a straight, homogeneous magnetic field of the form

B = Bẑ, (1)

where z is the field-aligned coordinate, and ẑ is the unit vector in the direction of ∇z.

We assume that the plasma is electrostatic and that the magnetic field terminates on

each end at a conducting wall. The spatial domain we consider is z ∈ [z−, z+], with

z+ − z− = Lz. The boundaries of the domain in z are assumed to be the entrances to

the magnetic pre-sheath.

We restrict our attention to parallel dynamics only and define the marginalised

distribution function

fs(z, v∥, t)
.
=

〈
f̂s(z, v∥, v⊥, ϑ, t)

〉
.
= 2π

∫ ∞

0

dv⊥v⊥f̂s, (2)

with f̂s the particle distribution function for species s, t the time, v∥ the parallel

component of the particle velocity v, and the angle brackets denoting integration over

gyro-angle ϑ and the perpendicular component of the particle velocity v⊥.

As described in, e.g., Report 2047537-TN-05-1 [2], the drift kinetic equations

describing the evolution of the marginalised particle distribution fs for the ions and

neutrals are

∂fi
∂t

+ v∥
∂fi
∂z

− e

mi

∂ϕ

∂z

∂fi
∂v∥

= −Rin (nnfi − nifn) +Rionnefn + Si (3)

and

∂fn
∂t

+ v∥
∂fn
∂z

= Rin (nnfi − nifn)−Rionnefn + Sn, (4)

where ϕ is the electrostatic potential, ns =
∫
dv∥fs is the particle density, Ss =

〈
Ŝs

〉
is a marginalised source accounting for, e.g., heating and fueling, and Rin and Rion

are constants that determine the ion-neutral charge exchange and ionisation rates,
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respectively. The distribution function fi is related to the electron density ne via

quasineutrality:

ni =

∫ ∞

−∞
dv∥fi = ne. (5)

One of the main challenges in solving this system of equations is that there is no

explicit equation for the electrostatic potential. If one were to try, e.g., to solve the ion

drift kinetic equation (3) and a corresponding electron drift kinetic equation using an

explicit time advance algorithm with ϕ at the previous time level as an input, then in

general the solutions for fi and fe so obtained would not satisfy Eq. (5). This procedure

could be iterated, with ϕ varied until quasineutrality were satisfied, or one could develop

an approach that guarantees satisfaction of quasineutrality from the outset. We have

presented two such approaches in previous reports: The first assumes a Boltzmann

electron response and thus avoids entirely the need to solve for the electron dynamics,

while the second uses a novel moment-kinetic approach in which the electron parallel

momentum equation can be used to solve for the potential explicitly while enforcing

quasineutrality. In this report we describe the numerical implementation and testing of

a set of electron fluid equations that can be used as the basis for the moment-kinetic

approach alluded to above.

We will assume in this report that fi and fn can be obtained, provided ϕ, either

via direct solution of the above drift kinetic equations or via the moment-kinetic

approach derived in report 2047357-TN-05-01 [2]. Our focus here will be on describing

the numerical treatment of the electron fluid equations and their relationship to the

calculation of the electrostatic potential.

3. Electron fluid equations

Electron fluid equations are obtained by taking the appropriate velocity moments of

the electron drift kinetic equation. Details can be found in [2]. The electron continuity

equation is‡
∂ne

∂t
+

∂neue

∂z
= nennRion +

∫ ∞

−∞
dv∥Se, (6)

where the parallel flow of species s is given by

us
.
=

1

ns

∫ ∞

−∞
dv∥v∥fs. (7)

The charge conservation equation, obtained by combining the electron and ion continuity

equations and enforcing quasineutrality, is

∂

∂z
(ne (ui − ue)) = 0. (8)

‡ Here we have corrected a typo in the sign of the electron ionisation particle source appearing in [2].
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Note that we have assumed
∫
d3v (Si − Se) is small to obtain the above result. The

electron parallel momentum equation is

−∂p∥,e
∂z

+ ene
∂ϕ

∂z
+ F∥[fe, fi] + nemennRen (un − ue) = 0, (9)

where p∥,e is the electron parallel pressure,

p∥,e
.
=

∫
d3v mew

2
∥fe, (10)

w∥
.
= v∥−ue is the parallel component of the electron peculiar velocity, Ren is a constant

that determines the electron-neutral elastic collision rate, and

F∥ = F∥[fe, fi](z, t)
.
=

∫
d3v mev∥Cei[f̂e, f̂i] (11)

is the parallel friction force between electrons and ions, with Cei the electron-ion collision

operator. The term proportional to Se has been neglected in (9) as small in me/mi

because we order Se ∼ fevth,i/Lz, with vth,i
.
=

√
2Ti/mi.

Finally, the electron energy equation is

3

2
ne

(
∂Te

∂t
+ ue

∂Te

∂z

)
=−

(
∂q∥,e
∂z

+ p∥,e
∂ue

∂z

)
+

3nemeνei
mi

(Ti − Te) + F∥ (ui − ue)

+
3nemennRen

mi

(Tn − Te) + nemennRen (un − ue)
2

+

∫
d3v

(
mew

2

2
− 3

2
Te

)
Ŝe − nennRionEion,

(12)

where w
.
= |v − ueẑ| is the peculiar speed, Eion is the ionisation energy cost (including

radiation from excited states), and q∥,e is the electron parallel heat flux,

q∥,e
.
=

∫
d3wmsw

3
∥fe. (13)

The electron energy equation (12) can also be expressed in terms of the electron

pressure:

∂pe
∂t

=− 2

3

∂q∥,e
∂z

−
(
2

3
p∥,e + pe

)
∂ue

∂z
− ue

∂pe
∂z

+
2nemeνei

mi

(Te − Ti)

+
2

3
F∥ (ui − ue) +

2nemennRen

mi

(Tn − Te) +
2

3
nemennRen (un − ue)

2

+ nnRion

(
pe −

2

3
neEion

)
+

∫
d3v

mew
2

3
Ŝe.

(14)

To facilitate our 1+1D treatment, we assume that the particle distribution f̂s and

source Ŝs are isotropic, so that ps = p∥,s and
∫
d3v(msw

2/3)Ŝs =
∫
dv∥msw

2
∥Ss. With
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these approximations, the electron energy equation is

∂p∥,e
∂t

=− 2

3

∂q∥,e
∂z

− 5

3
p∥,e

∂ue

∂z
− ue

∂p∥,e
∂z

+
2meνei
mini

(
nip∥,e − nep∥,i

)
+

2

3
F∥ (ui − ue) +

2meRen

mi

(
nep∥,n − nnp∥,e

)
+

2

3
nemennRen (un − ue)

2

+ nnRion

(
p∥,e −

2

3
neEion

)
+

∫ ∞

−∞
dv∥mew

2
∥Se.

(15)

The set of fluid equations (8)-(11) and (13)-(15) require some form of closure to

calculate the parallel friction and heat flux. Ultimately, we intend to use the moment-

kinetic treatment proposed in [2], but for this report we employ the simple Braginskii

closure [3]:

F∥ = 0.51nemeνei (ui − ue)− 0.71ne
∂Te

∂z
(16)

and

q∥,e = −3.16
p∥,e
meνei

∂Te

∂z
− 0.71p∥,e (ui − ue) . (17)

The set of equations (3)-(5), (8), (9), (15) and (16)-(17) constitute a closed set

of equations for fi, fn, ϕ, ne, ue and p∥,e, provided an appropriate set of boundary

conditions. We turn our attention to these boundary conditions next.

4. Boundary conditions

To ensure uniqueness of our solution, we must specify boundary conditions in z on the

ion and neutral particle distributions, and on the electron parallel flow and pressure.

For the ions, we assume that all ions that reach the end of the domain escape to the

wall, where they recombine. Thus, no ions return; i.e.,

fi(z+, v∥ < 0, t) = 0, (18)

and

fi(z−, v∥ > 0, t) = 0. (19)

Neutrals that leave the domain are assumed to hit the wall and thermalise at the

temperature of the wall, Tw. Ions that recombine at the wall also re-enter as neutrals.

The resulting boundary condition on the neutrals is

fn(z−, v∥ > 0, t) = Γ−fKw(v∥), (20)

and

fn(z+, v∥ < 0, t) = Γ+fKw(v∥), (21)

where

fKw(v∥)
.
= 3

√
π

(
mi

2Tw

)3/2 ∣∣v∥∣∣ erfc(√ mi

2Tw

∣∣v∥∣∣) (22)
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is the (marginalised) Knudsen cosine distribution [4], and

Γ−
.
=

∑
s=i,n

∫ 0

−∞
dv∥

∣∣v∥∣∣ fs(z−, v∥, t) (23)

and

Γ+
.
=

∑
s=i,n

∫ ∞

0

dv∥
∣∣v∥∣∣ fs(z+, v∥, t) (24)

are the combined fluxes of neutrals and ions towards the walls at z = z− and z = z+,

respectively.

For electrons that leave the domain, their parallel energy E∥ = mev
2
∥/2 − eϕ

is conserved. As a result, electrons with parallel speeds greater than vc,+
.
=√

2e(ϕ(z+, t)− ϕw)/me at z+ reach the wall, with ϕw the potential of the wall beyond

z = z+; electrons with speeds less than vc,+ are repelled back into the domain:

fe(z+, v∥ < 0, t) =

{
fe(z+,−v∥, t), |v∥| < vc,+

0, |v∥| > vc,+.
(25)

The boundary condition at z = z− is similar:

fe(z−, v∥ > 0, t) =

{
fe(z−,−v∥, t), |v∥| < vc,−

0, |v∥| > vc,−,
(26)

where vc,−
.
=

√
2eϕ(z−, t)/me, and we have chosen ϕ to be zero at the wall beyond z−.

Integrating the charge conservation equation (8) and using (25)-(26) gives a

constraint on the parallel current at the domain boundaries:

0 = J∥(z+, t)− J∥(z−, t) =

∫ ∞

0

dv∥v∥fi(z+, v∥, t)−
∫ ∞

vc,+

dv∥v∥fe(z+, v∥, t)

−
∫ 0

−∞
dv∥v∥fi(z−, v∥, t) +

∫ −vc,−

−∞
dv∥v∥fe(z−, v∥, t).

(27)

Note that there is no contribution to the electron current from particles with |v∥| < vc,+
at z = z+ nor from particles with |v∥| < vc,− at z = z−. This is because the outgoing

current of electrons with these speeds is cancelled by the return current of these electrons.

As proposed in [2], we simplify our system by assuming that the parallel current

into the wall vanishes individually at each boundary; i.e., J∥(z+, t) = J∥(z−, t) =

0. Combined with quasineutrality, this imposes ue(z±, t) = ui(z±, t). The charge

conservation equation (8) can then be integrated to find ue = ui for all z.

Our boundary condition on p∥,e is chosen based on the physics we intend to model;

for the cases considered in this report, we either set Te(z±, t) = Ti(z±, t) (when νei is

large) or we assume that the electron temperature is constant throughout the sheath

so that Te(z±, t) = Tw (when we wish to force a Boltzmann electron response), with Tw

the temperature of the wall.
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5. Normalisations

The normalisations used in the code are given in Table 1.

The normalised drift kinetic equations for ions and neutrals are

∂f̃i

∂t̃
+ ṽ∥

∂f̃i
∂z̃

− 1

2

∂ϕ̃

∂z̃

∂f̃i
∂ṽ∥

= −R̃in

(
ñnf̃i − ñif̃n

)
+ R̃ionñef̃n + S̃i (28)

and
∂f̃n

∂t̃
+ ṽ∥

∂f̃n
∂z̃

= R̃in

(
ñnf̃i − ñif̃n

)
− R̃ionñef̃n + S̃n. (29)

The normalised electron fluid equations are

ñe = ñi, (30)

∂

∂z̃
(ñe (ũi − ũe)) = 0, (31)

−∂p̃∥,e
∂z̃

+
ñe

2

∂ϕ̃

∂z̃
+ F̃∥ + ñem̃eñnR̃en (ũn − ũe) = 0, (32)

and

∂p̃∥,e

∂t̃
=− 2

3

∂q̃∥,e
∂z̃

− 5

3
p̃∥,e

∂ũe

∂z
− ũe

∂p̃∥,e
∂z̃

+ 2m̃eν̃ei
(
p̃∥,i − p̃∥,e

)
+

2

3
F̃∥ (ũi − ũe) + 2m̃eR̃en

(
ñep̃∥,n − ñnp̃∥,e

)
+

2

3
ñem̃eñnR̃en (ũn − ũe)

2

+ ñnR̃ion

(
p̃∥,e −

2

3
ñeẼion

)
+ P̃e,

(33)

where

P̃e
.
=

1√
π

∫ ∞

−∞
ṽ∥m̃ew̃

2
∥S̃e. (34)

The zero current boundary condition at the wall, combined with quasineutrality (30)

and charge conservation (31), imposes ũe = ũi.

6. Numerical approach

A detailed description of the space and time discretisations employed in the code can

be found in report 2047357-TN-14 [5]. Briefly, we employ an explicit time advance

algorithm (a strong-stability-preserving Runge-Kutta variant) to evolve the ion and

neutral particle distribution functions, as well as the electron parallel pressure. A

Chebyshev spectral element scheme is used for the spatial discretisation. Solution of

the coupled equations proceeds schematically in the following way:

• Solve the ion (28) and neutral (29) drift kinetic equations for fi and fn within a

Runge-Kutta stage, given the parallel electric field E∥ at the previous time step,

and subject to the appropriate boundary conditions (18)-(21).
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normalised

variable definition

t̃ t(cref/Lref)

z̃ z/Lref

ṽ∥ v∥/cs

w̃ w/cs

ñs ns/nref

ũs us/cref

p̃∥,s p∥,s/(2nrefTref)

q̃∥,e q∥,s/(2nrefTrefcref)

T̃s Ts/Tref

ϕ̃ eϕ/Tref

Ẽz eLrefEz/Tref

R̃sn Rsn(nrefLref/cref)

R̃ion Rion(nrefLref/cref)

Ẽion Eion/(2Tref)

ν̃ei νei(Lref/cref)

f̃s fs(csπ
1/2/nref)

F̃∥ F∥(Lref/2nrefTref)

S̃s Ss(Lrefπ
1/2/nref)(cs/cref)

m̃e me/mi

reference

quantity definition

Lref = Lz ref. length

Tref ref. temperature

nref ref. density

cref
√
2Tref/mi

mi ion mass

Table 1. Definitions for normalised and reference quantities used in the report. Note

that cs = cref
√
mi/ms.

• Solve the electron energy equation (33) to update p∥,e within a Runge-Kutta stage.

• With fi and fn updated, calculate the ion density and parallel flow, and set ne = ni

and ue = ui at the new Runge-Kutta stage.

• Solve the electron parallel momentum equation (32) for the parallel electric field

E∥.

• Repeat.

7. Numerical results

We first provide numerical results testing the code implementation and then provide

preliminary results for a more general case.
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7.1. Boltzmann electron test
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Ẽ
z

z̃

evolved
Boltzmann

Figure 1. Comparison of simulation data for a pair of simulations, one of which

has a hard-wired Boltzmann response for the electrons (“Boltzmann”) and the other

(“evolved”) solves the electron fluid equations outlined in this report. Clockwise from

top left to bottom left is the electron density, electron parallel flow, parallel electric

field and electron temperature.

For the Braginskii fluid closure we are employing, whenever ∂T̃e/∂z̃ = 0 = R̃en,

the electrostatic potential that satisfies the electron parallel momentum equation (32)

is ϕ̃ = T̃e ln ñe; i.e., there is a Boltzmann electron density response. This is because

the parallel friction F̃∥ vanishes (recall that ũe = ũi everywhere due to the zero parallel

current boundary condition). A homogeneous electron temperature can be assured at

all times by judicious choice of Pe and a homogeneous initial condition for T̃e. The

necessary Pe (with R̃en = 0) is

P̃e =
2

3
p̃∥,e

∂ũe

∂z
− 2m̃eν̃ei (p̃i − p̃e) +

2

3
ñnR̃ionñeẼion, (35)

Using this source, initialising with a homogeneous electron temperature and neglecting

electron charge exchange collisions, we obtain the results given in Fig. 1. Input files with

the numerical parameters used can be found in [6] and [7]. The excellent agreement with

a simulation run with a hard-wired Boltzmann electron response gives us confidence that

our numerical implementation is working properly.
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7.2. equilibrium with Braginskii closure

Sample results from a simulation with large electron-ion collision frequency – for which

we expect Te = Ti – are given in Fig. 2. We see that indeed Te = Ti to a good

approximation across most of the z domain. The results actually look quite similar

to those from simulations with an assumed Boltzmann electron response. This is

not entirely surprising, as the ion temperature profile is largely flat and ui = ue so

that the only deviation from a Boltzmann response present in the electron parallel

momentum equation is the electron-neutral charge exchange. There is some roughness

in the parallel electric field profile (see the bottom right plot in Fig. 2) that could use

further exploration, but otherwise the profiles are fairly smooth and the simulation

well-behaved. Inputs for this simulation can be found at [8].
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Figure 2. Steady-state moments of the ion, neutral and electron distribution functions

for a simulation with all collisional terms included (and notably, ν̃ei = 105) and the

Braginskii fluid closure.

8. Discussion

With this report we have demonstrated that our code now has a functional, time-

dependent fluid model for electron dynamics that can be used to calculate the
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electrostatic potential. Our immediate aim going forward is to improve the closure for

this fluid model; in particular, we hope to use the moment-kinetic approach proposed

in [2] in place of the Braginskii closure employed here. This will be significant in that it

will introduce the need to solve for both the electron particle distribution function and

the electrostatic potential itself (rather than the parallel electric field that we solved for

in this report), a non-trivial complication both conceptually and numerically.

Appendix A. Supporting documentation for the simulations

The simulations used to create the data presented in this report were generated by the

branch https://github.com/mabarnes/moment_kinetics/tree/electrons, with the

latest commit at the time of writing being 9b68be0.

In this appendix we give URL links to the input files used to generate the simulation

data. To run a simulation use the following command:

$ julia -O3 --project run_moment_kinetics.jl input.toml

with input.toml replaced by the appropriate input file name.

The input files for the Boltzmann response test can be found at [7] (for the run

with the Braginskii closure and heat source needed to force a Boltzmann solution to

the electron fluid equations) and [6] (for the run with a built-in Boltzmann electron

response). For the simulation with Braginskii closure and large νei (corresponding to

Fig. 2), the input file can be found at [8].

https://github.com/mabarnes/moment_kinetics/tree/electrons
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