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1. Introduction

In this report, we explore model collision operators for ion-ion collisions. Ion-ion

collisions are crucial for accurate descriptions of the plasma for several reasons. Firstly,

in the hot core of the plasma, ion-ion collisions drive the ion distribution function

towards a Maxwellian distribution that is parameterised by a density, mean velocity,

and temperature [1, 2]. Considering the small turbulent fluctuations that perturb

the dominant Maxwellian distribution, the ion-ion collisions regularise the complicated

kinetic ion distribution function by dissipating fine structures in velocity space [3, 4].

In the edge, the plasma transitions from the hot core-like conditions to a much colder

plasma near the divertor target. Because of the change in temperature, the Fokker-

Planck collision frequency becomes larger, potentially forcing the ion distribution

function closer to a Maxwellian and making even the turbulent fluctuations close

to a Maxwellian response. However, at the divertor target itself the absorbing ion

boundary condition implies that a Maxwellian distribution is not the solution for the

ion distribution function – to find the form of the ion distribution near the divertor

target we need to include an accurate collision operator and discover how the operator

interacts with the wall boundary conditions [5].

Recent PhD work by M Abazorius explores a simplified 1D2V model of ions

in the collisional pre-sheath with the exact Fokker-Planck ion collision operator [6]

and Boltzmann electrons [5] – this work shares common features with our model

development, such as finite-element methods. However, the work in [5] solves only

steady-state problems, requiring a new model implementation for the time-evolving

problem.
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In this report, we consider a 1D2V model of a simple two species plasma consisting

of a drift kinetic model of ions and Boltzmann electrons. For the collision operator we

consider a model Krook operator [7]. We test our implementation of the Krook operator

using manufactured solutions tests. We also document the initial stages of our work in

progress implementing the full Fokker-Planck operator. We begin by implementing

a model Fokker-Planck operator and we develop analytical functional tests. Whilst

we have not yet implemented the full, exact Fokker-Planck operator, our results may

influence future development.

2. The 1D2V model of the plasma

The ion distribution function Fi is evolved with the drift-kinetic equation [8]:

∂Fi

∂t
+ bzv∥

∂Fi

∂z
+

ebzEz

mi

∂Fi

∂v∥
=

Cii

[
Fi, F

M
i

]
+ νK

(
FM
i − Fi

)
+ ν∥

∂2Fi

∂v∥2
+ Si,

(1)

where v∥ = v · b and v⊥ = |v − v∥b| are the components of the particle velocity v that

are parallel and perpendicular to the magnetic field direction b = B/B, respectively,

with B the magnetic field strength. The frequency νK is an effective, constant, collision

frequency, FM
i is a Maxwellian distribution formed from the first three velocity moments

of Fi, i.e.,

FM
i =

ni

π3/2v3th,i
exp

[
−
(v∥ − u∥i)

2 + v2⊥
v2th,i

]
, (2)

and the collision operator Cii

[
Fi, F

M
i

]
is the modified Fokker-Planck operator, which we

describe in the next section. The variable t is the time, bz = Bz/B, ϕ is the electrostatic

potential, ν∥ is a numerical diffusion coefficient, and Si is a source function that may be

used to inject particles, momentum, and heat, or to facilitate a test via the method of

manufactured solutions.

The electrostatic potential is computed by enforcing quasineutrality ni = ne and

using a Boltzmann response for electrons, i.e.,

ni = ne = Ne exp

(
eϕ

Te

)
, (3)

where the constant Ne is either taken to be a reference density, or calculated through a

simple electron sheath model. The ion density ni is computed by integrating over the

ion distribution function:

ni(z, r, t) = 2π

∫ ∞

−∞
dv∥

∫ ∞

0

dv⊥v⊥Fi(z, r, v⊥, v∥, t). (4)

We obtain the electric fields by differentiation of ϕ:

Ez = −∂ϕ

∂z
, and Er = −∂ϕ

∂r
. (5)
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3. The Fokker-Planck collision operator

The full Fokker-Planck operator for collisions between species indexed by s and s′ with

distribution functions Fs = Fs(v) and Fs′ = Fs′(v), respectively, is [6, 9]

Css′ [Fs, Fs′ ] =
γss′

ms

∂

∂v
·
{∫

∂2g

∂v∂v
·
[
Fs′(v

′)

ms

∂Fs

∂v
− Fs(v)

ms′

∂Fs′

∂v′

]
d3v′

}
, (6)

where

γss′ =
2πZ2

sZs′
2e4 ln Λss′

(4πϵ0)2
(7)

and

g = |v − v′|. (8)

It is useful to reduce the collision operator to the drift-kinetic case where the

distribution functions are independent of gyroangle, i.e., Fs = Fs(v∥, v⊥) and Fs′ =

Fs′(v∥, v⊥). We write the operator in the Rosenbluth-MacDonald-Judd (RMJ) form

Css′ [Fs, Fs′ ] =
∂Γ∥

∂v∥
+

1

v⊥

∂

∂v⊥
(v⊥Γ⊥) . (9)

with the fluxes

Γ∥ =
γss′

m2
s

(
∂Fs

∂v∥

∂2Gs′

∂v∥2
+

∂Fs

∂v⊥

∂2Gs′

∂v⊥∂v∥
− 2

ms

ms′
Fs

∂Hs′

∂v∥

)
, (10)

and

Γ⊥ =
γss′

m2
s

(
∂Fs

∂v∥

∂2Gs′

∂v∥∂v⊥
+

∂Fs

∂v⊥

∂2Gs′

∂v⊥2
− 2

ms

ms′
Fs

∂Hs′

∂v⊥

)
, (11)

where the Rosenbluth potentials are

Gs′(v) =

∫
Fs′(v

′)g d3v′ (12)

and

Hs′(v) =

∫
Fs′(v

′)

g
d3v′. (13)

In terms of (v∥, v⊥) coordinates, the Rosebluth potentials simplify to

Gs′ =

∫ ∞

0

∫ ∞

−∞
4
((

v∥ − v′∥
)2

+ (v⊥ + v′⊥)
2
)1/2

E(k(v∥, v⊥, v
′
∥, v

′
⊥))Fs′(v

′
∥, v

′
⊥)v

′
⊥ dv′∥dv

′
⊥,

(14)

and

Hs′ =

∫ ∞

0

∫ ∞

−∞
4
((

v∥ − v′∥
)2

+ (v⊥ + v′⊥)
2
)−1/2

K(k(v∥, v⊥, v
′
∥, v

′
⊥))Fs′(v

′
∥, v

′
⊥)v

′
⊥ dv′∥dv

′
⊥,

(15)

where

k(v∥, v⊥, v
′
∥, v

′
⊥) = 2(v⊥v

′
⊥)

1/2
((

v∥ − v′∥
)2

+ (v⊥ + v′⊥)
2
)−1/2

, (16)
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and we have used the definitions of the complete elliptic integral of the first kind

K(k) =

∫ π/2

0

1√
1− k2 sin2 θ

dθ (17)

and the complete elliptic integral of the second kind

E(k) =

∫ π/2

0

√
1− k2 sin2 θ dθ. (18)

3.1. Rosenbluth potentials for shifted Maxwellian distributions

It is useful to compute these potentials for the shifted Maxwellian distribution

FM
s′ (v) =

ns′

π3/2v3th,s′
exp

[
−(v − us′)

2

v2th,s′

]
. (19)

The results for a Maxwellian distribution centred on us′ = 0 are given by [9]

Gs′(v) = ns′vth,s′G(η) =
ns′vth,s′

2η

(
2η√
π
exp

[
−η2

]
+ (1 + 2η2) erf(η)

)
, (20)

and

Hs′(v) =
ns′

vth,s′
H(η) =

ns′

vth,s′

erf(η)

η
, (21)

with η = |v|/vth,s′ . For the case where us′ ̸= 0 we can find a very similar result

Gs′(v) =

∫
ns′

π3/2v3th,s′
exp

[
−(v − us′)

2

v2th,s′

]
|v − v′| d3v′

=

∫
ns′

π3/2v3th,s′
exp

[
−|w′|2

v2th,s′

]
|(v − us′)−w′| d3w′

= ns′vth,s′G
(
|v − us′ |
vth,s′

)
,

(22)

where G(η) is defined above. Similarly, we find that for a shifted Maxwellian

Hs′(v) =
ns′

vth,s′
H
(
|v − us′|
vth,s′

)
. (23)

These results mean that we can use (20) and (21) with η defined by

η =
|v − us′|
vth,s′

=

√
(v∥ − u∥,s′)2 + v2⊥

vth,s′
, (24)

where we have used that us′ = u∥,s′b in the leading-order drift-kinetic model.

The coefficients needed for the collision operator that are derived from the

Rosenbluth potentials are

∂2Gs′

∂v∥2
,

∂2Gs′

∂v∥∂v⊥
,
∂2Gs′

∂v⊥2
,
∂Hs′

∂v∥
, and

∂Hs′

∂v⊥
. (25)
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In terms of the functions G(η) and H(η), these coefficients are

∂2Gs′

∂v∥2
=

ns′

vth,s′η

(
dG
dη

+
(v∥ − u∥,s′)

2

v2th,s′

d

dη

(
1

η

dG
dη

))
, (26)

∂2Gs′

∂v∥∂v⊥
=

ns′v⊥(v∥ − u∥,s′)

v3th,s′η

d

dη

(
1

η

dG
dη

)
, (27)

∂2Gs′

∂v⊥2
=

ns′

vth,s′η

(
dG
dη

+
v2⊥
v2th,s′

d

dη

(
1

η

dG
dη

))
, (28)

∂Gs′

∂v⊥
=

ns′v⊥
vth,s′η

dG
dη

, (29)

∂Hs′

∂v∥
=

ns′(v∥ − u∥,s′)

v3th,s′η

dH
dη

, (30)

and
∂Hs′

∂v⊥
=

ns′v⊥
v3th,s′η

dH
dη

, (31)

where we have used that

∂η

∂v∥
=

v∥ − u∥,s′

v2th,s′η
,

∂η

∂v⊥
=

v⊥
v2th,s′η

. (32)

The derivatives of G(η) and H(η) are

dG
dη

=

(
1√
π

exp [−η2]

η
+

(
1− 1

2η2

)
erf(η)

)
, (33)

d

dη

(
1

η

dG
dη

)
=

((
3

2η2
− 1

)
erf(η)

η2
− 3√

π

exp [−η2]

η3

)
, (34)

and
dH
dη

=

(
2√
π

exp [−η2]

η
− erf(η)

η2

)
= −d2G

dη2
. (35)

3.2. Collisions between Maxwellian-distributed particle species

It is tedious but straightforward to compute the fluxes for collisions between particles

distributed with FM
s′ and FM

s . The results are

Γ∥ = − 2

π3/2

γss′

m2
s

ns′ns

vth,s′v4th,s
exp

[
−
(v∥ − u∥,s)

2 + v2⊥
v2th,s

](
v∥ − u∥,s′

vth,s

(
d2G
dη2

+
ms

ms′

v2th,s
v2th,s′

dH
dη

)

+
u∥,s′ − u∥,s

vth,s

1

η

(
dG
dη

+
(v∥ − u∥,s′)

2

v2th,s′

d

dη

(
1

η

dG
dη

)))
,

(36)
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and

Γ⊥ = − 2

π3/2

γss′

m2
s

v⊥nsns′

v5th,svth,s′
exp

[
−
(v∥ − u∥,s)

2 + v2⊥
v2th,s

](
d2G
dη2

+
ms

ms′

v2th,s
v2th,s′η

dH
dη

+
(u∥,s′ − u∥,s)(v∥ − u∥,s′)

v2th,s′

1

η

d

dη

(
1

η

dG
dη

))
,

(37)

respectively. Note that if FM
s = FM

s′ then Γ∥ = Γ⊥ = 0 identically.

3.3. The model Fokker-Planck operator

The numerical calculation of Gs′ from equation (12) is relatively straightforward using

Clenshaw-Curtis or Gaussian quadrature integration weights. However, the integrand

contains a square root function, meaning that spectrally accurate results are not

guaranteed. For the Rosenbluth potential Hs′ , defined by equation (13), the problem

is more challenging, because the integrand diverges wherever v′ = v. This problem

only becomes more severe as further differentiations are applied to obtain the formal

definitions of the coefficients in equation (25). Although the solution of this problem is

desirable, we leave this to future work. A possible solution may be to use integration

quadratures or cubatures that pack points near to the location of the divergence in v′

(see section 19.8.6 of [10] for examples in 1D of quadratures that can resolve divergences

of the form z−1+α with z the integration variable and α > 0 ). Previous authors [5, 11]

have avoided this problem by using the Landau form of the collision operator, where

the symmetry of the operator prevents divergences in the velocity integrals over v′.

For this report detailing our work-in-progress, we consider the possibility of avoiding

the complex integration of diverging integrands entirely. It is possible to compute the

coefficients (25) by direct differentiation of Gs′ , using the identity

L [Gs′ ] = 2Hs′ , (38)

where the Laplacian operator is

L [f ] =
∂2f

∂v∥2
+

1

v⊥

∂

∂v⊥

(
v⊥

∂f

∂v⊥

)
. (39)

However, up to three numerical derivatives are required to compute the coefficients (with

a final fourth derivative required to evaluate the divergence of the collisional fluxes),

and we find that the loss of accuracy with each numerical derivative and the initial

numerical calculation of Gs′ is too high for this method to work in our current ‘strong

form’ numerical implementation where derivatives of functions (evaluated at collocation

points) are evaluated directly using interpolation with Chebyshev polynomials.

We illustrate the challenge presented by the numerical problem of computing

the Rosenbluth potentials and derived coefficients using the ‘strong-form’ Chebyshev

derivatives implemented in ‘moment-kinetics’. In figure 1, we plot the maximum
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absolute error in the result of calculating the Rosenbluth potential Gs′ for a Maxwellian

by direct integration using equation (14), comparing to the analytical result (22). We

then compute the potential Hs′ and the derived coefficients by numerical differentiation

and compare the results to the analytical formulae. Note the loss of convergence with

each subsequent derivative, and the deviation from the expected scaling. We can

make an interesting observation by doing the same calculation for Hs′ and the derived

coefficients starting from the analytically prescribed Gs′ for a Maxwellian input. The

maximum errors in this calculation are shown in figure 2, demonstrating far better

rates of convergence than in figure 1. (The result of computing Gs′ numerically is left

on figure 2 for comparison). From this we can conclude (i) that our current scheme

rapidly accrues numerical error with each subsequent derivative and (ii) the quality of

the numerical integration precludes this simple ‘direct’ computation of the Rosenbluth

potentials for arbitrary Fi. Finally, we can test the numerical implementation of the

fluxes Γ∥ and Γ⊥ with the analytical results for the collisional fluxes due to colliding

Maxwellian distributions. The maximum errors are shown in figure 4, demonstrating

good convergence. Overall, these results demonstrate that we have implemented the

collision operator correctly in our current formalism, but that the numerical methods

that we are using are inadequate for the full-F operator.

To make progress towards the full Fokker Planck collision operator, whilst providing

a plausible model operator, we make use of the fact that the Rosenbluth potentials are

known for shifted Maxwellian distributions. Using the fact that the collision operator

is bilinear, we replace the second argument Fs′ of Css′ [Fs, Fs′ ] with the Maxwellian

distribution with the same density velocity and temperature moment FM
s′ , yielding

the operator Css′
[
Fs, F

M
s′

]
where the coefficients from the Rosenbluth potentials are

given by (26)-(30). This is an uncontrolled approximation which must (eventually)

be justified a posteriori by comparisons to results obtained using the exact collision

operator. Unfortunately, we do not present simulations using this operator in this report,

due to problems obtaining a stable steady-state solution. Addressing these problems

are left for future work.

4. Krook operators

We now turn to a description of the Krook operator. The general Krook operator has

the form

CK
ss′ [Fs, Fs′ ] = νK

(
FM
s′ (v)− Fs(v)

)
, (40)

where νK is a collision frequency, and FM
s′ is a Maxwellian distribution formed from the

first three velocity moments of Fs′ , i.e.,

FM
s′ (v) =

ns′

π3/2v3th,s′
exp

[
−(v − us′)

2

v2th,s′

]
, (41)

with

ns′ =

∫
Fs′(v

′) d3v′, (42)
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Figure 1: Results showing the numerical calculation of the Rosenbluth potential Gs′

via numerical integration, comparing to the analytical result for a shifted Maxwellian

distribution. The potential Hs′ and subsequent coefficients are obtained using numerical

differentiation, and compared to analytical results. The error norm is the maximum

value of the absolute error. This figure was generated using the script fkpl test.jl

on commit a6f06ccbbb37de8be113cb31d9c2f28c7fbdf52c. We scan in the number of

elements in the v∥ and v⊥ grids Nelement, for fixed Ngrid = 8, and box sizes Lv∥ = 12cref
and Lv⊥ = 6cref .

us′ =
1

ns′

∫
v′Fs′(v

′) d3v′, (43)

and

vth,s′ =

√
2Ts′

ms′
, where Ts′ =

ms′

3ns′

∫
(v − us′)

2Fs′(v
′) d3v′. (44)

We emphasise that the Krook operator is an ad-hoc model which is used primarily for

simplicity when analytical calculation involving the collision operator needs to be carried

out, commonly in the context of teaching pedagogical material, or when the details of

the restoration of a perturbed distribution function are of no consequence.

In the drift kinetic model, this nonlinear model collision operator undergoes a

simplification due to the gyrotropic nature of Fs = Fs(v∥, v⊥). Firstly, the leading-order

mean velocity is entirely parallel to the magnetic field line, i.e.,

us = u∥,sb+O(vthρ∗) , (45)
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Figure 2: Results showing the numerical calculation of the Rosenbluth potential Hs′

via numerical differentiation, from an analytically specified Gs′ , comparing to the

analytical result for a shifted Maxwellian distribution. The subsequent coefficients

are obtained using numerical differentiation of the analytically specified Gs′ , and

compared to analytical results. The error norm is the maximum value of the

absolute error. This figure was generated using the script fkpl test.jl on commit

a6f06ccbbb37de8be113cb31d9c2f28c7fbdf52c. We scan in the number of elements

in the v∥ and v⊥ grids Nelement, for fixed Ngrid = 8, and box sizes Lv∥ = 12cref and

Lv⊥ = 6cref .

with

u∥,s =
1

ns

∫ ∞

−∞

∫ ∞

0

v∥Fs 2v⊥dv⊥dv∥. (46)

In the model, the effect of perpendicular mean flow (the E×B flow) is only important

because of the very small pitch bz ∼ ρ∗ of the magnetic field line. The perpendicular

components of the mean flow may be found with the gyrophase-dependent part of the

distribution function, which is O (ρ∗) small compared to Fs. Secondly, the operator

appearing in the drift kinetic equation must be the gyrophase averaged Krook operator〈
CK

ss′ [Fs, Fs′ ]
〉
, where

⟨·⟩ = 1

2π

∫ π

−π

(·) dϑ. (47)

Using this information, we can write a more explict form of the operator that appears
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Figure 3: The result of calculating the collisional fluxes Γ∥ and Γ⊥ for Maxwellian inputs,

comparing to the analytical result for differing Maxwellian distributions. The Rosen-

bluth potentials in these fluxes are specified analytically. The error in the calculation

declines at a similar rate to the expected scaling. This figure was generated using the

script fkpl test.jl on commit a6f06ccbbb37de8be113cb31d9c2f28c7fbdf52c. We

scan in the number of elements in the v∥ and v⊥ grids Nelement, for fixed Ngrid = 8, and

box sizes Lv∥ = 12cref and Lv⊥ = 6cref .

in the drift kinetic equation, to leading-order in O (ρ∗):

〈
CK

ss′ [Fs, Fs′ ]
〉
= νK

(
ns′

π3/2v3th,s′
exp

[
−
(
v∥ − u∥,s′

)2
+ v2⊥

v2th,s′

]
− Fs(v∥, v⊥)

)
. (48)

5. Normalised system of equations

The normalised drift kinetic equation for ions may be written as

∂F̃i

∂t̃
+ bzṽ∥

∂F̃i

∂z̃
+

bzẼz

2

∂F̃i

∂ṽ∥
=

C̃ii

[
F̃i, F̃

M
i

]
+ ν̃K

(
F̃M
i − F̃i

)
+ ν̃∥

∂2F̃i

∂ṽ2∥
+ S̃i,

(49)

where cref =
√
2Trefmref is the normalising speed and Lref is the normalising length.

The variables t̃ = tcref/Lref , ṽ∥ = v∥/cref , ṽ⊥ = v⊥/cref , z̃ = z/Lref . The normalised
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distribution functions are F̃i = π3/2c3refFi/nref , with nref the normalising density. The

normalised diffusion coefficient ν̃∥ = Lrefν∥/c
3
ref . The normalised source is S̃i =

LrefSi/cref , the normalised Krook operator frequency is ν̃K = LrefνK/cref . The potential

ϕ̃ = eϕ/Tref is determined by the normalised quasineutrality relation,

ñi = ñe = Ñe exp

(
ϕ̃

T̃e

)
. (50)

The normalised electric fields are defined by

Ẽz = −∂ϕ̃

∂z̃
, and Ẽr = −∂ϕ̃

∂r̃
. (51)

and the density is defined by

ñi =
1√
π

∫ ∞

−∞
dṽ∥

∫ ∞

0

2dṽ⊥ṽ⊥F̃i. (52)

The normalised Maxwellian distribution F̃M
i is defined by setting s′ = i in the following

expression,

F̃M
s′ =

ñs′

ṽ3th,s′
exp

[
−
(
ṽ∥ − ũ∥,s′

)2
+ ṽ2⊥

ṽ2th,s′

]
(53)

with ñs′ = ns′/nref , ṽth,s′ = vth,s′/cref , and ũ∥,s′ = u∥,s/cref .

Finally, the normalised Fokker-Planck operator is given by

C̃ss′

[
F̃s, F̃s′

]
=

∂Γ̃∥

∂ṽ∥
+

1

ṽ⊥

∂

∂ṽ⊥

(
ṽ⊥Γ̃⊥

)
, (54)

with

Γ̃∥ = ν̃ss′

(
∂F̃s

∂ṽ∥

∂2G̃s′

∂ṽ2∥
+

∂F̃s

∂ṽ⊥

∂2G̃s′

∂ṽ⊥∂ṽ∥
− 2

ms

ms′
Fs

∂H̃s′

∂ṽ∥

)
, (55)

and

Γ̃⊥ = ν̃ss′

(
∂F̃s

∂ṽ∥

∂2G̃s′

∂ṽ∥∂ṽ⊥
+

∂F̃s

∂ṽ⊥

∂2G̃s′

∂ṽ2⊥
− 2

ms

ms′
F̃s

∂H̃s′

∂ṽ⊥

)
, (56)

where ν̃ss′ = Lrefνss′/cref and

νss′ =
γss′nref

m2
sc

3
ref

. (57)

The normalised Rosenbluth potentials are defined by

Gs′ = nrefcrefG̃s′ , and Hs′ =
nref

cref
H̃s′ . (58)

with integral definitions given by

G̃s′ =

∫ ∞

0

∫ ∞

−∞

((
ṽ∥ − ṽ′∥

)2
+ (ṽ⊥ + ṽ′⊥)

2
)1/2 2E(k(ṽ∥, ṽ⊥, ṽ

′
∥, ṽ

′
⊥))

π
F̃s′(ṽ

′
∥, ṽ

′
⊥)

2ṽ′⊥√
π

dṽ′∥dṽ
′
⊥

(59)
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and

H̃s′ =

∫ ∞

0

∫ ∞

−∞

((
ṽ∥ − ṽ′∥

)2
+ (ṽ⊥ + ṽ′⊥)

2
)−1/2 2K(k(ṽ∥, ṽ⊥, ṽ

′
∥, ṽ

′
⊥))

π
F̃s′(ṽ

′
∥, ṽ

′
⊥)

2ṽ′⊥√
π

dṽ′∥dṽ
′
⊥,

(60)

respectively. The normalised values of the Rosenbluth potential coefficients for a shifted

Maxwellian may be inferred from equations (26)-(30) and (58).

5.1. Calculating the thermal speed

To evaluate the Krook operator, we must calculate the thermal speed. We normalise

the velocities to cref =
√
2Tref/mref . Hence, the normalised thermal speed is

ṽth,s =
vth,s
cref

=

√
Ts

Tref

mref

ms

=

√
T̃s

m̃s

. (61)

We calculate the normalised temperature from the pressure and the density. The

isotropic pressure is defined by

ps =
ms

3

∫ ∞

−∞

∫ ∞

0

(
(v′∥ − u∥,s)

2 + (v′⊥)
2
)
Fs(v

′
∥, v

′
⊥) 2πv

′
⊥dv

′
⊥dv

′
∥. (62)

The normalised pressure p̃s = ps/nrefTref is then given by

p̃s =
2m̃s

3

∫ ∞

−∞

∫ ∞

0

(
(ṽ′∥ − ũ∥,s)

2 + (ṽ′⊥)
2
)
F̃s(ṽ

′
∥, ṽ

′
⊥)

2ṽ′⊥√
π
dṽ′⊥dṽ

′
∥. (63)

We can also define a parallel pressure

p∥,s = ms

∫ ∞

−∞

∫ ∞

0

(v′∥ − u∥,s)
2Fs(v

′
∥, v

′
⊥) 2πv

′
⊥dv

′
⊥dv

′
∥, (64)

and a perpendicular pressure

p⊥,s =
ms

2

∫ ∞

−∞

∫ ∞

0

(v′⊥)
2Fs(v

′
∥, v

′
⊥) 2πv

′
⊥dv

′
⊥dv

′
∥, (65)

so that

ps =
1

3

(
p∥,s + 2p⊥,s

)
. (66)

The normalised parallel and perpendicular pressures p̃∥,s = p∥,s/nrefTref and p̃⊥,s =

p⊥,s/nrefTref are

p̃∥,s = 2m̃s

∫ ∞

−∞

∫ ∞

0

(ṽ′∥ − ũ∥,s)
2F̃s(ṽ

′
∥, ṽ

′
⊥)

2v′⊥√
π
dṽ′⊥dṽ

′
∥, (67)

and

p̃⊥,s = m̃s

∫ ∞

−∞

∫ ∞

0

(ṽ′⊥)
2F̃s(ṽ

′
∥, ṽ

′
⊥)

2v′⊥√
π
dṽ′⊥dṽ

′
∥, (68)

respectively. Finally, we use that T̃s = Ts/Tref = ps/nsTref = p̃s/ñs to write

ṽth,s =

√
p̃s

m̃sñs

(69)
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5.2. Extending the wall-boundary manufactured solutions test results

To test the implementation of the Krook operator, we require results for the plasma

density, velocity, and thermal speed. We calculate these quantities in the existing wall-

boundary test existing in the moment-kinetics code framework [12]. For the distribution

function, we choose

F̃i =

[
H
(
v∥
)
v4∥

(
1

2
+

z̃

L̃z

)
n+(z̃, r̃) +H

(
−v∥

)
v4∥

(
1

2
− z̃

L̃z

)
n−(z̃, r̃)

+

(
1

2
− z̃

L̃z

)(
1

2
+

z̃

L̃z

)
n0(z̃, r̃)

]
exp

(
−v2∥ − ṽ2⊥

)
,

(70)

where v∥ = ṽ∥ − αρ∗Ẽr/2bz, and α takes the values of 0 or 1 depending on the type of

test carried out. We require the forms of ñi, ũ∥i, p̃∥i and p̃⊥i. We assume that m̃i = 1.

The normalised ion density is defined by

ñi =
1√
π

∫ ∞

−∞
dṽ∥

∫ ∞

0

2dṽ⊥ṽ⊥F̃i. (71)

Evaluating this integral, we find that

ñi =
3

8
n+(z̃, r̃)

(
1

2
+

z̃

L̃z

)
+

3

8
n−(z̃, r̃)

(
1

2
− z̃

L̃z

)
+ n0(z̃, r̃)

(
1

2
+

z̃

L̃z

)(
1

2
− z̃

L̃z

)
.

(72)

The normalised velocity is defined by

ñiũ∥i =
1√
π

∫ ∞

−∞
dṽ∥

∫ ∞

0

2dṽ⊥ṽ⊥ṽ∥F̃i

=
1√
π

∫ ∞

−∞
dv∥

∫ ∞

0

2dṽ⊥ṽ⊥

(
v∥ +

αρ∗Ẽr

2bz

)
F̃i.

(73)

We evaluate this integral to find that

ñiũ∥i =
1√
π

(
n+(z̃, r̃)

(
1

2
+

z̃

L̃z

)
− n−(z̃, r̃)

(
1

2
− z̃

L̃z

))
+ ñi

αρ∗Ẽr

2bz
. (74)
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The normalised parallel pressure is

p̃∥i = 2

∫ ∞

−∞

∫ ∞

0

(ṽ′∥ − ũ∥i)
2F̃i(ṽ

′
∥, ṽ

′
⊥)

2v′⊥√
π
dṽ′⊥dṽ

′
∥

= 2

∫ ∞

−∞

∫ ∞

0

(
v∥ +

αρ∗Ẽr

2bz
− ũ∥i

)2

F̃i(ṽ
′
∥(v∥), ṽ

′
⊥)

2v′⊥√
π
dṽ′⊥dv∥

= 2

∫ ∞

−∞

∫ ∞

0

v2∥ + 2v∥

(
αρ∗Ẽr

2bz
− ũ∥i

)
+

(
αρ∗Ẽr

2bz
− ũ∥i

)2
 F̃i(ṽ

′
∥(v∥), ṽ

′
⊥)

2v′⊥√
π
dṽ′⊥dv∥

= 2

∫ ∞

−∞

∫ ∞

0

v2∥F̃i(ṽ
′
∥(v∥), ṽ

′
⊥)

2v′⊥√
π
dṽ′⊥dv∥ − 2ñi

(
αρ∗Ẽr

2bz
− ũ∥i

)2

(75)

Evaluating the final Gaussian integral, we have that

p̃∥i =
15

8
n+(z̃, r̃)

(
1

2
+

z̃

L̃z

)
+

15

8
n−(z̃, r̃)

(
1

2
− z̃

L̃z

)
+ n0(z̃, r̃)

(
1

2
+

z̃

L̃z

)(
1

2
− z̃

L̃z

)
− 2ñi

(
αρ∗Ẽr

2bz
− ũ∥i

)2

.

(76)

We can write the final term on the RHS explicitly as

p̃∥i =
15

8
n+(z̃, r̃)

(
1

2
+

z̃

L̃z

)
+

15

8
n−(z̃, r̃)

(
1

2
− z̃

L̃z

)
+ n0(z̃, r̃)

(
1

2
+

z̃

L̃z

)(
1

2
− z̃

L̃z

)
− 2

πñi

(
n+(z̃, r̃)

(
1

2
+

z̃

L̃z

)
− n−(z̃, r̃)

(
1

2
− z̃

L̃z

))2

.

(77)

Finally, the normalised perpendicular pressure is

p̃⊥i =

∫ ∞

−∞

∫ ∞

0

(ṽ′⊥)
2F̃i(ṽ

′
∥, ṽ

′
⊥)

2v′⊥√
π
dṽ′⊥dṽ

′
∥, (78)

and we evaluate this integral to find that

p̃⊥i = ñi. (79)

5.3. A convergence test in 1D2V

To demonstrate the correct implementation of the Krook collision operator in two

velocity dimensions, we use the analytical results derived in the previous section to

carry out a manufactured solutions test. For the physical parameters in the model,

we take bz = 1.0, ν̃K = 1.0, ν̃∥ = 0.0, ν̃ii = 0.0, Ñe = 1.0, and T̃e = 1.0. The

input file corresponding to these parameters is given in section Appendix A.1. To

test the convergence, we carry out the simulation until t̃ = 1, for varying number
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of elements Nelement in each of the coordinate dimensions z, v∥, and v⊥. The

number of points per element is taken to be Ngrid = 17, with Lv∥ = 2Lv⊥ =

12cref . We take ∆t̃ = 0.002/Nelement. The results of the scan are shown in figure

4, where the error norms plotted are the average RMS values (see equations (10)-

(13) of [12]). The expected scaling is plotted. We note that the convergence is

slower than the expected scaling, but still good, albeit with a rollover at the very

largest values of Nelement. We take these results to indicate that we have correctly

implemented the Krook operator. The simulations were carried out with commit

a6f06ccbbb37de8be113cb31d9c2f28c7fbdf52c.

Figure 4: Results demonstrating the correct implementation of the Krook collision

operator ν̃K(F̃
M
i − F̃i), in a case with wall boundary conditions. The input file

corresponding to these simulations is given in section Appendix A.1. Here, Nel =

Nelement and ng = Ngrid.

6. Steady-state solutions with a Krook collision operator

In this section, we examine the behaviour of the sheath model in the presence of a simple

ionisation source

S̃i = exp
[
−ṽ2∥ − ṽ2⊥

]
, (80)

and the Krook operator and numerical dissipation. We use the manufactured solution

as an initial condition, and we allow the system to relax to a steady state. We will

see that a larger Krook collision frequency ν̃K forces the distribution function to be



Report 2070839-TN-06 16

broader in velocity space, including at the sheath entrance near the wall. For the

physics parameters, we take bz = 1.0, ν̃∥ = 0.01, ν̃ii = 0.0 Ñe = 1.0, and T̃e = 1.0. We

will vary ν̃K between 10 and 0.01. The input file corresponding to these simulations is

given in section Appendix A.2.For the numerical input values we take Ngrid = 17 for all

dimensions, Nelement = 8 for v∥ and v⊥ dimensions and Nelement = 9 for the z dimension.

We do this to avoid having the point z = 0 v∥ = 0 on grid, as this point is a stagnation

point in this model for an up-down symmetric simulation. We take Lv∥ = 2Lv⊥ = 6.

6.1. Krook plus numerical diffusion

First, we examine in detail a simulation where we take ν̃K = 0.1. After running to a

time of t̃ = 10 with a timestep of ∆t̃ = 0.0005, we find the potential, electric field, and

distribution function visualised in figure 5. In figure 5a we plot the potential ϕ̃, and

in figure 5b we plot the electric field Ẽz. These fields show the expected sheath-like

behaviour with a diverging electric field near the sheath entrances at z/Lz = ±1/2.

In figures 5c and 5d we visualise the velocity space structure of the distribution at

z/Lz = −1/2. In figure 5e we show the structure of the distribution function at a

typical v⊥ as a function of z̃ and ṽ∥. Finally, in figure 5f we show the mean velocity ũ∥i.

6.2. Varying the strength of the Krook operator

We illustrate the impact on the solution of including a Krook collision operator in

figure 6. By varying the Krook collision frequency ν̃K from 0.01 to 10.0, we can change

the extent of the distribution function in velocity space. This behaviour comes about

because the Krook operator attempts to force the ion distribution function towards a

shifted Maxwellian. It is interesting to note that although the ionisation source (80) is

Maxwellian (with no mean flow), the ion distribution function is not close to Maxwellian

as the ions approach the sheath, even in the presence of the Krook operator.

7. Discussion

This report has investigated the (work-in-progress) implementation of ion-ion collision

operators into the ‘moment-kinetics’ code. We have reported on two lines of

development: a successful implementation of a Krook operator; and initial investigation

into the application of the numerical methods currently used by the ‘moment-kinetics’

code to the implemention of the exact Fokker-Planck collision operator. We developed

a series of tests to test the calculation of the coefficients and fluxes appearing in the

Fokker-Planck collision operator. We found that special quadratures that can handle

divergences in the integrand may be required to compute the coefficients appearing in

the Fokker-Planck operator, and that repeated differentiation can lead to inaccurate

results in our implementation.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: The relaxed state of simulating equation (49) with the source (80) and a

Krook operator with ν̃K = 0.1. Numerical dissipation is included with ν∥ = 0.01. We

take ν̃ii = 0.0
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(a) (b)

(c) (d)

(e) (f)

Figure 6: The distribution function as a function of z and v∥ (at a typical v⊥) and at

the sheath entrane at zLz = −1/2 as a function of v∥ and v⊥. Taken from the relaxed

state found by simulating equation (49) with the source (80) and a Krook operator with

ν̃K = 0.01 (6a and 6b), ν̃K = 1.0 (6c and 6d), and ν̃K = 10.0 (6e and 6f). Numerical

dissipation is included with ν∥ = 0.01. We take ν̃ii = 0.0.
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To avoid the numerical integration required for the full Fokker-Planck operator, we

investigated the possibility of implementing a modified collision operator which leverages

the analytical results for the Rosenbluth potentials for a shifted Maxwellian. This

operator was tested, demonstrating a likely correct implementation. However, steady-

state solutions obtained with this operator are currently difficult to obtain. At the time

of writing this report, the modified Fokker-Planck operator tends to produce distribution

functions which go negative with Gibbs phenomena in the long time limit, suggesting

numerical issues, or a bug.

Because the Fokker-Planck collision operator represents the gold standard, and all

model operators are simply ad hoc prescriptions made via uncontrolled approximations,

it is highly desirable to have the proper Fokker-Planck operator implemented. This

report highlights the need to consider other numerical methods which might allow us

to compute the Rosenbluth potentials accurately, or otherwise implement the operator.

Quadratures that can handle certain types of diverging integrands do exist, as mentioned

in section 19.8.6 of [10]. Previous implementations of the full Fokker-Planck operator

exist in the literature, suggesting several methods to approach the problem [13, 14, 11, 5].

An obvious route to follow is to use the weak formulation of the problem, to use

integration by parts to reduce the order of the derivatives formally required in the

numerical differentiation. Another option could be to focus on the Landau form of the

Fokker Planck operator rather than on on the Rosenbluth-MacDonald-Judd form, see

e.g., [5, 11]. Further work will attempt to determine whether or not the weak formulation

provides any advantages in our framework.

Appendix A. Input data

In this appendix we give simulation inputs to be used with the ‘moment kinetics’ branch

https://github.com/mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-Julia-1.

7.2-mpi. on commit a6f06ccbbb37de8be113cb31d9c2f28c7fbdf52c.

Appendix A.1. Simulation input: MMS test with a Krook operator

use_manufactured_solns_for_advance = true

n_ion_species = 1

n_neutral_species = 0

electron_physics = "boltzmann_electron_response"

#electron_physics = "boltzmann_electron_response_with_simple_sheath"

run_name = "1D-wall_MMS_nel_r_1_z_8_vpa_8_vperp_8_krook"

evolve_moments_density = false

evolve_moments_parallel_flow = false

evolve_moments_parallel_pressure = false

evolve_moments_conservation = false

force_Er_zero_at_wall = false #true

https://github.com/mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-Julia-1.7.2-mpi
https://github.com/mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-Julia-1.7.2-mpi


Report 2070839-TN-06 20

Er_constant = 0.0

epsilon_offset = 0.1

use_vpabar_in_mms_dfni = true

T_e = 1.0

T_wall = 1.0

rhostar = 1.0

Bzed = 1.0

Bmag = 1.0

initial_density1 = 0.5

initial_temperature1 = 1.0

initial_density2 = 0.5

initial_temperature2 = 1.0

z_IC_option1 = "sinusoid"

z_IC_density_amplitude1 = 0.001

z_IC_density_phase1 = 0.0

z_IC_upar_amplitude1 = 0.0

z_IC_upar_phase1 = 0.0

z_IC_temperature_amplitude1 = 0.0

z_IC_temperature_phase1 = 0.0

z_IC_option2 = "sinusoid"

z_IC_density_amplitude2 = 0.001

z_IC_density_phase2 = 0.0

z_IC_upar_amplitude2 = 0.0

z_IC_upar_phase2 = 0.0

z_IC_temperature_amplitude2 = 0.0

z_IC_temperature_phase2 = 0.0

charge_exchange_frequency = 0.0

ionization_frequency = 0.0

nuii_krook = 1.0

nstep = 4000

dt = 0.00025

nwrite = 400

nwrite_dfns = 400

use_semi_lagrange = false

n_rk_stages = 4

split_operators = false

z_ngrid = 17

z_nelement = 8

z_nelement_local = 8

z_bc = "wall"

z_discretization = "chebyshev_pseudospectral"

r_ngrid = 1
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r_nelement = 1

r_nelement_local = 1

r_bc = "periodic"

r_discretization = "chebyshev_pseudospectral"

vpa_ngrid = 17

vpa_nelement = 8

vpa_L = 12.0

vpa_bc = "zero"

vpa_discretization = "chebyshev_pseudospectral"

vperp_ngrid = 17

vperp_nelement = 8

vperp_L = 6.0

vperp_bc = "periodic"

#vperp_discretization = "finite_difference"

vperp_discretization = "chebyshev_pseudospectral"

vz_ngrid = 17

vz_nelement = 4

vz_L = 12.0

vz_bc = "periodic"

vz_discretization = "chebyshev_pseudospectral"

vr_ngrid = 17

vr_nelement = 4

vr_L = 12.0

vr_bc = "periodic"

vr_discretization = "chebyshev_pseudospectral"

vzeta_ngrid = 17

vzeta_nelement = 4

vzeta_L = 12.0

vzeta_bc = "periodic"

vzeta_discretization = "chebyshev_pseudospectral"

[numerical_dissipation]

vpa_dissipation_coefficient = 0.0

#z_dissipation_coefficient = 0.1

r_dissipation_coefficient = 0.0
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Appendix A.2. Simulation input: steady-state runs with a Krook operator

use_manufactured_solns_for_init = true

use_manufactured_solns_for_advance = false

n_ion_species = 1

n_neutral_species = 0

electron_physics = "boltzmann_electron_response"

#electron_physics = "boltzmann_electron_response_with_simple_sheath"

run_name = "1D-wall_evolve_nel_r_1_z_9_vpa_8_vperp_8_krook_diss"

evolve_moments_density = false

evolve_moments_parallel_flow = false

evolve_moments_parallel_pressure = false

evolve_moments_conservation = false

force_Er_zero_at_wall = false #true

Er_constant = 0.0

epsilon_offset = 0.1

use_vpabar_in_mms_dfni = true

T_e = 1.0

T_wall = 1.0

rhostar = 1.0

Bzed = 1.0

Bmag = 1.0

initial_density1 = 0.5

initial_temperature1 = 1.0

initial_density2 = 0.5

initial_temperature2 = 1.0

z_IC_option1 = "sinusoid"

z_IC_density_amplitude1 = 0.001

z_IC_density_phase1 = 0.0

z_IC_upar_amplitude1 = 0.0

z_IC_upar_phase1 = 0.0

z_IC_temperature_amplitude1 = 0.0

z_IC_temperature_phase1 = 0.0

z_IC_option2 = "sinusoid"

z_IC_density_amplitude2 = 0.001

z_IC_density_phase2 = 0.0

z_IC_upar_amplitude2 = 0.0

z_IC_upar_phase2 = 0.0

z_IC_temperature_amplitude2 = 0.0

z_IC_temperature_phase2 = 0.0

charge_exchange_frequency = 0.0

ionization_frequency = 1.0
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constant_ionization_rate = true

nuii_krook = 0.1

nuii_pitch = 0.0

nstep = 20000

dt = 0.0005

nwrite = 200

nwrite_dfns = 200

use_semi_lagrange = false

n_rk_stages = 4

split_operators = false

z_ngrid = 17

z_nelement = 9

z_nelement_local = 9

z_bc = "wall"

z_discretization = "chebyshev_pseudospectral"

r_ngrid = 1

r_nelement = 1

r_nelement_local = 1

r_bc = "periodic"

r_discretization = "chebyshev_pseudospectral"

vpa_ngrid = 17

vpa_nelement = 8

vpa_L = 6.0

vpa_bc = "zero"

vpa_discretization = "chebyshev_pseudospectral"

vperp_ngrid = 17

vperp_nelement = 8

vperp_L = 3.0

vperp_bc = "periodic"

#vperp_discretization = "finite_difference"

vperp_discretization = "chebyshev_pseudospectral"

vz_ngrid = 17

vz_nelement = 4

vz_L = 12.0

vz_bc = "periodic"

vz_discretization = "chebyshev_pseudospectral"

vr_ngrid = 17

vr_nelement = 4

vr_L = 12.0

vr_bc = "periodic"
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vr_discretization = "chebyshev_pseudospectral"

vzeta_ngrid = 17

vzeta_nelement = 4

vzeta_L = 12.0

vzeta_bc = "periodic"

vzeta_discretization = "chebyshev_pseudospectral"

[numerical_dissipation]

vpa_dissipation_coefficient = 0.01

#z_dissipation_coefficient = 0.1

r_dissipation_coefficient = 0.0
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