
Report 2047357-TN-02, M2.3

Numerical study of 1+1D, moment-based drift

kinetic models with periodic boundary conditions

M. Barnes1, F. I. Parra1, M. R. Hardman1 and J. Omotani2

1 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon

Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
2 Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxon, OX14

3DB, United Kingdom

E-mail: michael.barnes@physics.ox.ac.uk

1. Introduction

We expect that one of the biggest challenges in numerically solving drift kinetic equations

in the plasma edge is treating the motion of electrons along the magnetic field. Because

the electrons are light, they move rapidly along the field, placing a severe stability

restriction on the step size for explicit time advance schemes. Unfortunately, an implicit

treatment is not straightforward due to an implicit dependence of the electrostatic

potential on the charged particle distribution functions. One of the main aims of

our research is to develop and test a novel analytical model and associated numerical

algorithm for relaxing this restriction. As a first step towards this goal, we developed a

new code in the programming language Julia to simulate a simple drift kinetic model for

parallel dynamics [1]. We then extended the code to simulate a modified set of equations

in which the density is removed from the particle distribution function and is evolved

separately using the continuity equation [2]. In this report we describe the numerical

implementation of the full ‘moment-kinetic’ model, in which the particle density, parallel

flow and parallel pressure are evolved separately from a modified particle distribution

function. Numerical results are presented to demonstrate that the relevant conservation

properties are satisfied to machine precision and that the moment-based approach passes

the linear damping benchmark developed in [1, 3].

2. Model equations

A detailed derivation of the drift kinetic model we consider, as well as the full moment-

based model, is provided in our Jan 2021 report [3]. For the Reader’s convenience

we produce first an overview of the drift kinetic model and then of models in which

combinations of the density, parallel flow and parallel pressure are separately evolved.

The system we consider consists of a single ion species of charge e, a single neutral

species, and an electron species modelled as having a Boltzmann response, all immersed
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in a straight, uniform magnetic field in the z direction. We allow for charge exchange

collisions between ions and neutrals but do not account for intra-species collisions.

Finally, we assume that the plasma is homogeneous in the plane perpendicular to the

magnetic field. With these assumptions, our model system of equations is

∂fi
∂t

+ v‖
∂fi
∂z
− e

mi

∂φ

∂z

∂fi
∂v‖

= −Rin (nnfi − nifn) , (1)

∂fn
∂t

+ v‖
∂fn
∂z

= −Rin (nifn − nnfi) , (2)

ns(z, t) =

∫ ∞

−∞
dv‖fs(z, v‖, t), (3)

and

ni = Ne exp

(
eφ

Te

)
, (4)

with fs
.
=
∫
dϑdv⊥v⊥Fs the marginalized particle distribution function for species s,

v‖ and v⊥ the components of the particle velocity parallel and perpendicular to the

magnetic field, respectively, ϑ the gyro-angle, mi the ion mass, t the time, φ the

electrostatic potential, and Rin a charge exchange collision frequency factor.

For our boundary conditions, we impose periodicity on fs in both z and v‖, with

periods Lz and Lv‖ , respectively. There is also the option to impose zero boundary

conditions on z and v‖ at the upwind boundary of the domain. As fs should go to zero

at v‖ → ±∞, imposition of zero boundary conditions and periodic boundary conditions

should be equivalent as long as Lv‖ is sufficiently large. Note that with either choice of

boundary conditions, the line-averaged density
∫ Lz

0
dz ns should be conserved.

We normalize Eqs. (1)-(4) by defining

f̃s
.
= fs

cs
√
π

Ne

, (5)

t̃
.
= t

cs
Lz
, (6)

z̃
.
=

z

Lz
, (7)

ṽ‖
.
=
v‖
cs
, (8)

ñs
.
=
ns
Ne

, (9)

φ̃
.
=
eφ

Te
, (10)

and

R̃in
.
= Rin

NeLz
cs

(11)



Numerical study of moment-based drift kinetic model with periodic BCs 3

with cs
.
=
√

2Te/ms. In terms of these normalised quantities, Eqs (1)-(4) become

∂f̃i

∂t̃
+ ṽ‖

∂f̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂f̃i
∂ṽ‖

= −R̃in

(
ñnf̃i − ñif̃n

)
, (12)

∂f̃n

∂t̃
+ ṽ‖

∂f̃n
∂z̃

= −R̃in

(
ñif̃n − ñnf̃i

)
, (13)

eφ̃ = ñi =
1√
π

∫ ∞

−∞
dṽ‖f̃i, (14)

and

ñn =
1√
π

∫ ∞

−∞
dṽ‖f̃n. (15)

2.1. Moment approach: density

We now define the modified distribution function gs
.
= fs/ns so that

∫
dv‖gs = 1. In

terms of gs, the system of equations given by Eqs. (1)-(4) becomes

ni

(
∂gi
∂t

+ v‖
∂gi
∂z
− e

mi

∂φ

∂z

∂gi
∂v‖

)
+ gi

(
∂ni
∂t

+ v‖
∂ni
∂z

)
= −Rinninn (gi − gn) , (16)

nn

(
∂gn
∂t

+ v‖
∂gn
∂z

)
+ gn

(
∂nn
∂t

+ v‖
∂nn
∂z

)
= −Rinninn (gn − gi) , (17)

ni = Ne exp

(
eφ

Te

)
, (18)

∂ns
∂t

+
∂nsus
∂z

= 0, (19)

and

us =

∫ ∞

−∞
dv‖gsv‖. (20)

Note that the 1D continuity equation (19) has replaced the moment equation (3) as a

means of computing the density for each species.

Substituting the continuity equation (19) into the drift kinetic equations (16)

and (17) gives

∂gi
∂t

+ v‖
∂gi
∂z
− e

mi

∂φ

∂z

∂gi
∂v‖

= −Rinnn (gi − gn) + gi

(
∂ui
∂z
−
(
v‖ − ui

) ∂ lnni
∂z

)
(21)

and
∂gn
∂t

+ v‖
∂gn
∂z

= −Rinni (gn − gi) + gn

(
∂un
∂z
−
(
v‖ − un

) ∂ lnnn
∂z

)
, (22)

We normalize Eqs. (18)-(22) by using Eqs. (6)-(11) and by further defining

g̃s
.
= gscs

√
π (23)
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and

ũs
.
=
us
cs
. (24)

In terms of these normalised quantities, Eqs (18)-(22) become

∂g̃i

∂t̃
+ ṽ‖

∂g̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂g̃i
∂ṽ‖

= −R̃inñn (g̃i − g̃n) + g̃i

(
∂ũi
∂z̃
−
(
ṽ‖ − ũi

) ∂ ln ñi
∂z̃

)
, (25)

∂g̃n

∂t̃
+ ṽ‖

∂g̃n
∂z̃

= −R̃inñi (g̃n − g̃i) + g̃n

(
∂ũn
∂z̃
−
(
ṽ‖ − ũn

) ∂ ln ñn
∂z̃

)
, (26)

∂ñs

∂t̃
+
∂ñsũs
∂z̃

= 0, (27)

eφ̃ = ñi, (28)

and

ũs =
1√
π

∫ ∞

−∞
dṽ‖g̃nṽ‖. (29)

The above form for the equations is appealing because it maintains the form of

an advection equation with the only modification being the addition of source terms.

However, it can pose challenges for numerical conservation of quantities such as the

0th velocity moment of gs. This is because parts of the source terms must cancel

upon velocity space integration with some of the advective terms. To ease the task of

preserving conservation properties numerically, the equations can be manipulated into

the following form in which such cancellations can be built into the discretisation:

∂g̃i

∂t̃
+
ṽ‖
ñi

∂ñig̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂g̃i
∂ṽ‖

= −R̃inñn (g̃i − g̃n) +
g̃i
ñi

∂ñiũi
∂z̃

, (30)

∂g̃n

∂t̃
+
ṽ‖
ñn

∂ñng̃n
∂z̃

= −R̃inñi (g̃n − g̃i) +
g̃n
ñn

∂ñnũn
∂z̃

, (31)

∂ñs

∂t̃
+
∂ñsũs
∂z̃

= 0, (32)

eφ̃ = ñi, (33)

and

ũs =
1√
π

∫ ∞

−∞
dṽ‖g̃nṽ‖. (34)

2.2. Moment approach: parallel flow

The parallel flow can also be evolved separately by switching from v‖ as a coordinate

to w‖
.
= v‖ − u. With this change of variable, the normalised kinetic equations (30)

and (31) become

∂g̃i

∂t̃
+
ṽ‖
ñi

∂ñig̃i
∂z̃
−
(

1

2

∂φ̃

∂z̃
+
∂ũi

∂t̃
+ ũi

∂ũi
∂z̃

+ w̃‖
∂ũi
∂z̃

)
∂g̃i
∂w̃‖

= −R̃inñn (g̃i − g̃n) +
g̃i
ñi

∂ñiũi
∂z̃

(35)
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and

∂g̃n

∂t̃
+
ṽ‖
ñn

∂ñng̃n
∂z̃
−
(
∂ũn

∂t̃
+ ũn

∂ũn
∂z̃

+ w̃‖
∂ũn
∂z̃

)
∂g̃n
∂w̃‖

= −R̃inñi (g̃n − g̃i)+
g̃n
ñn

∂ñnũn
∂z̃

, (36)

with ũs determined by the momentum equations

mini

(
∂ui
∂t

+ ui
∂ui
∂z

)
= −∂p‖,i

∂z
− eni

∂φ

∂z
+miRinninn (un − ui) (37)

and

mnnn

(
∂un
∂t

+ un
∂un
∂z

)
= −∂p‖,n

∂z
+mnRinninn (ui − un) , (38)

where

p‖,s
.
=

∫ ∞

−∞
dw‖msw

2
‖fs = nsT‖,s. (39)

Substituting the momentum equations (37) and (38) into Eqs. (35) and (36) gives

∂g̃i

∂t̃
+
w̃‖ + ũi
ñi

∂ñig̃i
∂z̃

+ ẇ‖,i
∂g̃i
∂w̃‖

= −R̃inñn (g̃i − g̃n) +
g̃i
ñi

∂ñiũi
∂z̃

(40)

and
∂g̃n

∂t̃
+
w̃‖ + ũn
ñn

∂ñng̃n
∂z̃

+ ẇ‖,n
∂g̃n
∂w̃‖

= −R̃inñi (g̃n − g̃i) +
g̃n
ñn

∂ñnũn
∂z̃

(41)

with

ẇ‖,i = −w̃‖
∂ũi
∂z̃

+
1

ñi

∂p̃‖,i
∂z̃
− R̃inñn (ũn − ũi) (42)

and

ẇ‖,n = −w̃‖
∂ũn
∂z̃

+
1

ñn

∂p̃‖,n
∂z̃
− R̃inñi (ũi − ũn) (43)

where

p̃‖,s
.
=

p‖,s
Nemsv2th,i

=
p‖,s

2NeTe
. (44)

We choose to evolve the momentum equations in conservative form:

∂

∂t
(miniui) = − ∂

∂z

(
p‖,i +miniu

2
i

)
− eni

∂φ

∂z
+miRinninn (un − ui) (45)

and
∂

∂t
(mnnnun) = − ∂

∂z

(
p‖,n +mnnnu

2
n

)
+mnRinninn (ui − un) , (46)

which, when normalised, become

∂

∂t
(ñiũi) = − ∂

∂z̃

(
p̃‖,i + ñiũ

2
i

)
− ñi

2

∂φ̃

∂z̃
+ R̃inñiñn (ũn − ũi) (47)

and
∂

∂t
(ñnũn) = − ∂

∂z̃

(
p̃‖,n + ñnũ

2
n

)
+ R̃inñiñn (ũi − ũn) . (48)
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2.3. Moment approach: parallel pressure

We additionally separate the parallel pressure (or, equivalently, the thermal speed) by

changing variables from the peculiar velocity to the modified peculiar velocity w‖, given

by

w‖
.
=
v‖ − us
vth,s

, (49)

where vth,s =
√

2T‖,s/ms. Note that T‖,s is related to the distribution function via the

equation of state,

T‖,s =
p‖,s
ns

.
=
msv

2
th,s

2

∫
dw‖2w

2
‖
vth,sfs
ns

⇒
∫
dw‖w

2
‖
vth,sfs
ns

=
1

2
, (50)

and the other relevant moments of the distribution function are expressed in terms of

the modified peculiar velocity as

ns =

∫
dw‖vth,sfs, (51)

nsus =

∫
dw‖w‖v

2
th,sfs, (52)

p‖,s =

∫
dw‖msw

2
‖v

3
th,sfs, (53)

and

q‖,s =

∫
dw‖msw

3
‖v

4
th,sfs. (54)

In terms of the coordinates (z, w‖), the drift kinetic equations for the ions and neutrals

are
∂fs
∂t

+
(
vth,sw‖ + us

) ∂fs
∂z

+ ẇ‖,s
∂fs
∂w‖

= −Rss′ (ns′fs − nsfs′) , (55)

where

ẇ‖,s =− w2
‖
∂vth,s
∂z

+
1

vth,s

(
1

msns

∂p‖,s
∂z
−Rss’ns′ (us′ − us)

)

+
w‖

msnsv2th,s

(
∂q‖,s
∂z

+Rss’

(
ns′p‖,s − nsp‖,s′

)) (56)

and (s, s′) = (i, n) or (s, s′) = (n, i). To obtain this result, we made use of the momentum

equations (37)-(38) and the energy equation,

∂p‖,s
∂t

+ us
∂p‖,s
∂z

= msnsvth,s

(
∂vth,s
∂t

+ us
∂vth,s
∂z

)
+ T‖,s

(
∂ns
∂t

+ us
∂ns
∂z

)

= −∂q‖,s
∂z
− 3p‖,s

∂us
∂z
−Rss’

(
ns′p‖,s − nsp‖,s′

)
,

(57)

recognising that p‖,s = msnsv
2
th,s/2.



Numerical study of moment-based drift kinetic model with periodic BCs 7

We next define a modified distribution function that allows for separate treatment

of the density and parallel pressure:

gs
.
=
vth,s
ns

fs =

(
2

ms

)1/2 p
1/2
‖,s

n
3/2
s

fs. (58)

In terms of gs the drift kinetic equation is

∂gs
∂t

+
gs
ns

∂ns
∂t
− gs
vth,s

∂vth,s
∂t

+
vth,s
ns

(
vth,sw‖ + us

) ∂fs
∂z

+ẇ‖,s
∂gs
∂w‖

= −Rss′ns′

(
gs −

vth,s
vth,s′

gs′

)
.

(59)

Substituting the continuity and energy equations to eliminate ∂ns/∂t and ∂vth,s/∂t gives

∂gs
∂t

+
vth,s
ns

(
vth,sw‖ + us

) ∂fs
∂z

+ ẇ‖,s
∂gs
∂w‖

+Rss′ns′

(
gs −

vth,s
vth,s′

gs′

)

=
gsus
ns

∂ns
∂z
− gs
vth,s

(
us
∂vth,s
∂z

+
1

msnsvth,s

∂q‖,s
∂z

+
Rss’

msnsvth,s

(
ns′p‖,s − nsp‖,s′

))
.

(60)

Finally, we normalise the various equations. The normalised distribution function

is

f̃s
.
= fs

cs
√
π

Ne

= g̃s
ñs
ṽth,s

, (61)

where g̃s = gs
√
π and ṽth,s = vth,s/cs. The drift kinetic equation is normalised by

multiplying each term by
√
πLz/cs:

∂g̃s

∂t̃
+
ṽth,s
ñs

(
ṽth,sw‖ + ũs

) ∂f̃s
∂z̃

+ ˜̇w‖,s
∂g̃s
∂w‖

+ R̃ss’ñ
′
s

(
g̃s −

vth,s
vth,s′

g̃s′

)

=
g̃sũs
ñs

∂ñs
∂z̃
− g̃s

(
ũs
ṽth,s

∂ṽth,s
∂z̃

+
1

2p̃‖,s

∂q̃‖,s
∂z̃

+
R̃ss’

2p̃‖,s

(
ñ′sp̃‖,s − ñsp̃‖,s′

)
)
,

(62)

where

˜̇w‖,s = −w2
‖
∂ṽth,s
∂z̃

+
1

ṽth,s

(
1

ñs

∂p̃‖,s
∂z̃
− R̃ss’ñ

′
s (ũs′ − ũs)

)
+
w‖

2p̃‖,s

(
∂q̃‖,s
∂z

+ R̃ss’

(
ñ′sp̃‖,s − ñsp̃‖,s′

))
,

(63)

ñs
.
=
ns
Ne

=
ṽth,s√
π

∫
dw‖f̃s, (64)

ñsũs
.
=
ns
Ne

us
cs

=
ṽ2th,s√
π

∫
dw‖w‖f̃s (65)

p̃‖,s
.
=

p‖,s
msNec2s

=
ṽ3th,s√
π

∫
dw‖w

2
‖f̃s, (66)

ṽth,s
.
=
vth,s
cs

=

√
2p̃‖,s
ñs

(67)



Numerical study of moment-based drift kinetic model with periodic BCs 8

and

q̃‖,s =
q‖,s

msNec3s
=
ṽ4th,s√
π

∫
dw̃‖w̃

3
‖f̃s. (68)

The energy equation is normalised by multiplying through by Lz/msNec
3
s:

∂p̃‖,s
∂t̃

+ ũs
∂p̃‖,s
∂z̃

+
∂q̃‖,s
∂z̃

+ 3p̃‖,s
∂ũs
∂z̃

+ R̃ss’

(
ñ′sp̃‖,s − ñsp̃‖,s′

)
= 0. (69)

Note that in these coordinates the normalised particle distribution function should

satisfy the following properties related to particle number, momentum and energy

conservation:
1√
π

∫
dw‖g̃s = 1, (70)

1√
π

∫
dw‖w‖g̃s = 0, (71)

and
1√
π

∫
dw‖w

2
‖g̃s =

1

2
(72)

3. Numerical implementation

A detailed description of the time and space discretisation employed in the code is

given in [2], and the code itself is publicly available at https://github.com/mabarnes/

moment_kinetics. Here we focus on a novel extension to our algorithm that is necessary

to ensure exact numerical satisfaction of the conservation properties (70)-(72).

The currently-favoured approach in the code for satisfying exactly the desired

conservation properties is to correct the numerical solutions for n and g at the end

of each time step. For the density, one can set

nm+1 = n̂m+1 + nm
(

1−
∫
dz n̂m+1

∫
dz nm

)
, (73)

where n̂m+1 is the updated solution (at time level m + 1) to the continuity equation

before applying any conserving correction. This guarantees that
∫
dz (nm+1 − nm) = 0.

Note that the superscripts here refer to the time level, not the element index. The

additional error in the density introduced by this correction is

nm
(

1−
∫
dz n̂m+1

∫
dz nm

)
= nm

(
1−

∫
dz
(
nm+1
exact + εm

)
∫
dz nm

)

= nm
∫
dz εm∫
dz nm

= O(εm),

(74)

where εm is the error due to numerical discretisation, and nm+1
exact is the solution for n̂m+1

in the limit εm = 0.

https://github.com/mabarnes/moment_kinetics
https://github.com/mabarnes/moment_kinetics
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A similar technique can be applied to conserve
∫
dw‖g = 1,

∫
dw‖w‖g = 0 and∫

dw‖w2
‖g = 1/2, where here we are focusing on the case in which the density, parallel

flow and parallel pressure are all evolved separately. In particular, we set

gm+1 = ĝm+1 + gm
(

1−
∫
dw‖ĝ

m+1

)
− w‖gmE

∫
dw‖w‖ĝm+1

∫
dw‖w2

‖g
m
E

−
(
w2
‖ −

1

2

)
gmE

∫
dw‖

(
w2
‖ − 1/2

)
ĝm+1

∫
dw‖w2

‖

(
w2
‖ − 1/2

)
gmE

,

(75)

where ĝm+1 is the updated solution to the drift kinetic equation before applying any

conserving correction and gE(w‖) = (g(w‖) + g(−w‖))/2 is the even-in-w‖ component of

g. Again, the additional error in g associated with this correction is O(δm), where δm is

the discretisation error. The correction ensures that
∫
dw‖gm+1 = 1,

∫
dw‖w‖gm+1 = 0

and
∫
dw‖w2

‖g
m+1 = 1/2, provided the corresponding properties are satisfied for gm.

It is thus critical to carefully choose the initial conditions in the code so that

these properties are initially satisfied to machine precision. To do this we first set

initial conditions on the density, parallel flow and parallel pressure profiles, and then

set the initial, normalised distribution function, ĝ0, to be an even function of w‖. The

constraint that ĝ0 be even is not necessary, but is currently chosen for convenience as

it automatically ensures that
∫
dw‖w‖ĝ0 = 0. This initial distribution function is then

corrected in a manner analogous to ĝm+1 above:

g0 =
ĝ0∫
dw‖ĝ0

+

(
1

2
−
∫
dw‖w2

‖ĝ
0

∫
dw‖ĝ0

)(
w2
‖ĝ

0

∫
dw‖w2

‖ĝ
0
− ĝ0∫

dw‖ĝ0

)

/(∫
dw‖w

2
‖

(
w2
‖ĝ

0

∫
dw‖w2

‖ĝ
0
− ĝ0∫

dw‖ĝ0

)) (76)

This approach is simple, does not change the order of accuracy of the discretisation

scheme and allows for the use of numerical dissipation to improve numerical stability

properties. Results showing its efficacy are given in Sec. 4

4. Numerical results

To benchmark our numerical implementation of the moment-based approach

encapsulated in Eqs. (62)-(69), we compare our simulation results with the analytical

benchmarks developed in [3] and with the numerical results obtained by directly solving

the kinetic system corresponding to Eqs. (12)-(15). We note that the results obtained

with separate evolution of only the density (Eqs. (30)-(34)) and of only the density and

parallel flow (Eqs. (40)-(48)) are almost identical to the ones presented here in which

all three of the lowest-order moments are evolved separately. The results reported here

were obtained using the conserving corrections given by Eqs. 73 and 75.
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We have initialised the modified distribution functions for the ions and neutrals to

be of the form

g̃s = exp
(
−w2

‖
)
. (77)

The initial temperature Ts is chosen to be Te, which is constant along z, and the initial

density is chosen to be ñs = ns + δns, with ns =
∫
dz(ns/Ne)/Lz the field-line-averaged

density, normalised to the z-independent electron density Ne. The piece of the density

that varies along z, δns, is chosen to be small compared to ns (δns/ns = 0.001) so that

the system of equations can be linearised to a good approximation. This facilitates

comparisons with the linear analytical theory presented in [3]. For all cases shown

here, ni = nn = Ne/2, T i = T n = Te and mi = mn. The charge exchange collision

frequency is varied, and damping rates and frequencies are extracted by considering the

time evolution of the spatially-varying component of the electrostatic potential, δφ. In

particular, a least-squares fit for δφ(t)/δφ(t0) is done for each simulation to a function

of the form exp(−γ(t − t0)) cos(ωt − ϕ)/ cos(ωt0 − ϕ) to obtain the damping rate γ,

frequency ω and phase ϕ. The results are given in Fig. 1. There is good agreement

across a wide range of charge exchange collision frequencies, both for the damping of

finite frequency modes (corresponding to the solid lines) and to a zero frequency mode

that appears at larger collisionalities (dashed-dotted lines). The minor discrepancy

between the analytical and numerical damping rates that is apparent for the case with

normalised charge exchange collision frequency near 0.7 is due to the simultaneous

presence of both modes with similar damping rates.
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Figure 1. Normalized damping rate and real frequency as a function of the charge

exchange collision frequency.

In Figure 2 we show the difference in conservation properties between cases

for which the conservative corrections indicated at the beginning of the Section are

employed and those for which no conserving correction is applied. With the conservative

implementation, all of the requisite moments of the modified distribution function are

conserved to machine precision, regardless of numerical resolution.
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Figure 2. Time traces of the deviation from exact conservation of the moments∫
dw‖w

m
‖ g for low-resolution (Nz = 9 on one element, Nv = 9 on five elements)

simulations with normalised Rin ≈ 0.3. Solid and dotted lines correspond to

simulations with and without conserving corrections, respectively.

5. Future plans

Now that we have a proof-of-concept implementation of the moment-based approach to

solving the 1+1D kinetic problem with periodic boundary conditions, we plan to extend

the model to treat wall boundary conditions.
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