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1 Executive summary

In this report we summarise the implementation of system 2-3 through the 1D
model SD1D [I] including fluid neutrals and realistic boundary conditions. We
also discuss selected test cases from task 83-2.1 implemented with SD1D. This
provides a reference implementation of a 1D fluid solver with realistic boundary
conditions for use in other work, including an exploration of non-intrusive UQ
in task 83-2.4.

2 Introduction

Here we are interested in an implementation with BOUT++ [2] of system 2-3.
This system is described in detail in the Equations for ExCALIBUR/NEPTUNE
Proxyapps document [3] so here we provide a qualitative summary of the system,
rather than reproduce the full system of equations. The system under consider-

ation is 1D, with the spatial dimension representing the distance along a single



field line. This is typically mapped onto the region from the outboard midplane
(upstream) to the target (downstream), in order to represent the behaviour of
the scrape off layer (SOL). The equations describing this plasma evolution are
derived from summing Braginskii’s two fluid system alongside a small number
of assumptions. The end result is that we represent the plasma as a single
fluid with evolving plasma number density, pressure (i.e. energy density) and
momentum. In addition to the plasma fluid, the system also includes a fluid
neutral model. The neutral system takes the same form as the plasma one and
again describes the evolution of number density, pressure and momentum. The
neutral and plasma fluids are then coupled through sources and sinks represent-
ing the various plasma-neutral interactions such as recombination, ionsiation,

charge exchange and elastic collisions.

The 1D model SD1D [I] implements such a system, assuming T, = T;, and is
built on top of BOUT++ [2]. This gives SD1D access to a range of numeri-
cal approaches to spatial differencing, time integration and preconditioning as
provided by BOUT++. This makes it a useful tool for experimenting with dif-
ferent numerical approaches. The SD1D manual, provided alongside the code,
provides a brief summary of the physics details and some of the numerical con-
siderations. We do not reproduce this here and for convenience, a copy of the
manual is included in appendix [A] The user has a lot of run time control over
the setup of the system; choosing which physics terms are included, the value of
physics coefficients, the numerical scheme etc. through the input file. We shall
make use of this flexibility in task 83-2.4 when uncertainty quantification (UQ)

is investigated.

When applied to a typical divertor system the appropriate upstream bound-
ary conditions are generally symmetry, implemented as Neumann-zero on the
density, pressure and temperature (the derivative of which appears in the heat
flux, ¢) and Dirichlet-zero on the parallel velocity. At the downstream, sheath
boundary conditions are imposed with the temperature using Neumann-zero
and the parallel velocity adopting V| > vs. The SD1D implementation handles
this inequality by checking the value of V| in front of the boundary and adopting

a Dirichlet condition if V|| < vy, switching to Neumann if V|| > v already.



3 Implementation of selected test cases

In the report for 83-2.1 [4] a number of generic test cases for 1D plasma fluid
models are outlined. Here we discuss the implementation of a subset of these in
SD1D and show selected results.

We note that we use branch bout-next of SD1D at commit 7bd6bc91 and then
build this using BOUT++ commit 080f3b27. This is not the BOUT++ commit
which will be used by default if SD1D is not supplied with an existing BOUT++
build.

3.1 Single species

Here we drop the neutral fluid entirely and only evolve the single plasma fluid.
In particular we focus on the “Half source, sheath boundary” of 83-2.1 in which
there are particle and energy sources distributed over the upstream half of the
domain and sheath boundaries are enforced at the target. This case corresponds
to example case-03 shipped with SD1D. We also note that this is setup identi-
cally to case-02 of SD1D, except it includes heat conduction. Whilst this does
not drastically modify the steady state obtained, as shown in figure [T} this can
have a significant impact on the numerical performance. For example case-02
is found to run in around 5 secondd] on a test machine, whilst once the heat
condution is enabled it takes ~ 155 seconds. We note that case-03 actually
runs in around 7 seconds. The reason this is not as slow as case-02 with heat
condution enabled, is that it also enables SD1D’s custom physics based precon-
ditioner, which attempts to solve the heat conduction problem in the precondi-
tioner stage. This highlights the importance of using a build of BOUT++ with
time integrators compatible with preconditioners such as CVODE and PETSc.
One can also disable the physics motivated preconditioner and instead enable
a generic preconditioner package such as HYPRE. For example, taking case-03
and disabling the physics based preconditioner one can recover a run time of 7
seconds by switching to the PETSc based time integrator, “beuler”, and using
either PETSc’s ILU preconditioner (serial runs) or HYPRE’s euclid (parallel
ILU) through PETSc. HYPRE’s BoomerAMG can also be a good choice when

running in parallel. Tuning the preconditioner parameters can lead to further



gains in more expensive test cases.
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Figure 1: Comparison of the plasma state variables as a function of arc length,
p, at the final time for case-02 and case-03.

3.2 Fluid neutrals

Next we turn our attention to a more complete test case which now includes
coupling to neutrals. In particular, we introduce the full neutral fluid model of
system 2-3. The simulation setup is held the same as case-03 in all other aspects
aside from a reduction in the recycling fraction from 0.9 to 0.2. This results
in case-04 of SD1D. The performance of this case is again rather sensitive to
the preconditioning approach taken. The default setup when BOUT++ is con-
figured with CVODE support will be to use the physics based preconditioner,
which gives a run time of 53s on one core. Removing this preconditioner sees
the run time shoot up to 717 seconds. Switching to the PETSc based “beuler”

LA large fraction (~ 40%) of this run time is actually in 1/O overhead.



method and retaining the physics based preconditionter sees the run time at 368
seconds. If one instead employs ILU rather than the physics-based precondi-
tioner the run time is reduced significantly to around 25 seconds. The result of
running this test case is shown in figure [2l By comparison with the earlier test
cases one can see that the plasma structure is broadly consistent with case-03
except for the region immediately in front of the target, as one would expect.
We also see that the default resolution, n, = 200, is slightly underresolved when

compared to n, = 600.
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Figure 2: Comparison of the plasma and neutral state variables as a function
of arc length, p, at the final time for case-04.

4 Conclusions

This report has provided a brief introduction to the implementation of system
2-3 within SD1D. Further details are provided through the SD1D manual, in-
cluded as an appendix. In addition we have discussed the implementation of a



small number of the tests outlined in 83-2.1. Whilst the SD1D implementation
of this system provides a very convenient tool for rapid study of system 2-3
in many cases it is perhaps useful to note that a yet more flexible implemen-
tation is provided in Hermes-3 [5]. This allows for the relaxation of some of
the assumptions made here (e.g. T, = T;) as well as providing a pathway to

consistently extend beyond 1D.
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A SD1D Manual

A.1 Getting started

First get a copy of development branch of BOUT++. You can download a

tarball from https://github.com/boutproject/BOUT-dev, but it is strongly

recommended you use Git:

$ git clone https://github.com/boutproject/BOUT-dev.git

Configure and make BOUT-dev, including SUNDIALS. This is available from
http://computation.llnl.gov/projects/sundials, and is needed for pre-

conditioning to work correctly.

$ cd BOUT-dev

$ .

/configure --with-sundials

$ make
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The user manual for BOUT++ is in subdirectory of BOUT-dev called ”manual”,
and contains more detailed instructions on configuring and compiling BOUT++.
This will build the core library code, which is then used in each model or test

case (see the examples/ subdirectory)

Next download a copy of SD1D into the BOUT-dev/examples subdirectory.
This isn’t strictly necessary, but it makes the "make” command simpler (other-
wise you add an argument BOUT_TOP=/path/to/BOUT-dev/ to make)

BOUT-dev/examples/$ git clone https://github.com/boutproject/SD1D.git
BOUT-dev/examples/$ cd SD1D
BOUT-dev/examples/SD1D $ make

Hopefully you should see something like:

Compiling sdld.cxx
Compiling div_ops.cxx
Compiling loadmetric.cxx
Compiling radiation.cxx
Linking sdild

Here the main code is in ”sd1ld.cxx” which defines a class with two methods:
init (), which is run once at the start of the simulation to initialise everything,
and rhs () which is called every timestep. The function of rhs() is to calculate
the time derivative of each evolving variable: In the init () function the evolving
variables are added to the time integration solver (around line 192). This time
integration sets the variables to a value, and then runs rhs(). Starting line
782 of sd1d.cxx you’ll see the density equation, calculating ddt (Ne). Ne is the
evolving variable, and ddt () is a function which returns a reference to a variable

which holds the time-derivative of the given field.

BOUT++ contains many differential operators (see BOUT-dev/include/difops.hxx),
but work has been done on improving the flux conserving Finite Volume imple-
mentations, and they’re not yet in the public repository. These are defined in

div_ops.hxx and div_ops.cxx.

The atomic rates are used in sd1d. cxx starting around line 641, and are defined

in radiation.cxx and radiation.hxx.



To run a simulation, enter:

$ ./sdld -d case-01

This will use the ”case-01” subdirectory for input and output. All the options

for the simulation are in case-01/BOUT. inp.

The output should be a whole bunch of diagnostics, printing all options used
(which also goes into log file BOUT.log.0), followed by the timing for each

output timestep:

Sim Time | RHS evals | Wall Time | Calc Inv  Comm I/0 SOLVER
0.000e+00 1 1.97e-02 1.9 0.0 0.2 21.6 76.3
5.000e+03 525 1.91e-01 89.0 0.0 0.6 1.1 9.3
1.000e+04 358 1.30e-01 88.8 0.0 0.6 1.4 9.2
1.500e+04 463 1.68e-01 89.2 0.0 0.6 1.3 8.9
2.000e+04 561 2.02e-01 89.6 0.0 0.6 1.1 8.7
2.500e+04 455 1.65e-01 89.2 0.0 0.6 1.2 9.1

The simulation time (first column) is normalised to the ion cyclotron frequency
(as SD1D started life as part of a turbulence model), which is stored in the
output as "Omega_ci”. So each output step is 5000 / Omega_ci = 104.4 mi-
croseconds. The number of internal timesteps is determined by the solver, and
determines the number of times the rhs() function was called, which is given
in the second column. If this number starts steadily increasing, it’s often a sign

of numerical problems.

To analyse the simulation, the data is stored in the ”case-01” subdirectory
along with the input. You can use IDL or Python to look at the "Ne”, "NVi”,
”P” variables etc. which have the same names as in the sd1d.cxx code. See
section for details of the output variables and their normalisation. The
evolving variables should each be 4D, but all dimensions are of size 1 except
for the time and parallel index (200). Please see the BOUT-++ user manual for
details of setting up the Python and IDL reading (”collect”) routines.



A.1.1 Examples

Case 1: Without heat conduction (Euler’s equations)

Removing heat conduction reduces the system to fluid (Euler) equations in 1D.
Note that in this case the boundary condition (equation |4)) is subsonic, because

the adiabatic fluid sound speed is

wm () o

In this case the sources of particles and energy are uniform across the grid.
Case 2: Localised source region

The same equations are solved, but here the sources are only in the first half of

the domain, applied with a Heaviside function so the sources abruptly change.
Case 3: Heat conduction

We now add Spitzer heat conduction, the k|, term in the pressure equation.
This coefficient depends strongly on temperature, and severely limits the timestep
unless preconditioning is used. Here we use the CVODE solver with precondi-
tioning of the electron heat flux. In addition to improving the speed of conver-

gence, this preconditioning also improves the numerical stability.
Case 4: Recycling, neutral gas

The plasma equations are now coupled to a similar set of equations for the
neutral gas density, pressure, and parallel momentum. A fixed particle and
power source is used here, and a 20% recycling fraction. Exchange of particles,
momentum and energy between neutrals and plasma occurs through ionisation,

recombination and charge exchange.
Case 5: High recycling, upstream density controller

This example uses a PI feedback controller to set the upstream density to 1 x
10"m~3. This adjusts the input particle source to achieve the desired density, so
generally needs some tuning to minimise transient oscillations. This is controlled

by the inputs

10



density_upstream = 1el9
density_controller_p = le-2

density_controller_i = 1le-3
The input power flux is fixed, specified in the input as 20MW /m?:

[P] # Plasma pressure P = 2 x Ne * T
powerflux = 2e7 # Input power flux in W/m™2

The recycling is set to 95%
frecycle = 0.95

NOTE: This example is under-resolved; a realistic simulation would use a

higher resolution, but would take longer. To increase resolution adjust ny:
ny = 200 # Resolution along field-line

Rather than 200, a more realistic value is about 600 or higher.

A.2 Plasma model

Equations for the plasma density n, pressure p and momentum m;nV); are

evolved:

on
o = ~V-(bVjn) +5, -5
o (3
9
5 (minVi)) = =V (mnVbV)) —9p—F
jo=0
_p_1p
L = Te_?en
5
a = bV —wd)Te

2
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Which has a conserved energy:
1 9 3
—m;nV\i. + =p| dV

The heat conduction coefficient |, is a nonlinear function of temperature Te:
Klje = RoTS!

where K is a constant. See section for details.

Operators are:

oNf=b-Vf Vf=V-(bf) (1)

A.3 Boundary conditions
A.3.1 Upstream: Symmetry

Symmetry boundary conditions are applied at the upstream side, corresponding

to zero flow through the boundary.
8””:0 8Hp=0 8HT€=O V|| =0 nVH =0 (2)

Since the boundary is half-way between grid points, this is implemented as

nNg = M
Po = D1
Te,O = Te,l
Vie = Vi
Wi = —nVa

A.3.2 Downstream: Sheath

Boundary conditions are applied to the velocity and the heat flux:

12



e At the left boundary a no-flow condition is applied:

Vi = 0
8HT€ = 0

e At the right boundary is a sheath boundary:

i = vs
NT. = 0

where the inequality is implemented by switching from a Dirichlet to a

Neumann boundary if V|| > v, in front of the boundary.

The critical speed into the sheath, v, is sensitive to assumptions on the

thermodynamics of the sheath, taking the formﬂ

o (e (T, + w:n—))”2 3

my;

where T, is the electron temperature (in eV), 7T; is the ion temperature,
is the ratio of specific heats. For isothermal flow v = 1, for adiabatic flow
with isotropic pressure v = 5/3, and for one-dimensional adiabatic flow
v = 3. Here we are assuming T, = T; and 9)|T¢ so take the isothermal

case. This therefore becomes:

v, = (2)" @

n

Note: If the sheath velocity is subsonic, then waves can propagate in from the
boundary. Their domain of dependence is outside the simulation domain, so

these waves can cause numerical instabilities.

Several boundary conditions are available for the density and pressure, including
free boundaries and Neumann (zero gradient). These are controlled by settings

density_sheath and pressure_sheath. Density can have the following values:

0. Free boundary, linearly extrapolating the value from inside the domain

n_1= 277,,2 —N_3 (5)
2K-U Riemann, J.Phys. D:Appl. Phys 24 (1991) 493-518

13



1. Neumann (zero gradient)

n_i1=mnN_—9 (6)

2. Constant flux
n_1/2 =n_sv_2J 3/ (vsJ_12) (7)

where the Jacobian factors J account for a changing flux tube cross-section

area.
Pressure can have the following values:
0. Free boundary, linearly extrapolating the value from inside the domain
p—1=2p2—p-3 (8)

1. Neumann (zero gradient)

P-1=Dp-2 (9)

2. Constant energy flux Spv + $nov3

5p_1/2 = (Bp—2v—2 + n_ov®,) Jvs — n_1 /202 (10)

A.4 Sources and transfer terms
External sources are

e S, = Source of plasma ions

e S, = Source of pressure, related to energy source S = 35,

In the simulations carried out so far, these source functions are both constant

between midplane and X-point, and zero from X-point to target.

A.4.1 Transfer channels

There are several transfer channels and sinks for particles, energy and momen-

tum due to rates of recombination, ionisation, charge exchange, electron-neutral

14



excitation, and elastic collisions with units of m~3s~!:

Ree = n? (ov),.. (Recombination)
Ri. = nny(ov),, (Tonisation)

Rex = nny(ov),, (Charge exchange)
Re = nny,(ov), (Elastic collisions)

where n is the plasma density; n, is the neutral gas density; o, is the cross-
section for charge exchange; o, is the cross-section for recombination; and o;,
is the cross-section for ionisation. Each of these processes’ cross-section depends
on the local density and temperatures, and so changes in time and space as the

simulation evolves.

e S = Net recombination i.e neutral source (plasma particle sink). Calcu-

lated as Recombination - Ionisation:

S = ch - Riz

e R = Cooling of the plasma due to radiation, and plasma heating due to

3-body recombination at temperatures less than 5.25eV.

R

(1.09T, — 13.6eV) R (Recombination)
Ei.R;. (Ionisation)
(1eV) Rex (Excitation)

- - -

R, imp (Impurity radiation)

The factor of 1.09 in the recombination term, together with factor of 3/2
in E below, is so that recombination becomes a net heat source for the
plasma at 13.6/2.59 = 5.25eV. E;, is the average energy required to ionise
an atom, including energy lost through excitation.

If excitation is not included (excitation = false) then following Togo
et al., E;, is chosen to be 30eV. If excitation is included, then F;, should
be set to 13.6eV.

15



e E = Transfer of energy to neutrals.

E = gTech (Recombination)
- ngRiz (Tonisation)
+ g (Te — T0) Res (Charge exchange)**
+ g (Te — Ty) Re (Elastic collisions)**

(**) Note that if the neutral temperature is not evolved, then T;, = T, is
used to calculate the diffusion coefficient D,,. In that case, T, is set to

zero here, otherwise it would cancel and leave no CX energy loss term.

e F' = Friction, a loss of momentum from the ions, due to charge exchange
and recombination. The momentum of the neutrals is not currently mod-
elled, so instead any momentum lost from the ions is assumed to be trans-

mitted to the walls of the machine.

F = miVR,. (Recombination)
— miV||pRiz (Tonisation)
+ my (VH - V||n) Rew (Charge exchange)
+ my (VH — V||n) Rel (Elastic collisions)

All transfer channels are integrated over the cell volume using Simpson’s rule:

S (JLSL+4JCsc+JRSR)

:E

where J is the Jacobian of the coordinate system, corresponding to the cross-
section area of the flux tube, and subscripts L, C' and R refer to values at the

left, centre and right of the cell respectively.

A.4.2 Recycling

The flux of ions (and neutrals) to the target plate is recycled and re-injected
into the simulation. The fraction of the flux which is re-injected is controlled

by frecycle:
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frecycle = 0.95 # Recycling fraction

The remaining particle flux (5% in this case) is assumed to be lost from the
system. Note that if there are any external particle sources, then this fraction
must be less than 1, or the number of particles in the simulation will never reach

steady state.

Of the flux which is recycled, a fraction fredistribute is redistributed along

the length of the domain, whilst the remainder is recycled at the target plate

fredistribute = 0.8 # Fraction of recycled neutrals redistributed evenly along length

The weighting which determines how this is redistributed is set using redist_weight:

redist_weight = h(y - pi) # Weighting for redistribution

which is normalised in the code so that the integral is always 1. In these expres-
sions y is uniform in cell index, going from 0 to 27 between the boundaries. The
above example therefore redistributes the neutrals evenly (in cell index) from

half-way along the domain to the end.

When neutrals are injected, some assumptions are needed about their energy

and momentum

e When redistributed, neutrals are assumed to arrive with no net parallel
momentum (so nothing is added to NV;,), and they are assumed to have

the Franck-Condon energy (3.5eV currently)

e When recycled from the target plate, neutrals are assumed to have a paral-
lel momentum away from the target, with a thermal speed corresponding
to the Franck-Condon energy, and is also added to the pressure equation.
NOTE: This maybe should be one or the other, but not both...

A.5 Neutral model

The number of equations solved is controlled by the following parameters in the

input file:

17



[NVn]

evolve = true # Evolve neutral momentum?

[Pn]

evolve = true # Evolve neutral pressure? Otherwise Tn = Te model

Neutral density is always evolved, so turning off evolution of momentum and
pressure (setting both of the above to false) reduces the neutral model to a

simple diffusion model (next section). By turning on the momentum equation

A.5.1 Diffusive model

In the simplest neutral model, neutral gas is modelled as a fluid with a density

n,, which diffuses with a diffusion coefficient D,,:

on,

W =V. (DnVnn) + 5 - nn/Tn (11)

The temperature of the neutrals is assumed to be the same as the ions T, =
T;.Diffusion of neutrals depends on the neutral gas temperature, and on the

collision rate:
Dy, = vfh,n/ (Vea + Vnn) (12)

where v, = \/m is the thermal velocity of a neutral atom; v., = noe,
is the charge-exchange frequency, and o, = v, nnnao is the neutral-neutral
collision frequency where ag >~ 7 (5.29 X 10*11)2 m? is the cross-sectional area
of a neutral Hydrogen atom. In order to prevent divide-by-zero problems at low
densities, which would cause D to become extremely large, the mean free path

of the neutrals is limited to 1m.

An additional loss term is required in order to prevent the particle inventory of
the simulations becoming unbounded in detached simulations, where recycling
no longer removes particles from the system. This represents the residence time
for neutral particles in the divertor region, which in [Togo 2013] was set to

around 10~ %s.
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A.5.2 Neutral fluid model

A more sophisticated neutrals model can be used, which evolves the neutral gas

momentum and energy:

ony,
S = =V (bVan) + V- (DY) + 5 = na /7,
9 (3
En <2pn> = ~Wnopn + V- (k. VT,) +V - (D,T,Vn,) + E
9
o (minVij) = =V (minVj,bV,) = p+ F

ot

where k, is the neutral gas heat conduction coefficient. This is assumed to be
Knp = nnvfh,n/ (Vez + Vnn)
i.e. similar to D,, for the diffusive neutral model, but with a factor of n,,.

Note that if the diffusion term D,, is retained in the neutral density (n,) equa-
tion, then a corresponding term is needed in the pressure (p,) equation. To re-

move these terms, set dneut to zero in the input options, which will set D,, = 0.

The density diffusion term should not be included if the momentum is evolved,
and so is switched off if this is the case. The continuity equation for n,, is exact
once the flow is known, so the diffusive flux should be contained in the flow

velocity V|j,. To see where this comes from, assume an isothermal neutral gas:

%n = =V (bVjjunn) + 8 —nn /T
& (Vi) =~ (mnViybVi,) — i + F

ot

Dropping the inertial terms reduces the momentum equation to
T = F = vminn (Vi = Vijn)

where v is a collision frequency of the neutrals with the ions, due to charge

exchange, recombination and ionisation (i.e. Vg -+ Vpy, as used in the calculation
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of diffusion coefficient D,,). This gives an equation for the neutral flow velocity:

2
1 Vth,n

)

eT,
8| | ny, = —
n v nn

Vi = Viji — O

min v

where vy, = /€T, /m; is the neutral thermal speed, as used in the calculation

of D,,. This gives a flux of neutrals
M Vijn = nnVjji — Dndjjnn
Hence the diffusive flux is included in the balance between pressure gradients

and friction in the momentum equation.

A.6 Outputs

Output quantities are normalised, with the normalisation factors stored in the

output files

Table 1: Normalisation quantities

Name Description  Units
Nnorm Density m~3
Tnorm Temperature eV
Cs0 Speed m/s
Omega_ci Time 1/s
rho_s0 Length m

The following variables are stored in the output file if they are evolved:

Name Description Normalisation

Ne Plasma density Nnorm [m 3]

NVi Plasma flux NnormxCsO [m~2s71]

P Plasma pressure exNnormxTnorm [Pascals]
Nn Neutral density Nnorm [m 3]

NVn Neutral flux NnormxCsO [m~2s71]
Pn Neutral pressure exNnormxTnorm [Pascals]

The following rates and coefficients are also stored:
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Name Description Normalisation

S Sink of plasma density NnormxOmega ci [m~3s7!]

F Sink of plasma momentum  m; xNnormxCs0xOmega_ci [Nm™>
R Radiative loss of energy exNnormx TnormxOmega_ci [Wm™?]
E Sink of plasma energy exNnormx TnormxOmega _ci [Wm ™3]
kappa_epar Plasma thermal conduction

Dn Neutral diffusion coefficient

flux_ion Flux of ions to target

Note that the R term is energy which is lost from the system, whilst E is energy

which is transferred between plasma and neutrals. For all transfer terms (8, F,

R) a positive value means a transfer from plasma to neutrals.

To diagnose atomic processes, turn on diagnose = true in the input settings

(this is the default). Additional outputs contain the contributions from each

atomic process.

They have the same normalisation factors as the corresponding

(S, F, R) term.
Name Description
Srec Sink of plasma particles due to recombination
Siz Sink of plasma particles due to ionisation (negative)
Frec Sink of plasma momentum due to recombination
Fiz Sink of plasma momentum due to ionisation
Fcx Sink of plasma momentum due to charge exchange
Fel Sink of plasma momentum due to elastic collisions
Rrec Radiation loss due to recombination
Riz Radiation loss due to ionisation (inc. excitation)
Rzrad Radiation loss due to impurities
Rex Radiation loss due to electron-neutral excitation
Erec Sink of plasma energy due to recombination
Eiz Sink of plasma energy due to ionisation
Ecx Sink of plasma energy due to charge exchange
Eel Sink of plasma energy due to elastic collisions
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A.7 Atomic cross sections

Cross sections are approximated with semi-analytic expressions, obtained from
E.Havlickova but of unknown origin. For the purposes of calculating these
cross-sections, any temperatures below 1eV are set to 1eV. The charge exchange

cross-section is approximated as:

10-M7Y3 i T > 1eV
10714 if T < 1eV
with units of [m?3/s]. Ionisation is calculated as
5.875 x 10712 . 7—0:5151 . 1()=2.563/logyo T if T > 20eV
Oow = 4 10-6 . 73054 ()= 15.72exp(~ log; T)+1.603 exp(=1og1y T)  if 16V < T < 20eV
7.638 x 10721 if T <1leV
(14)

Recombination rates are calculated using a 9 x 9 table of coefficients so is not

reproduced here.

7: 10" lonisation

E — Recombination (n = 10*m™?)
A 107 — Recombination (n = 10*m™?) H
v —— Recombination (n = 10%?m™3)
g 10" Charge exchange

1078 |

109 |

-20 i i i
10 0 5 10 15 20 25 30

Electron temperature [eV]

Figure 3: Cross-sections [Thanks to E.Havlickova and H.Willett]

Plots of these cross-sections are shown in figure There are a few anomalies
with this: charge exchange always has the highest cross-section of any process,
and ionisation has a jump at 20eV. The ionisation and charge exchange rates

do not depend on density, but recombination does so a typical range of values
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is shown.

A.8 Heat conduction

Spitzer heat conduction is used

ne?Tr, 5/2

~ 3.1 x 10*

=3.2
Fle Me In A

(15)

which has units of W/m/eV so that in the formula ¢ = —x) VT, ¢ has units of

Watts per m? and T has units of eV. This uses the electron collision time:

6+/273/2¢2 T3/2 Te3/2
= VRRRGTT g 4y s ot (16)
In Ae25n In An
in seconds, where Te is in eV, and n is in m~3.
Normalising by the quantities in table [1] gives
e = 3200, 7.0, (17)
m,

€

where hats indicate normalised (dimensionless) variables.

A.9 Non-uniform mesh

An example of using a non-uniform grid is in diffusion pn. The location [
along the field line as a function of normalised cell index y, which goes from 0

at the upstream boundary to 27 at the target, is

l = L |:(2 — 5ym1n) 271_ 27‘(‘

L = ) ()] (18)

where 0 < 0Ymin < 1 is a parameter which sets the size of the smallest grid
cell, as a fraction of the average grid cell size. The grid cell spacing dy therefore

varies as I
=5 [1 (1= 6ypmin) (1 - %)} (19)

This is set in the BOUT.inp settings file, under the mesh section:
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dy = (length / ny) * (1 + (1-dymin)*(1-y/pi))

In order to specify the size of the source region, the normalised cell index y at
which the location [ is a given fraction of the domain length must be calculated.

This is done by solving for y in equation [I8]

ya:pt =T |:2 - 6ymzn - \/(2 - 6ymin)2 —4 (1 - 6ymzn) fsource /(1 - 6ymzn)
(20)
which is calculated in the BOUT.inp file as

y_xpt = pi * ( 2 - dymin - sqrt( (2-dymin)~2 - 4*(1-dymin)*source ) ) / (1 - dymin)

where source is the fraction fsource Of the length over which the source is spread.

This is then used to calculate sources, given a total flux. For density:
source = (flux/(mesh:source*mesh:length))*h(mesh:y_xpt - y)

which switches on the source for y < y;,; using a Heaviside function, then
divides the flux by the length of the source region fspurcel to get the volumetric

sources.

A.10 Numerical methods

All variables are defined at the same location (collocated). Several different
numerical methods are implemented, to allow testing of their accuracy and

robustness.

A.10.1 Advection terms V - (bV], f)

Flux splitting, MinMod limiter

The default method uses a combination of HLL-style flux splitting and MinMod

slope limiting. Terms of the form V - (bf) are implemented as fluxes through
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cell boundaries:

1
V- (be)l ~ m [Fi+1/2 — Fi—l/Q] (21)

where F' is the flux. This is calculated by linearly interpolating the velocity to
the cell edges

1
Vig1/2 = 3 (Vi +Vig1) (22)

The field being advected, f, is reconstructed from the cell centre values f; onto
cell edges fF and ff:

1 1
f'LL:f’L'_fs f'L'R:fi—’—*s (23)
2 2
where the slope s is limited using the MinMod method:

0 if sign(fi+1 — fi) # sign(fi — fi—1)
s=19 fixr— fi if [fix1 — fil <|fi = fiz1l (24)

fi — fi—1 otherwise

In order to handle waves travelling both left and right, flux splitting handles
characteristics moving left differently from characteristics moving right. In gen-
eral this is problem dependent and computationally expensive, so here we adopt
a simple approximation similar to an HLL Splittingﬂ We assume that the fastest
waves in the system travel with speed a (the sound speed) with respect to the
flow, so that there are waves travelling with V 4+ a and V' — a. If the flow speed
is supersonic then these waves are only in one direction, but for subsonic flows

there is a flux in both directions. The fluxes between cells are calculated using:

FEViiaye if Viyi2>a
Fiyi2=19 fHiVisie if Viti2 < —a (25)
£ (Vigaja + ) + 513 (Visja —a) - otherwise
Hence for subsonic flows the flux becomes Vi+1/2% (fiR + Z-LH) +3 (fiR - Z-LH),
where the second term is a diffusion. When the solution is smooth, f# ~ lﬁ_l,
the numerical method becomes central differencing and the diffusion goes to zero

as Az?. Oscillatory solutions introduce dissipation, and the method becomes

3A. Harten, P. D. Lax, and B. van Leer,”On Upstream Differencing and Godunov-Type
Schemes for Hyperbolic Conservation Laws”, SIAM Review, 25(1), pp. 35-61, 1983
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increasingly upwind as the flow becomes sonic.
Nonlinear fluzes

When advecting quantities which are a nonlinear combination of variables, such

as nV)|, conservation properties can be slightly improved by using the following

interpolatiorEIEI E

(f9)" = § (£ + ") (26)

where superscript C' denotes cell centre, and R right hand side. This method is

implemented, using MinMod interpolation for each variable.
Central differencing

Central difference schemes have an advantage over upwind schemes, in that they
do not need to take account of wave speeds. The simple central differencing
scheme produces large unphysical oscillations, due to the decoupling of odd and
even points in collocated schemes, but can (usually) be stabilised by adding

dissipation. It is implemented here for comparison with other schemes.
Skew symmetric central differencing

A simple modification to the central differencing scheme improves numerical
stability, coupling nearby points[”ﬂ The idea is to split the divergence terms
into a “skew-symmetric” form

V- (bVf) =5 [V (bVf) + Vb Vf+ fV - (bV))] (27)

1
2
Each of the terms on the right are then discretised with standard 2nd-order
central differences. This method can avoid the need for additional dissipation,
or be stabilised with a smaller viscosity than the simple central differencing
method.

4F.N.Felten, T.S.Lund “Kinetic energy conservation issues associated with the collocated
mesh scheme for incompressible flow” J.Comp.Phys. 215 (2006) 465-484

5F.N.Felten, T.S.Lund “Critical comparison of the collocated and staggered grid arrange-
ments for incompressible turbulent flow” Report ADP013663

6Y Morinishi et al. “Fully Conservative Higher Order Finite Difference Schemes for In-
compressible Flow” J.Comp.Phys. 143 (1998) 90-124

7S.Pirozzoli “Stabilized non-dissipative approximations of Euler equations in generalized
curvilinear coordinates” J.Comp.Phys. 230 (2011) 2997-3014

8 A.E.Honein, P.Moin “Higher entropy conservation and numerical stability of compressible
turbulence simulations” J.Comp.Phys. 201 (2004) 532-545
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A.10.2 Artificial viscosity

Artificial viscosity (viscos input) is implemented as a diffusion of momentum

in index space, so that the diffusion coefficient varies as Ay?.
0
En (nV), =+ v [(Vigr = Vi) Jigaye — (Vi = Vica) iz o] /i (28)

where .J is the Jacobian, subscript 7 indicates cell index, and J; 11/2 = (J; + Jiy1) /2.
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