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1. Introduction

In previous reports, we proposed 1D drift kinetic equations with periodic boundary
conditions, adequate for the closed field line region of the edge, and wall boundary con-
ditions. In this report, we build a 2D drift kinetic model for a helical magnetic field. The
helical magnetic field has similarities with the magnetic field in the tokamak edge.

2. Helical magnetic field

To describe the geometry of the magnetic field, we use the cylindrical coordinates
{r,z,(} (see figure 1). In this coordinates, the helical field is

B(r,¢) := B:(r)z + B¢(r)<(C), (2.1)

where z and & are the unit vectors in the direction of Vz and V(. Note that the compo-
nents B, and B¢ only depend on the radial position 7.

In principle, one can use any B, (r) and B¢ (r). There is a particular choice that is more
physical. In the edge, the magnetic field is determined by currents running through the
core plasma or through external magnets. Thus, according to Ampére’s law, the magnetic
field in the edge should satisfy V x B ~ 0. This condition imposes that B, be a constant
and that B decay as 1/r,

Be(r) =1, (22)

where I is a constant determined by the vertical current through the core plasma.

3. Geometry and orderings

We consider a magnetized plasma with one ion species with charge e and mass m;,
electrons with charge —e and mass m., and one species of neutrals with mass

My, = M. (3.1)

The plasma is magnetized by a helical magnetic field like the one described in the previous
section, and we assume that the plasma only varies in 7 and z. We assume that the electric
field produced by the plasma is electrostatic, E = —(9¢/0r)t — (0¢/0z)z, where T is the
unit vector in the direction Vr. The potential ¢(r, z,t) depends on the coordinates r and
z and on time t.

There are two conducting walls at z = 0 and z = L,. In the radial direction, we
consider the interval between r = ry and r = rg + L,.. The length L, is determined by
a balance between the fast parallel velocity of the particles along magnetic field lines
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FIGURE 1. Two magnetic field lines (in blue and red) of the helical magnetic field. Note that the
direction of the angle ( is opposite to the direction usually chosen in cylindrical coordinates.

and their slow drift across them. The characteristic length between the two walls along
a magnetic field line is of order

B

Thus, the typical time that it takes an ion to move from wall to wall is Lj/vy ~
(B/B.)(L./v;), where vy; := 1/2T;/m; is the ion thermal speed and T; is the ion tem-
perature. For a potential ¢ of the order of T;/e, where e is the proton charge, the radial
E x B drift is

Bc o pi
VEr = “B20. ~ fzvtza (33)
where p; = vy /Q; is the characteristic ion gyroradius and Q; := eB/m; is the ion

gyrofrequency. Thus, the time it takes for an ion to cross the domain in the radial
direction is L, /vg, ~ LyL./p;ive;. By making this time of the same order as L) /vy, we
solve for L, to find

L, (3.4)

~ Eﬂi
To simplify the problem to a tractable drift kinetic form, we assume that p; is much
smaller than L,.. This implies that

Pi Bz Bz

L~ "B <1, (3.5)
that is, we will limit our model to magnetic fields that are mostly azimuthal and have a
very small vertical component. This is an approximation that is consistent with magnetic
field geometry in conventional tokamaks and also in the edge of many shots in spherical
tokamaks.

We also assume that g ~ L, > L,. Since rg is the characteristic length of variation of
the magnetic field B, the magnetic field barely changes across the domain [rg, 79 + L;].
Thus, within our ordering, we assume B to be uniform in the domain of interest.

Our orderings above rest on the assumption ¢ ~ T;/e. This ordering is a result of the
wall boundary conditions that impose ¢ ~ T, /e (see section 5) and the fact that T; ~ T,
due to collisional temperature equilibration.
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4. 2D electrostatic drift kinetics

We assume that the gyroradii are small compared to the length scales of interest, and
that the gyrofrequencies are much larger than the frequencies that we want to model.
Thus, the distribution functions f,(r,2,v),v1,t) of the charged species s = i,e only
depend on the component of the velocity parallel to the magnetic field v and the mag-
nitude of the velocity perpendicular to the magnetic field v, , and are independent of
the direction of the velocity perpendicular to the magnetic field (Hazeltine 1973). The
distribution functions of ions and electrons (s = 4, ¢) that in general can depend on three
spatial variables r, three components of the velocity v and the time ¢ depend only on r,
z, v, v and t,

fs(x,v,t) = fs(r, z,v),v1,t). (4.1)
The neutral distribution function depends in general on the three velocity components,
fn(r7v,t):fn(r7z7vr,vz,v<7t). (42)

We remind the reader that the model is 2D because we have assumed that the plasma
parameters do not depend on the angle (.
The equations for the distribution functions of the different species are

0fi _1090fi (HB N 18¢> 0fi  eB. 94 0fi

ot Bdz or B Bor) 0z m; B 0z Ov)

= Ciilfil + (Cinlfis fal) + (Cijion[fes fn]) + Cielfi, fe] +Si (4.3)

ofe 1090f. , <U|Bz L1 a¢) 0fc | eB. 090f.

" Bo- B " Bor)o: TmBozay el

ot B 9z Or

+ Cei[fevfi] |:1 + 0 (7::;6)] + <Cen[fevfn] |:1 + 0 (:7;) > + <Ce,ion[fea fn]> + Se
(4.4)
and
Ofn Ifn Ofn
Bt + (%8 87" + (% 82 - an[fna fz] + Cne[fna fe] + Cn,lon[fna fe] + Sn (45)
The triangular brackets on a function G(r, z, vy, v,, v¢, t) indicate gyoraverage,
21
(G)(r, z,v),vL,t) = Py / G (T, 2,V COS(p, v, Sin p, vH,t) dep. (4.6)
T Jo

The sources Ss(r,z,v,t) with s = i,e,n represent heating, fueling and the effect of
turbulence. The ion and electron particle sources satisfy

/Si d3v = /S’e d3v. (4.7)

Note that we have neglected the curvature and VB drifts in equations (4.3) and (4.4).
These drifts point in the z- and (-direction. The (-direction is unimportant because
it is a direction of symmetry, whereas in the z-direction, the magnetic drifts can be
neglected compared to the much larger terms due to the parallel velocity, v B./B, and
the z-component of the E x B drift, vg, ~ B~1(0¢/dr).

We have included the following collisions.

e Jon-ion and electron-electron collisions are modeled by the Fokker-Planck collision
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operators Cy;[f;] and Cec[fe] (Rosenbluth et al. 1957),

7T€4 n
Culfe] = 2ZC A G (DIf) - Vufs + PIAIS). (4.8)

(4meg)2m2 "

where the matrix D is

v—v]PI-(v—-v)(v-v
pif = [ |v(_v,|3 W=D p (v a3y (4.9)
and the vector P is
Pl = —2 [ Y (v 4.10
[f‘?] A ‘V_V/|3fs(v) v. ( ° )
Here, T is the 3D unit matrix, ¢y the vacuum permittivity and In A =~ 15 the Coulomb

logarithm.

e The effect of electron-ion and elastic electron-neutral collisions on the electron distri-
bution function can be simplified in the limit of small electron-ion mass ratio, m. /m; < 1.
With this expansion, we find the simplified Fokker-Planck collision operator

2metn; In A v — ]’ T — (v — ) (v —w;)
(4meg)2m2 "

Cei[fevfi] = Vo fe (411)

VP

for electron-ion collisions (Braginskii 1958), and the simplified Boltzmann collision oper-
ator

™ 2
Conlfiful = 2 [ [ g sin xRy = a0 L (91 x0 ) = folv)]

(4.12)
for electron-neutral collisions. Here
ng(r, z,t) := /fs(nz,v,t) dv. (4.13)
is the density of species s,
us(r, z,t) = L /vfs(r,z,v,t) d3ov (4.14)

is the average velocity of species s,
V(V, X, 0, up) =1, +cosx(V —uy,) + |V — uy,|sin x(cos ¢ &1 + sin p é3) (4.15)

is a rotation of the vector v centered around u,, Re,(|v—uy], X) is a function determined
by the physics of the electron-neutral collisions, and the unit vectors €; and €5 are chosen
to form an orthonormal basis with the vector (v —u,,)/|v — u,|. In equation (4.4), we
have indicated that both C,; and C., are missing pieces small in m./m;. These pieces
can become important because they represent collisional energy exchange and collisional
heating, but they are cumbersome. We showed in report 2047357-TN-05-01 M1.3 that
the moment method that we use allows us to keep these important effects in the moment
equations even with the simplified collision operators (4.11) and (4.12).

e The expansion in electron-ion mass ratio also implies electron-ion collisions and
electron-neutral collisions have a very small effect on f; and f,, — the terms C;. and
Chre in equations (4.3) and (4.5) are small compared with C;; and C,,; by a factor of

Vme/m; < 1,
Cio m 1|20, Cre ~ 4| —£Cs. (4.16)
m; m;
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Like the mass ratio corrections to C,; and C,,, these terms can become important because
they contain the collisional energy exchange between electrons and the heavier species.
We will keep these effects in a simplified form in our moment formulation.

e Charge-exchange collisions are represented by the simplified Boltzmann collision
operators

Conlfir f] = / Rin([v =V [ (V) fa(v) = £ fav)] P (417)
and
Coilfur f1] 1= — / Rin([v = v']) [n(W) (V) = Fu¥) (V)] B0, (4.18)

e To model ionization, we use the collision operators

ZlOn fe?fn = /Rlon fe )d3 ! (4'19)
and

nlon[f&fn = /RlOn fe )d3 ! (4'20)

We also need to include a collision operator C. jon in the electron equation to model the
increase in the number of electrons and the energy loss due to ionization. This operator
is complicated because it involves three particles (the resulting ion and two electrons),
but we will be able to avoid giving it a definite form. Instead, we will use the expansion
in m./m; < 1 and the fact that

Ce,ion[fev fn] ~ nnRionfe~ (421)

See report 2047357-TN-05-01 M1.3 for more details.

e We have neglected neutral-neutral collisions because, in current fusion devices, the
neutral density is sufficiently small that the neutral-neutral collisions are rare.

To simplify our equations, we assume that the functions R.,,, R;, and R;,, are constant
(Connor 1977; Hazeltine et al. 1992; Catto 1994), finding

<Cen[fea fn]> = - nnRen .fe(ra Zavvalat)

1 T 27 27
- — dx/ dy dy sinx fe (r,2,7),0.,1) |, (4.22)
872 Jo 0
with
— 12 —
U (), VL, X, @', Un) = Up|| + Ten COS X, (4.23)
vy (’UH Yy UL X5 P, QD/, un) = \/uiL + @gn Sin2 X — 2unj_ﬁen sin X Cos (424)
and
Ten (v, 01, ¢ uy) == \/(v” —Up )2 + 0T +ud | — 201 upy cosy, (4.25)
(Cinlfis fnl) = —Rin (N fi — 14 fn)) s (4.26)
<Ci,ion[f67 fn]> = <fn>neRion (428)
and

Cn,ion[fea fn] = 7fnneRion- (429)
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The potential ¢(r, z,t) is determined by the quasineutrality equation
N = Ne. (4.30)

To solve this equation, we need to treat the equations implicitly as the potential enters
only via its effect on 9f; /9t and 9 f./0t. The need to use implicit methods is one of the
reasons why we are trying to extract some of the low order moments from the distribution
function.

5. Wall boundary conditions

We impose wall boundary conditions at z = 0 and z = L,. In principle, we need to
consider the effect of the magnetic presheath (Chodura 1982) because the magnetic field
is not perpendicular to the wall. However, the complicated boundary conditions that
the magnetic presheath imposes on drift kinetic models are an active area of research
(Geraldini et al. 2017, 2018, 2019; Geraldini 2021). To avoid this complication, we assume
that the electron gyroradius is much smaller than the Debye length, thus ensuring that
electrons are magnetized even within the thin sheath of non-neutral plasma with a width
of the order of the Debye length that forms on walls to ensure quasineutrality. With this
assumption, we can impose boundary conditions similar to those proposed by Parker
et al. (1993).

The boundary conditions that we propose make use of the fact that the potential drop
across the magnetic presheath and the Debye sheath repels electrons away from the wall
because otherwise electrons would flow to the wall at much greater rate than ions due to
their lower mass and higher thermal speed. In our model, ¢(r,0,t) and ¢(r, L,,t) are not
the potential of the wall, but the potential at the entrance of the magnetic presheath. In
this report, we choose the potential of the wall at z = 0 to be 0 without loss of generality.
We denote the potential of the wall at z = L, as ¢,,. Then, for the magnetic presheaths
and Debye sheaths to repel electrons, ¢(r,0,t) must be larger than 0 and ¢(r, L., t) must
be larger than ¢,,.

The value of the potential at z = 0 and z = L, is determined by the relationship
between the current crossing the magnetic presheath and the Debye sheath and the total
potential drop across these layers. We consider the magnetic presheath and the Debye
sheath at z = L, first, and we will then apply the results that we obtain to the magnetic
presheath and the Debye sheath at z = 0. Ions recombine when they hit the wall, so
no ions come back. The velocity of the ions perpendicular to the wall is a combination
of parallel velocity and E x B drift, v B, /B + B~'(d¢/dr). Thus, the ions that would
come back from the wall must satisfy vj < —B;(0¢/0r), giving

Ji(r, L, v < —B;Y(9¢/0r), v, ,t) = 0. (5.1)

Since the electrons are magnetized, the potential drop across the magnetic presheath and
the Debye sheath only modifies the parallel velocity of electrons. Within these layers, the
parallel energy & := mevﬁ /2 — e¢ is conserved, and as a result an electron that has

velocity v at the entrance of the sheath is slowed down to a parallel velocity [vﬁ —
2e(¢(r, L, t) — duw)/me]Y/? when it reaches the wall. Thus, electrons with a parallel
velocity larger than /2e(¢(r, L, t) — ¢u)/me reach the wall, where they recombine with

ions, whereas electrons with parallel velocity smaller than \/2e(¢(r, L., t) — ¢y,)/me are
repelled back into the quasineutral plasma. Thus, the boundary condition on the electron
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distribution function at z = L, is

7, L, —v),vL,t) for v = —\/2e(qz§(7“, L., t) — ¢w)/me,
for v < —/2e(¢(r, L, t) — du) /me.
(5.2)
Here we can neglect the E x B drift because it is small compared to the typical electron
thermal speed by a factor of \/m./m; < 1. Expressions (5.1) and (5.2) give the parallel
ion and electron current density towards the wall at the entrance of the sheath at z = L,

fe(ﬁLz,UH <O,UJ_,t) — { ge(

(oo}

Jiy(r, L., t) = 27re/

(995 )d’U|/ dv 'UJ_'UHfi(T, LZ,UH7'UJ_,t) (5.3)
—B. (0¢/0r 0

and

Jey(r, Lz, t) = —271'6/

V2e(¢(r,Lz t)—hu)/me

oo

dyj / dvy ULU”fe(T, Lz,’UH,UL,t). (5.4)
0

Hence, the total parallel current density at z = L, is the following function of ¢(r, L., t)—
¢ and the radial derivative of ¢(r, L., t) — ¢y,

J”(T,Lz,t) = 27T6/ dUH/ dvl Ulv”fi(T’,Lz,’UH,Ul,t)
—B;'(9¢/0r) 0
—27‘(6/ dU”/ dv UJ_Ullfe(’l"7Lz,U|‘,’l}J_7t). (5.5)
\/25(¢(T7Lz 7t)_¢w)/m€ 0

We assume that the potential ¢,, does not depend on r and hence the radial derivative
of ¢(r, L, t) — ¢y, is simply the radial derivative of ¢(r, L,,¢t).

The conditions at z = 0 for the ion and electron distribution functions and the potential
are similar to those for z = L,. For the ion and electron distribution functions, we find

fi(Ta 07 UH > _Bz_l(a(b/ar)7 v, t) =0 (56)
and

_f fe(r,0, vy v, t)  for v < \/2e0(r,0,1)/me,
fe(T,O,?J” > O,ULJ) = { 0 for vy > 2e¢(r,0,t)/me, (5.7)

The relationship between the parallel current and the potential at the magnetic presheath

entrance is

—B;'(9¢/0r)

J)(r,0,t) = —27T6/

—+/2e¢(r,0,t)/m,
+27e /

— 0o

doy / dvi vy fi(r,0,v),vL,1)
0

d’U” / dvy 'UJ_'U”fe(T,O,U”,UJ_,t). (5.8)
0

We still need boundary conditions for the neutral distribution function. The neutrals
hit the wall and thermalize at the temperature of the wall T,,, while also receiving back
the ions that have recombined at the wall, that is,

fu(r,0,0,,0, > 0,v¢,t) = To frew (vz, \JvE+ vg) (5.9)
fa(r, Ly, vp,v, <0,06,t) =10 frw (vz, \JuZ + v%) , (5.10)

and
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where

2
3 [(my |V | m;(v: +v?)

w\Un; = -t 5.11

froton) = 12 (7 Noop e (5 (5-10)

is the Knudsen cosine distribution (Knudsen 1916), and

—B; ' (9¢/0r) o
Fo = 271’/ d’U“ / dUJ_ v
—00 0

00 0 00
+/ dvr/ dvz/ dvg |vz| f (1,0, vy, vz, v¢, T) (5.12)

UHBz 1 0¢
B Bor

fi(r,0,v),v1,t)

and

o0 o0 UHBz 1 8¢
'y ;:27r/ dv / d'UJ_'UJ_( + = fz r,Lo,vp,vL,t
—BZ Y (0¢/0r) | 0 B B or ( : :

+/ dv,«/ dvz/ dve v, fo(r, Ly, v, v, ¢, t) (5.13)
—00 0 —00

are the fluxes of neutrals and ions towards the walls at z =0 and z = L.

6. 2D moment drift kinetics

Instead of solving for f(r, z,v,vL,t) with s =i, e, we solve for

vl (r, 2,t)

Es‘(rv va\|7wL7t) = fS (Ta Z,USH(T’, th) +Uts(r7 Zat)w\hvts(ra th)wlat>a (61)

ns(r,z,t)
where we have defined the normalized velocities

'UH — Ug| (T’, Z, t)

w2t = = (6.2)
and
(N
wy (r,z,v1,t) = ma (6.3)

the average parallel velocity

3” r,z, t / d'UH/ dUL ULvas(r z vaULa ) (64)

and the thermal speed

2T,
vis(r, 2, 1) 1= %, (6.5)
with
— U, t2+ 2
1) = 2 [~y [ ang o GBI 0, (66)

the temperature of species s. According to its definition, F(r, z,w),w,t) must satisfy
the conditions

277/ de/ dwy wi F(r, z,w),wy,t) =1, (6.7)
—00 0

271'/ de/ dwy wiw) Fy(r, z,w,wy,t) =0 (6.8)
—00 0
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and
o0 o0 3
27T/ dw”/ dw, wL(wﬁ—l—wi)Fs(r,z,wH,th) =3 (6.9)
—00 0
at every point (r, z) and time ¢.
Similarly, for neutrals, we solve for
3 t
Fo(r, z, wp, w,, we, t) := an (n z, U, (1, 2,t) + v (1, 2, 1) W, t), (6.10)
— nn(r7 2, t)
where we have defined the neutral temperature
— 4
Ty (r, z,t) /mz|v un (7, 2,t)|" fu(r,z,v,t) d3v. (6.11)

According to its definition, F,(r, z, w, t) must satisfy the conditions

/F r,z,w,t)d>w =1, (6.12)

/an(r, z,w,t) d®w =0 (6.13)
and

/wQFn(r, z,w,t) ddw = g (6.14)
at every point (r,z) and time ¢.

6.1. Ion equations

The equations for n;, u; and T; are

an; n; 0¢ ' ug)| B, i% B . s
at 8,',, (B az> + aZ [nl ( B + B 87" - nnneRlon +/S7Id U, (615)

6uZH 1@81@”_'_ ui”Berl% 8ui” __%%_eniBz%
MM e T B o or B Bor) 02| B o B 0-

+mmz(nan + neRion)(unH — uiH) + /mi(vH — uiH)Si d3v (6.16)

and
§n' oT; 1 0¢ OT; + UiHBz n l@ oT; - _%qu” _ pi”Bz 3ui‘|
27| ot B 0z Or B Bor) 8z| B 0z B 0z
3 1
+ ini(nnRin + neRion)(Tn - Tz) + §n1m1(nnR1n + neRion)[(unH - uiH)Q + UELL]
3NeMele; 1 R 3
+ %(Te - T;) +/ <2miv — uy2|” — 2Ti> S; d3v. (6.17)
Here,

16y/7  e*n;lnA

3 (4mep)2m2v3,
is the electron-ion collision frequency as defined by Braginskii (Braginskii 1958), and we
have defined the parallel pressure

(6.18)

Veij 1=

o0

Ps)| [Fss s, ves] (1, 2, 1) := 27msmsvt25/ dw)| / dw wLwﬁFs(r, z,w,wy,t) (6.19)
0

— 0o
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and the parallel heat flux

oo

de/ dw | wJ_w”(wﬁ +'LU3_)FS<’I",Z7’LUH,U)J_,t)
0
(6.20)

QSH [Fsa Ns, Uts](’l", Z, t) = 7Tns’rn/sv?s /

— 00

for the charged species s = i, e.
The ion kinetic equation is

oF, . 0F, .0F, . OF . 0F;
Ti——— FWig— FWwii

T = =F; +Ci; + Cin + Cijion + S;. 21
o T T P S = Fi G+ Cin + Cijon + 1. (6:21)

Here, we have defined the coefficients

. 1 0¢

@) (r, 2, 1) == "B s (6.22)
. U; Bz 1 (9q5 v sz
Zilug), vei, @)1, 2, Wy, 1) 1= g Bar + tB wy, (6.23)

B.  Opy
n;m;vy B 0z

2 B 8 i a i szz i
i { i (pi| - 37%77%%22) . l} U7z Ovs (6.24)

w||7,[Fl7 gy Ug)| 'Uti](’/’, 2, W, t) =

3n;mvZiB | 0z 0z B 0z’
, _ _2wiB. (Oq Ouij\ _ wywiB: vy
wJ_i[Fiani;ui”avti](razawﬂawL?t) = 3nzmzva Oz 2| 92 - B g
(6.25)
and
. B, Ovy; vy ONy
Fi[Fy,ni, ug) s vy (ry 2wy, wy , t) = = | (3 5 nft 82)
7
2 0q;) 1 5\ Ouy|
_ o — —msmivd F. 6.26
nim;vZ ( 9z T \Pil T gt ) 5 (6.26)

We have also defined a modified source S; and several modified collision operators. The
modified source for the charged species s = i, e is given by

Ss [Ssa Fy,ns, Us]| 'Uts](rv 2, W), WL, t)

o Fs 3 v?s
= Ssdv — —28,(r, 2, us|| + Vs, Vesw L, T)
N N

0 ! wi . 3
— | Fs | — _ 3 _wy _ 5 3 5 5
i aw” |: ° (nsvts /(UH usll)SSd v 3715”1&25 / (|V uSHZ' 2U755> Ssd U>:|

1 2
0 {“’l : /<|V—u5”22 - ;’uf) S, d%} . (6.27)

wy Ow, | 3nsvd

Note that the differential terms in this modified source could have been included in the
definitions of the coefficients w;, w1; and F;, but we have decided to make them part
of a modified source instead to separate the effect of the source clearly. We will do the
same for collisions. This split should not be taken as a suggestion on how to implement
these terms in a code. The modified collisions operators are described in Appendix A.
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6.2. Electron equations

For the electrons, we use the expansion in m./m; described in report 2047357-TN-05-01
M1.3. We first describe the electron fluid equations and how to use them.

e The electron continuity equation is

one Ne 6¢ ueHBZ 1 5‘¢) B 3
ot or <B 8,2) T o {"( B " Baor)|” "6”"R1°“+/Sed v (6.28)

Subtracting this equation from equation (6.15) and using quasineutrality, we obtain the
current conservation equation

32 [ne (ui) —uep)] =0, (6.29)

m\bv

where we have used property (4.7). This equation can be used to calculate u. once u
is known at z = 0. We discuss how to obtain u. at z = 0 in the next bullet point.
e The electron parallel momentum equation simplifies to

B, 0p. B, 0
-z Pe]| + en —(b —+ FezH +nemennRen(unH — uEH)’ (630)

0=-% 5. B 0z

where

ez|| [Feanea nuueuaueuavteyvtz z,t)

e 11 A - | T e Fe
__ 8¢ nen;In / de/ de w i (wy — (ug) — ue|) /vy )2 (6.31)
(47reo mevZ, “’H - (UiH - Ue\|)/7fte)2 + w¢]3/2

is the friction force between electrons and ions. Equation (6.30) can be used to calcu-
late the potential difference between z = 0 and any value of z, ¢(r, z,t) — ¢(r,0,t). To
completely determine the potential, we need to calculate ¢(r,0,t). We do so with the
current-potential relationships of the magnetic presheath and the Debye sheath, given
in equations (5.5) and (5.8). We use two coupled nonlinear equations for the unknowns
¢(r,0,t) and ¢(r, L, ).
o Integrating equation (6.29) between z = 0 and z = L., we obtain the condi-
tion Jj(r,L.,t) — Jy(r,0,t) = 0. Since equations (5.5) and (5.8) give J(r, L.,t)
and J(r,0,t) as functions of ¢(r, L.,t) — ¢, and ¢(r,0,t), condition J)(r, L,t) —
J)(r,0,t) = 0 is an equation for ¢(r, L.,t) and ¢(r,0,t) (we assume the bias ¢, to
be externally determined).
o The other equation is the value of ¢(r, L,,t) — ¢(r,0,t) obtained by integrating
equation (6.30) from z = 0 to z = L,. Note that the value of ¢(r, L,,t) —p(r,0,t) de-
pends on the unknown u, (7, 0,) (recall that u.| can be determined everywhere from
equation (6.29) for a given wg(r,0,t)). The value uc(r,0,t) depends on ¢(r,0,t)
via equation (5.8) and so, in the end, equation (6.30) gives a relationship between
¢(r, L., t) — &(r,0,t) and ¢(r,0,t).
Once these two equations for ¢(r,0,t) and ¢(r, L,,t) are solved, we can substitute the
value of ¢(r,0,t) in equation (5.8) to calculate uc)(r,0,%), and then integrate equa-
tion (6.29) to find u, everywhere.
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e The electron energy equation is

3 [0T. 10¢0T. (ue|Bz 1 a¢>> aTe} _ B.Oqy  peyB: du

2" "ot T B9 or B Bor) o: B 0- B 0z
3nemeyei
_nennRionEion + T(Tz - Te) + FezH(qu - UGH)
(3
3nemeny Ren
+7m- (T, — Te) 4+ nemenn Ren[(tn) — Ue\|)2 +u? | ]

1
+/ (2m6|v —ug2|* — 2T> S, d%v, (6.32)

where FEj,, is the ionization energy cost that includes in it radiation from excited states.
The kinetic equation for electrons is

OF. . OF. . 0F,

e e e = Fe Cee Cei Cen7 6.33
“ 62 +w”8 H+wl 3’LUL + + + ( )
where
Zo[Fe, vie] (2, w), t) := view), (6.34)
. B,  Ope| 2w B, 9q.  WiB: dv.
Wye[Fe, te), Vee] (2, W), t) := nomeonB 92 T InmalB 82 B 9z (6.35)

2w, B, 0q ~ wywiB; Qe

WLelFe, el viel (2w, wast) = =B B 0: (6.36)
and
. z O0ve Ve ONe 2 8(]?“
F8F67 el|» Vtel\ < 5 b)) 1= — 3 - - F.. (6.37
[Fes e vee] (2, w01, ) B | ( 0z ne 0z > nemevy, 0z ( )
The modified collision operators Cee, Ce; and Ce,, are described in Appendix B.
6.3. Neutral equations
The fluid equations for the neutrals are
on, 3
5 + V- (npu,) = —npneRion + [ Sp d°v, (6.38)

ou, N
NpMy <8t +u, - Vun> ==V P, +n,min;Rip (uiHC - un)

—I—/mi(v —u,)S, d*v (6.39)

and
3 oT, 3
2 ot 2
1 3NeMeNp Ren
+§nnmmiRm[(unH — ui|‘)2 + U%L] + B (T. — T,)

1
+/ <2mi|v C g2 — ;Tn) SydPu.  (6.40)
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Here, we have defined the pressure tensor

P, [Fy, np, vin](r, 2,t) := nnmivfn/wan(r,z,w,t) Bw (6.41)
and the heat flux
1
An[Frn; N, v (2, t) == innmivf’n/wszn(r,z,w,t) ddw. (6.42)
The neutral kinetic equation is
oF, . OF, . OF, . .
n n n* an = Fn Cni Sna 6.43
8t+r 3r+z Bz+w v + + ( )
where we have defined the coefficients
Tn [unw Utn] (T7 Zy Wey t) = Upyr + VtnWr, (644)
'éi [unZ’ Utn](lrv 2, Wy, t) = Unpz + VinWz, (645)
. 1
Wi [Foy My Un, V| (1, 2, W, 8) i= ——V - P,
MM Vtn
2w
—— (V-qu + P, : Vu,) —w-Vu, —ww- Vo, (6.46)
3Ny MivE,

The modified charge exchange collision operator C,; is described in Appendix C. The
modified source is

F, . 3
Sn[Sna Fyynn, ay, ’Utn}(ra z, W, t) = |:n / Sn d*v — %SS(T, Z, Uy + VinW, t):|
+ V- |F L /(v—u)S B+ — / |v—u|2—§v2 S, dv
v "\ npvin o 3nn v, " g tn Jmm '

(6.47)

6.4. Boundary conditions

These equations have to be solved with the boundary conditions in equations (5.1), (5.2),
(5.6), (5.7), (5.9) and (5.10). For ng, ug||, v¢s and F, known at time ¢, we can construct
fsat z=0and z = L,, and we can apply the wall boundary conditions to f;. We can
then use the resulting f, to obtain ng, ug, vis and Fy, closing the system of equations.

7. Discussion

The model that we propose is comprised of:

e the three fluid equations (6.15), (6.16) and (6.17) for ions that have to be solved in
conjunction with the ion kinetic equation (6.21);

e the five fluid equations (6.38), (6.39) and (6.40) for neutrals that have to be solved
in conjunction with the neutral kinetic equation (6.43);

e the two fluid equations (6.29) and (6.32) for electrons that have to be solved in
conjunction with the electron kinetic equation (6.33); and

e the electron parallel momentum equation (6.30) for the potential.
The boundary conditions for this system of equations are described in section 5.

To test the model proposed in this report, we will first extend the existing 1D code
based on adiabatic electrons to wall boundary conditions. We will then explore the effect
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of adding electrons. For most physics of interest, it is sufficient to use simplified ion-
ion and electron-electron collision operators, and for this reason we do not expect to
implement a full Fokker-Planck collision operator.

Appendix A. Modified collision operators for the ion kinetic equation

The modified Fokker-Planck like-particle collision operator is

Css[Fsans; vts}(r, Z, W), Wy, t)

2re*ngIn A 0 OF, OF
= lreo e, {8wu (Pulrage: + PRI +PIRIE)

b0 Lo, (DLlmI S +DuRISE +PuRR)| } (A1)

wy Ow, Ow) ow
The coefficients needed for this collision operator are
W
V0w =)+ (wy +w))?
(100

Dy [Fs](r, z,wy, wy, 1) :24[ dw‘/l/o dw'’,

F. ;oo A2
w| —U)h)z‘f'(’wj_ —wl)2> é(Z’wH’wJ-’t)’ ( )

w'y (wy — wj)
\/(wH — wl")Q + (wi +w'))?

y [(w) —w))? —w} +wP]E(k)
(wy = w))? + (wr —w')?

DHL [E@}(Ta 2, W), Wy, t) = 2/ dwﬁ / dw/L
— 00 0 ’LUL

- K(/@)) Fy(z,w),w' 1), (A3)

o0 o0 /
/ /
dwy ; dw’,

IDLL[EQ](T7ZawH7wL7t) = 2/

— 00

P [F‘?](T7Z7w 7wL7t) = 8 d’LU d’w
H H I + /)2 /7 \2
o 0 \/(w\l _wl\) + (w1 +w')

y ( K(k) — E(k) - E(k)

(wy —w))? + (we +w')? (w) —w))? + (wr —w))

2) Fs(zawﬂawlvt)

(A5)
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and
Wi
V0w = wf)? + (wi 4w )?

(L - w))? —wi + w?E(k)
(wH — w"|)2 +(wy —w'))?

PLF(r, z,wy,w,t) ::4/ dwll‘/ duw’,
—0o0 0 U)J_

— K(li)) Fy(z,w),w',t).  (A6)

Here, K (k) := Oﬂ/Q(l — K%sin® @)"/?da and E(k) := foﬂ/z(l — k%sin® a)'/2 da are the
elliptic integrals, and the function & is
4w w’
w(wy, w,w,w|) = L . A7
( [I» WL, W J_) \/(w| _w‘/l)g + ('LUL +wl)2 ( )

The modified charge exchange collision operator for the ion kinetic equation is

C“‘L[Flv <Fn>7nnvui\|vun7vti; vtn}(szﬂawLat)

3 Uil — Un j i
= —n,Rin | F; — szf (Eny | 7, 2, ] + &wn, o wy,t
tn Utn Utn (%7
O [ uny —uy | wy (v} 2[(un ) — ua)® + vz, ]
nRin e | (L2 20 (T g nL)) Fy
+ ity dw| K Vgi * 2\ vZ + 3vZ, ¢
npRin 0 [w? (03 2((upy — ug)? + u ]
@ YL (Y ntl) gl A8
+ w 3wL[2 (vfz * 3vZ, (48)

where

<FrL>[Fn7 unl](ra Z, UJ” , W1, t)
1
T 2 0

27
F, (T,Z,U}J_COSQO— um,wJ_singo— um,w|,t) de (A9)

tn Utn

is the gyroaverage of F,.
Finally, the modified ionization collision operator for the ion kinetic equation is

Ci,ion[<Fn>7 N, Ui||, Un, Uti, Utn} (Ta 2, W), Wy, t)

b Wi|| — Un 4 i
= neRion |:Fz - L?<Fn> (Tv 2, | L| + fvit’LUH, Yt uu_gf)]
tn Vtn Vtn Vtn
0 Up|| — W; w 2 2[(wp — wyp)? + u?
+ e Rion 7 — [(' Ly 2L (”t; _ g Al = ) ”l])) F]
dw Vg4 2 \vg 3v7
NeRion 1o} wf_ Uf2 2[(un|‘ — qu)Q =+ UQJ_]
g |5 oz L =) F|. A10
+ w awL{Q (%21 + 3v2 ¢ ( )

Appendix B. Modified collision operators for the electron kinetic
equation

The electron-electron collision operator is described in equation (A 1).
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The modified ion-electron collision operator is

CeilFe,niy s, e, Vee (7, 2, ), w, 1)

2 if| = Ye
_ 2re'niinA { 9 {M OF. g, OF +(1+ (uy u|)w|)f|Fe}

(471’60)27’)1 ’Ut 8w” S, 8w|| ow w | 3Ute
1 0 8Fe aFe 2(ui|| - ue”)wl
= Ile F, , (B1
+ w1 B, |:w1_ (Mu_awl + My Jw, + o I (B1)
where
wi

Mgl el 2 ) = o G o 4w

W) — Uzl — Ue Vte 2’U}
ML ey, Vie, wy ] (ry 2, wy, wi, t) == — [(w|( |(u1(| |u€“)/1l))ti) J)rwJ_]s/z’ (B3)

(wy — (wg) — ue )/Ute)2
My, vre, vagl(r 2wy, w0 8) = [(w) = (Liu _JEH)/'UtHe) +w? |32 B4

and
F|[Fe, te|f, Vee, gy | (7, 2, )

— 4y w w wn (w)) — te|)) /Vee) Fe(2, w), wy , 1)
= 4/ d u/ d J_ () = (g — o) o + @2 P2 (B5)

The modified electron-neutral collision operator is

Cen[F67 Tin, Un, UEH,Ute](Z, w”an_; t) = _nnRen Fe

1 T 27 2m
Q2 dX/ d(p/ d‘PI sin XFB(Z7w|7wL7t)]
0 0 0

872
0 2w — vep)? +u2 | |Jw
+ N Ren 5 — Kl - 2y = e )7 e Jy ) F}
6w‘| 3vte
2nnRen[(unH - ueH)Q + U”?LL] 0 2
3viw, ow, (wiFe), (B6)
where
— / L un” B ue” — . B 7
wH[uevatwun](rvZawH)wlv)(a(p at) = v + Wen COs X, ( )
te
— / u?u_ 92 .. 92 2unj_wen .
wl[ueHavte,unH](razawH»wLaXasOa(pt) = +wen S x — TSIHXCOSQO
te te
(B8)

and

Wen, [ueH » Ute, un] (Ta 2, W), WL, QD/, t)

2 2
Ue|| — U 2
—\/<w|+elvnl> Fu? g tn  Beltl o (Bo)
te

Vte Vte
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Appendix C. Modified collision operators for the neutral kinetic
equation

The modified charge exchange collision operator for the neutral kinetic equation is

0l

Cn’i[Fna Fia niyunaui|\avtn7vti](rv 2y Wy, Wy, U)C,t)

3
v u — U, [ v
. tn n|| il tn tn
= —n; R, [Fn - —F; (r, 2y ——— + —w¢, —

(%] (%7 (%73 Vtq

Upn

wi +

Utn

U; ¢ —u, 2‘ 2 Up | — Us 2 + 'Z,L2
Vin 2 \vi, 3v?,
(C1)
where
u w2 w 2
‘WL+ | (wr+ ”> +(wz+ ”) : (C2)
Vtn Vtn Utn
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