
Report 2070839-TN-07 1

A higher-order finite-element implementation of the

full-F Landau Fokker-Planck collision operator for

charged particle collisions in a low density plasma

M. R. Hardman1,2, M. Abazorius2, J. Omotani3, M. Barnes2, S.

L. Newton3, and F. I. Parra4

1 Tokamak Energy Ltd, 173 Brook Drive, Milton Park, Abingdon, OX14 4SD, United

Kingdom
2 Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon

Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
3 United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon,

Oxon, OX14 3DB, UK
4 Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08540,

United States

E-mail: michael.hardman@tokamakenergy.co.uk

1. Introduction

A low density plasma is one that can be accurately described by the one-point particle

probability distribution function Fs(r,v). The distribution function provides us with

the probability p = Fs(r,v) d3rd3v to find a particle of species s in the phase space

volume around the phase space position (r,v), with r the particle position and v the

particle velocity. An equation for the distribution function may be obtained from the

BBGKY hierarchy [1, 2], which converts an N -body Hamiltonian system describing a

plasma or gas into a statistical description. The resulting equation has the form

∂Fs

∂t
+ v · ∇Fs +

Zse

ms

(E+ v ×B) · ∂Fs

∂v
=
∑
s′

Css′ [Fs, Fs′] , (1)

where the left-hand side of the equation is the Vlasov equation, accounting for the

acceleration of particles by the large-scale electromagnetic fields, and the Boltzmann

collision operator on the right-hand side of the equation accounts for the interactions

of particles of species s with local small-scale electromagnetic fields generated by

interactions between particles of differing species s′ at the same position r. Here, ms is

the species mass, Zs is the species charge number, e is the unit charge, and E and B

are the electric and magnetic fields, respectively,

If the interaction cross section is chosen to be the 1/r2 electrostatic potential, then

the collision operator becomes the well-known Landau Fokker-Planck collision operator

Report 2070839-TN-07 2

[3, 4, 5, 6]:

Css′ [Fs, Fs′] =
γss′

ms

∂

∂v
·
{∫

∂2g

∂v∂v
·
[
Fs′(v

′)

ms

∂Fs

∂v
− Fs(v)

ms′

∂Fs′

∂v′

]
d3v′

}
, (2)

where

γss′ =
2πZ2

sZs′
2e4 ln Λss′

(4πϵ0)2
, (3)

with lnΛss′ the Coulomb logarithm [3, 6, 4, 5], and

g = |v − v′|. (4)

The operator is integro-differential because the effect of small-angle collisions dominate

over the rarer large-angle collisions. The complex structure of the collision operator

obscures four key properties that we note. First, the collision operator conserves particle

density, i.e., ∫
Css′ [Fs, Fs′] d

3v = 0. (5)

Second, the collision operator conserves the total momentum in a collision, i.e.,∫
(msv Css′ [Fs, Fs′] +ms′v Cs′s [Fs′ , Fs]) d

3v = 0. (6)

The same is true for the total energy:∫ (
1

2
ms|v|2 Css′ [Fs, Fs′] +

1

2
ms′ |v|2 Cs′s [Fs′ , Fs]

)
d3v = 0. (7)

Finally, Boltzmann’s H-theorem applied to same-species collisions [5, 6, 2] proves that

the entropy production

Ṡs = −
∫

lnFs Css [Fs, Fs] d
3v ≥ 0 (8)

with equality if and only if Fs is a Maxwellian distribution described by the local density

ns, mean velocity us, and temperature Ts, i.e.,

Fs = FM
s =

ns

π3/2v2th,s
exp

[
−
(
v − us

vth,s

)2
]
, (9)

with vth,s =
√

2Ts/ms.

Implementing the full Landau collision operator is challenging because of the

nonlinear and integro-differential nature of the operator. For a given distribution

function Fs, we must carry out a series of difficult integrals to find the coefficients

of the operator. Whilst previous authors have implemented the full operator, see, e.g.,

[7, 8, 9, 10], including implementations of the underlying Boltzmann operator [11], it

is more typical to use asymptotic expansions to linearised the operator for its use in a

Report 2070839-TN-07 3

specific application (e.g. transport theory or collisional closures [4, 5, 12, 13]). It is also

common to write down an ad-hoc diffusive model operator which may be solved rapidly

yet still has the conservation or H-theorem properties desired for the physics of interest

[14, 15, 16, 17].

In core-transport plasma turbulence applications, collisional relaxation timescales

are typically long compared to the non-linear turnover time of the turbulent eddies,

meaning that the linearised Landau operator or ad-hoc model operators are an

appropriate cost saving device: physically, all these operators are required to do is

dissipate fine velocity-space structure [15, 16]. The system is known to be approximately

in thermal equilibrium because the system is closed [13, 18], meaning that the

distribution function is never far from the Maxwellian around which the collision

operator is easily linearised. However, in the scrape-off layer the distribution function

of the bulk plasma may well be far from Maxwellian. This is due to the presence of

the divertor plate or limiter, which makes the system open, preventing local thermal

equilibrium. In addition, hot particles may transit rapidly from the core to the open

field lines at the edge where the bulk of the plasma is expected to be cooler, potentially

resulting in a bimodal distribution of particle energies. In general, the exact steady

state distribution is not known. In summary, it is not clear whether or not a model or

linearised collision operator is adequate for modelling the plasma on open field lines.

The only rigorous choice of operator is the full-F Landau operator.

In this report we describe the implementation of the full-F Landau operator

using higher-order finite elements for gyrotropic distribution functions. Gyrotropic

distributions are independent of the gyrophase angle ϑ that measures the position of

the particle in the plane perpendicular to the magnetic field. Mathematically, this

means that we support Fs = Fs(v∥, v⊥), with the cylindrical velocity space coordinates

(v∥, v⊥, ϑ) defined by

v∥ = v · b, v⊥ = |v − v∥b|, tanϑ = −v · e2
v · e1

, (10)

or equivalently,

v = v∥b+ v⊥(cosϑe1 − sinϑe2). (11)

The basis vector b = B/|B| is the unit vector in the direction of the magnetic field.

The vectors e1 and e2 are orthogonal to b and satisfy

b · e1 × e2 = 1, e1 · b = 0, e2 · b = 0. (12)

The numerical implementation described in this report ensures the satisfaction

of the conservative properties (5)-(7) by achieving high accuracy with the weak

formulations and adequate numerical resolution. Almost exact numerical conservation

is obtained with ah-hoc numerical conserving terms, which are necessary to preserve a

stable solution at long times. To avoid carrying out costly numerical integration to find

the coefficients in the whole of the velocity space, we use the Rosenbluth-MacDonald-

Judd (RMJ) form of the collision operator (which is a Fokker-Planck form) [3] and we

Report 2070839-TN-07 4

solve elliptic PDEs for the required coefficients, called Rosenbluth potentials, using the

higher-order finite element method and boundary conditions obtained from the Green’s

functions at the limits of the velocity space. This numerical strategy optimises the

scheme for scalability.

The remainder of the report is structured as follows. In the next section, we

write the collision operator in the RMJ form. In section 3, we obtain the weak-form

representation of the problem that we will implement numerically. In section 4 we discuss

the boundary conditions imposed on Fs during an explicit time advance. In section 5

we prescribe numerical conserving terms for use in the time advance. In section 6 we

provide numerical results from testing our implementation. In section 7, we discuss the

outlook for the use of the operator in a production code. Finally, Appendix A and

Appendix B contain useful results pertaining to numerical integration of the Green’s

functions of the derivatives of the Rosenbluth potentials.

2. Rosenbluth-MacDonald-Judd form of the collision operator

The operator in the Rosenbluth-MacDonald-Judd (RMJ) form [3, 6] in (v∥, v⊥)

coordinates is most usefully written in terms of collisional fluxes:

Css′ [Fs, Fs′] =
∂Γ∥

∂v∥
+

1

v⊥

∂

∂v⊥
(v⊥Γ⊥) . (13)

where the fluxes are defined by

Γ∥ =
γss′

m2
s

(
∂Fs

∂v∥

∂2Gs′

∂v∥2
+

∂Fs

∂v⊥

∂2Gs′

∂v⊥∂v∥
− 2

ms

ms′
Fs

∂Hs′

∂v∥

)
, (14)

and

Γ⊥ =
γss′

m2
s

(
∂Fs

∂v∥

∂2Gs′

∂v∥∂v⊥
+

∂Fs

∂v⊥

∂2Gs′

∂v⊥2
− 2

ms

ms′
Fs

∂Hs′

∂v⊥

)
, (15)

and the Rosenbluth potentials are

Gs′(v) =

∫
Fs′(v

′)g d3v′ (16)

and

Hs′(v) =

∫
Fs′(v

′)

g
d3v′. (17)

In the drift-kinetic limit the largest piece of the distribution functions are

independent of gyroangle [4, 19], i.e., Fs = Fs(v∥, v⊥) and Fs′ = Fs′(v∥, v⊥). In terms of

(v∥, v⊥) coordinates, for gyrotropic distributions the Rosebluth potentials simplify to

Gs′ =

∫ ∞

0

∫ ∞

−∞
4
((

v∥ − v′∥
)2

+ (v⊥ + v′⊥)
2
)1/2

E(m(v∥, v⊥, v
′
∥, v

′
⊥))Fs′(v

′
∥, v

′
⊥)v

′
⊥ dv′∥dv

′
⊥,

(18)

Report 2070839-TN-07 5

and

Hs′ =

∫ ∞

0

∫ ∞

−∞
4
((

v∥ − v′∥
)2

+ (v⊥ + v′⊥)
2
)−1/2

K(m(v∥, v⊥, v
′
∥, v

′
⊥))Fs′(v

′
∥, v

′
⊥)v

′
⊥ dv′∥dv

′
⊥,

(19)

where

m(v∥, v⊥, v
′
∥, v

′
⊥) = 4v⊥v

′
⊥

((
v∥ − v′∥

)2
+ (v⊥ + v′⊥)

2
)−1

, (20)

and we have used the definitions of the complete elliptic integral of the first kind

K(m) =

∫ π/2

0

1√
1−m sin2 θ

dθ (21)

and the complete elliptic integral of the second kind

E(m) =

∫ π/2

0

√
1−m sin2 θ dθ. (22)

2.1. Finding elliptic problems for the Rosenbluth potentials

As noted in the original derivation by Rosenbluth, MacDonald, and Judd, [3], the

potentials defined by eqations (16) and (17) may also be defined as the solutions of

the elliptic problems
∂2G

∂v∥2
+

1

v⊥

∂

∂v⊥

(
v⊥

∂G

∂v⊥

)
= 2H, (23)

and
∂2H

∂v∥2
+

1

v⊥

∂

∂v⊥

(
v⊥

∂H

∂v⊥

)
= −4πF. (24)

We recognise the Poisson’s equation for the Rosenbluth potential H, and the biharmonic

equation for G. Obtaining the Rosenbluth potentials through an elliptic solve is

potentially numerically advantageous compared to evaluating the Green’s function

directly. This is because sparse matrix methods can be used to invert the Laplacian

operator, giving an operation scaling of N2, where N is the size of one of the velocity

dimensions, whereas a direct evaluation of the Green’s function leads to a scaling of

the order of N4. An important detail is that for a finite simulation domain, adequate

boundary conditions must be supplied when carrying out the elliptic solve. In practice

this necessitates the order N3 operation of obtaining the boundary data through the

Green’s function. An order N improvement in the overall scaling is not to be dismissed,

and parallelisation over many processes may be able to alleviate a further order N

(corresponding to the size of the boundary in velocity space) as evaluating the boundary

data is embarrassingly parallel.

Having motivated finding the coefficients appearing in the collision operator through

elliptic solves, it remains to find the appropriate PDEs. Direct differentiation of

equations (23) and (24) yields the required differential definitions of the coefficients,

as we now demonstrate. We can solve for

G20 =
∂2G

∂v∥2
(25)

Report 2070839-TN-07 6

by simply differentiating equation (23) to find

∂2G20

∂v∥2
+

1

v⊥

∂

∂v⊥

(
v⊥

∂G20

∂v⊥

)
= 2

∂2H

∂v∥2
. (26)

The next coefficient that we require is

G01 =
∂G

∂v⊥
. (27)

To obtain an elliptic equation for G01 we differentiate equation (23) with respect to v⊥
to find that

∂2G01

∂v∥2
+

∂2G01

∂v⊥2
+

∂

∂v⊥

(
G01

v⊥

)
= 2

∂H

∂v⊥
. (28)

Using the identity
∂2G

∂v⊥2
=

1

v⊥

∂

∂v⊥

(
v⊥

∂G

∂v⊥

)
− 1

v⊥

∂G

∂v⊥
, (29)

we can rewrite the equation for G01 in a form amenable to integration by parts:

∂2G01

∂v∥2
+

1

v⊥

∂

∂v⊥

(
v⊥

∂G01

∂v⊥

)
− G01

v2⊥
= 2

∂H

∂v⊥
. (30)

The next coefficient that we require is

G11 =
∂2G

∂v∥∂v⊥
. (31)

The differential equation that defines G11 may be obtained from (30) by direct

differentiation. The result is

∂2G11

∂v∥2
+

1

v⊥

∂

∂v⊥

(
v⊥

∂G11

∂v⊥

)
− G11

v2⊥
= 2

∂2H

∂v∥∂v⊥
. (32)

To complete the set of coefficients derived from G, an algebraic equation for

G02 =
∂2G

∂v⊥2
(33)

can be obtained from the defining equation forG, once the other derivatives are obtained.

We have that
∂2G

∂v⊥2
= 2H − ∂2G

∂v∥2
− 1

v⊥

∂G

∂v⊥
, (34)

or in the notation introduced here

G02 = 2H −G20 −
G01

v⊥
. (35)

Report 2070839-TN-07 7

It is also possible to obtain a convenient elliptic problem for G02 by differentiation of

(23) with appropriate use of the identity (35). We implement

∂2G02

∂v∥2
+

1

v⊥

∂

∂v⊥

(
v⊥

∂G02

∂v⊥

)
− 4G02

v2⊥
= 2

∂2H

∂v⊥2
− 4H

v2⊥
+

2

v2⊥

∂2G

∂v∥2

=
2

v⊥

∂

∂v⊥

(
v⊥

∂H

∂v⊥

)
− 2

v⊥

∂H

∂v⊥
− 4H

v2⊥
+

2

v2⊥

∂2G

∂v∥2

(36)

Note that solving for G02 requires knowledge of H and other derivatives of G, regardless

of the formulation. The primary benefit of using the solution of the elliptic equation

(30) rather than the algebraic equation (35) is numerical accuracy.

In analogy to the derivations above, it is straightforward to show that the equations

for

H10 =
∂H

∂v∥
, and H01 =

∂H

∂v⊥
(37)

are given by
∂2H10

∂v∥2
+

1

v⊥

∂

∂v⊥

(
v⊥

∂H10

∂v⊥

)
= −4π

∂F

∂v∥
. (38)

and
∂2H01

∂v∥2
+

1

v⊥

∂

∂v⊥

(
v⊥

∂H01

∂v⊥

)
− H01

v2⊥
= −4π

∂F

∂v⊥
, (39)

respectively. Note that we have written the elliptic equations (26), (30), (32), (36),

(38), and (39), in a form that will be amenable to integration by parts in the

following test-function analysis required for a weak-form implementation. The numerical

implementation of these equations first uses equations (24), (38) and (39) to find H and

its derivatives from F . Then, equations (26), (30), (32), and (36) may be solved for the

derivatives of G.

2.2. Evaluating the boundary data

Numerical integration of diverging functions is challenging. To obtain the boundary

data required to solve the elliptic problems (26), (30), (32), (38), and (39), we aim to

avoid Green’s functions with denominators that have large powers of g. We can achieve

this by using integration by parts to relax the divergence. This has the effect of making

the required Green’s functions similar in form to those required for G and H.

We start by computing

∂Gs′

∂v
=

∫
Fs′(v

′)
∂g

∂v
d3v′ = −

∫
Fs′(v

′)
∂g

∂v′ d
3v′, (40)

where we have used that ∂g/∂v = −∂g/∂v′. Using integration by parts, and that

Fs′(v
′) → 0 as |v′| → 0, we find that

∂Gs′

∂v
=

∫
∂Fs′

∂v′ g d3v′. (41)

Report 2070839-TN-07 8

We can carry out this procedure a second time to find that

∂2Gs′

∂v∂v
=

∫
∂2Fs′

∂v′∂v′ g d3v′. (42)

We can use the same method to find that

∂Hs′

∂v
=

∫
∂Fs′

∂v′
1

g
d3v′. (43)

Without the second integration by parts, we also have

∂2Gs′

∂v∂v
=

∫
∂Fs′

∂v′
v − v′

g
d3v′. (44)

Equations (41) and (43) are vector equation and (42) and (44) are tensor equations.

We extract the relevant coefficients by taking the dot product with the unit vectors b

and e⊥, noting that
∂

∂v
= b

∂

∂v∥
+ e⊥

∂

∂v⊥
+

e⊥ × b

v⊥

∂

∂ϑ
, (45)

and
∂

∂v′ = b
∂

∂v′∥
+ e′⊥

∂

∂v′⊥
+

e′⊥ × b

v′⊥

∂

∂ϑ′ . (46)

Assuming that Fs′ = Fs′(v
′
∥, v

′
⊥) (which implies that Gs′ = Gs′(v∥, v⊥), we find that

∂Gs′

∂v⊥
= e⊥ · ∂Gs′

∂v
=

∫
∂Fs′

∂v′⊥
(e⊥ · e′⊥)g d3v′ = 2π

∫ ∫
∂Fs′

∂v′⊥
IG1 v

′
⊥dv

′
⊥dv

′
∥, (47)

∂2Gs′

∂v∥∂v⊥
= be⊥ :

∂2Gs′

∂v∂v
=

∫
∂2Fs′

∂v′∥∂v
′
⊥
(e⊥ · e′⊥)g d3v′

= 2π

∫ ∫
∂2Fs′

∂v′∥∂v
′
⊥
IG1 v

′
⊥dv

′
⊥dv

′
∥,

(48)

∂Hs′

∂v∥
= b · ∂Hs′

∂v
=

∫
∂Fs′

∂v′∥

1

g
d3v′ = 2π

∫ ∫
∂Fs′

∂v′∥
IH0 v

′
⊥dv

′
⊥dv

′
∥, (49)

∂Hs′

∂v⊥
= e⊥ · ∂Hs′

∂v
=

∫
∂Fs′

∂v′⊥

e⊥ · e′⊥
g

d3v′ = 2π

∫ ∫
∂Fs′

∂v′⊥
IH1 v

′
⊥dv

′
⊥dv

′
∥. (50)

∂2Gs′

∂v∥2
= bb :

∂2Gs′

∂v∂v
=

∫
∂Fs′

∂v′∥

v∥ − v′∥
g

d3v′

= 2π

∫ ∫
∂Fs′

∂v′∥
(v∥ − v′∥)IH0 v

′
⊥dv

′
⊥dv

′
∥,

(51)

and

∂2Gs′

∂v⊥2
= e⊥e⊥ :

∂2Gs′

∂v∂v
=

∫
∂Fs′

∂v′⊥
(e⊥ · e′⊥)

v⊥ − v′⊥(e⊥ · e′⊥)
g

d3v′

= 2π

∫ ∫
∂Fs′

∂v′⊥
(v⊥IH1 − v′⊥IH2) v

′
⊥dv

′
⊥dv

′
∥,

(52)

Report 2070839-TN-07 9

where

IG1 =
1

2π

∫ π

−π

g (e⊥ · e′⊥) dϑ′, (53)

IH0 =
1

2π

∫ π

−π

1

g
dϑ′, (54)

IH1 =
1

2π

∫ π

−π

e⊥ · e′⊥
g

dϑ′, (55)

and

IH2 =
1

2π

∫ π

−π

(e⊥ · e′⊥)2

g
dϑ′. (56)

The main advantage of this formulation is that the integrands only diverge

logarithmically where v′∥ = v∥ and v′⊥ = v⊥. This kind of divergence can be handled

numerically by a change of variables in the affected elements [20]. The functions IG1,

IH0, IH1, and IH2 are evaluated in Appendix A.

3. Obtaining the weak formulation of the problem

We consider the problem

∂F

∂t
=

∂Γ∥

∂v∥
+

1

v⊥

∂

∂v⊥
(v⊥Γ⊥) . (57)

in v∥ ∈ [−L∥, L∥], v⊥ ∈ [0, L⊥] and t, where L∥ and L⊥ are the maximum values of v∥
and v⊥ on the grid, respectively. The solution F = F (v∥, v⊥, t), and the coefficients

Γ∥ = Γ∥(v∥, v⊥, t) = Γ∥[F (v∥, v⊥, t)] and Γ⊥ = Γ⊥(v∥, v⊥, t) = Γ⊥[F (v∥, v⊥, t)] are

functionals of F . We note that the fluxes in velocity space are defined explicitly by

equations (14) and (15).

We divide the domain into a rectangular grid ofN2D = Nelement,∥Nelement,⊥ elements.

We use Nelement,∥ 1D elements in the v∥ direction and Nelement,⊥ 1D elements in the v⊥
direction. Each 2D element is an outer product of two 1D elements. On each 1D

element we represent the function with Lagrange polynomials of order Ngrid + 1 using

the (normalised) points within the elements

xj ∈ {x0, x1, ..., xNgrid−1, xNgrid
} (58)

with x0 = −1 and xNgrid
= 1 (Lobatto points) on elements that do not include v⊥ = 0.

On the element including v⊥ = 0, we take xNgrid
= 1 but we use Radau quadrature to

ensure that x0 > −1.

The transformation between (v∥, v⊥) and the local coordinate x(r) in the rth 1D

element is

v∥ = s
(r)
∥ x(r) + c

(r)
∥ , v⊥ = s

(r)
⊥ x(r) + c

(r)
⊥ (59)

where s
(r)
∥ , c

(r)
∥ , s

(r)
⊥ and c

(r)
⊥ are constants in each element (labelled here by r) which

may vary between elements, and x(r) ∈ [−1, 1] for all r (saving the element including

the origin of v⊥, which has x(r) ∈ (−1, 1]).

Report 2070839-TN-07 10

3.1. The basis functions

We introduce 2D basis functions

Φ
(rp)
jk

(
v∥, v⊥

)
= φ

(r)
j

(
v∥
)
φ
(p)
k (v⊥) , (60)

where the 1D basis functions are

φ
(r)
j (v) = lj

(
x(r) (v)

)
H
(
v − v

(
x
(r)
0

))
H
(
v
(
x
(r)
Ngrid

)
− v
)
, (61)

where v is a placeholder for either v∥ or v⊥ and lj is the j
th Lagrange polynomial on the

element. Expanding the solution in these basis functions, we write

F (v∥, v⊥) =
∑
r,p

∑
j,k

F rp
jkΦ

(rp)
jk (v∥, v⊥)

=
∑
r,p

∑
j,k

F rp
jkφ

(r)
j (v∥)φ

(p)
k (v⊥),

(62)

with

F rp
jk = F

(
v∥

(
x
(r)
j

)
, v⊥

(
x
(p)
k

))
. (63)

Note that the basis functions have the cardinality property

φ
(r)
j

(
v
(
x
(p)
k

))
= δjkδrp. (64)

3.2. The projection

To project equation (57) onto the basis functions Φ
(rp)
jk

(
v∥, v⊥

)
, we multiply by the

basis function Φ
(qs)
mn

(
v∥, v⊥

)
, and integrate over velocity space corresponding to a single

2D element. The limits of this element are v
(q)
∥u = v∥

(
x
(q)
Ngrid

)
, v

(q)
∥l = v∥

(
x
(q)
0

)
,

v
(s)
⊥u = v⊥

(
x
(s)
Ngrid

)
, and v

(s)
⊥l = v⊥

(
x
(s)
0

)
, respectively. Then we have that

∫ v
(q)
∥u

v
(q)
∥l

∫ v
(s)
⊥u

v
(s)
⊥l

Φ(qs)
mn

∂F

∂t
v⊥dv⊥dv∥ =

∫ v
(q)
∥u

v
(q)
∥l

∫ v
(s)
⊥u

v
(s)
⊥l

Φ(qs)
mn

(
∂Γ∥

∂v∥
+

1

v⊥

∂

∂v⊥
(v⊥Γ⊥)

)
v⊥dv⊥dv∥.

(65)

Report 2070839-TN-07 11

3.3. The mass matrix

The left hand side of equation (65) takes the form∫ v
(q)
∥u

v
(q)
∥l

∫ v
(s)
⊥u

v
(s)
⊥l

Φ(qs)
mn

∂F

∂t
=
∑
r,p

∑
j,k

∂F rp
jk

∂t

∫ v
(q)
∥u

v
(q)
∥l

∫ v
(s)
⊥u

v
(s)
⊥l

Φ(qs)
mnΦ

(rp)
jk v⊥dv⊥dv∥

=
∑
j,k

∂F qs
jk

∂t

∫ v
(q)
∥u

v
(q)
∥l

∫ v
(s)
⊥u

v
(s)
⊥l

Φ(qs)
mnΦ

(qs)
jk v⊥dv⊥dv∥

=
∑
j,k

∂F qs
jk

∂t

∫ v
(q)
∥u

v
(q)
∥l

φ(q)
m (v∥)φ

(q)
j (v∥) dv∥

∫ v
(s)
⊥u

v
(s)
⊥l

φ(s)
n (v⊥)φ

(s)
k (v⊥) v⊥dv⊥

=
∑
j,k

M
(q)
∥mjM

(s)
⊥nk

∂F qs
jk

∂t
.

(66)

We deal with the separated integrals as follows

M
(q)
∥mj =

∫ v
(q)
∥u

v
(q)
∥l

φ(q)
m (v∥)φ

(q)
j (v∥) dv∥ = s

(q)
∥

∫ 1

−1

lm (x) lj (x) dx (67)

M
(s)
⊥nk =

∫ v
(s)
⊥u

v
(s)
⊥l

φ(s)
n (v⊥)φ

(s)
k (v⊥) v⊥dv⊥ = s

(s)
⊥

∫ 1

−1

ln (x) lk (x)
(
s
(s)
⊥ x+ c

(s)
⊥

)
dx (68)

The product M
(q)
∥mjM

(s)
⊥nk acting on F rp

jk is often referred to as a mass matrix.

3.4. The nonlinear stiffness matrices for the collision operator

The form of the right hand side of equation (65) and the forms of the fluxes, given by

equations (14) and (15), respectively, suggest that we should integrate by parts to bring

all derivatives down to first order. Carrying out this step, we find that for the parallel

flux term

∫ v
(q)
∥u

v
(q)
∥l

∫ v
(s)
⊥u

v
(s)
⊥l

Φ(qs)
mn

∂Γ∥

∂v∥
v⊥dv⊥dv∥ =

[∫ v
(q)
⊥u

v
(q)
⊥l

Φ(qs)
mn Γ∥ v⊥dv⊥

]v(s)∥u

v
(s)
∥l

−
∫ v

(q)
∥u

v
(q)
∥l

∫ v
(s)
⊥u

v
(s)
⊥l

∂Φ
(qs)
mn

∂v∥
Γ∥ v⊥dv⊥dv∥

= δmNgrid

∫ v
(q)
⊥u

v
(q)
⊥l

Φ(qs)
mn (v

(s)
∥u , v⊥)Γ∥(v

(s)
∥u , v⊥) v⊥dv⊥

− δm0

∫ v
(q)
⊥u

v
(q)
⊥l

Φ(qs)
mn (v

(s)
∥l , v⊥)Γ∥(v

(s)
∥l , v⊥) v⊥dv⊥

−
∫ v

(q)
∥u

v
(q)
∥l

∫ v
(s)
⊥u

v
(s)
⊥l

∂Φ
(qs)
mn

∂v∥
Γ∥ v⊥dv⊥dv∥.

(69)

Report 2070839-TN-07 12

Similarly, for the perpendicular flux term, we have that∫ v
(q)
∥u

v
(q)
∥l

∫ v
(s)
⊥u

v
(s)
⊥l

Φ
(qs)
mn

v⊥

∂

∂v⊥
(v⊥Γ⊥) v⊥dv⊥dv∥ =

=

∫ v
(q)
∥u

v
(q)
∥l

[
Φ(qs)

mn v⊥Γ⊥
]v(s)⊥u

v
(s)
⊥l

dv∥ −
∫ v

(q)
∥u

v
(q)
∥l

∫ v
(s)
⊥u

v
(s)
⊥l

∂Φ
(qs)
mn

∂v⊥
Γ⊥ v⊥dv⊥dv∥

= δnNgrid

∫ v
(q)
∥u

v
(q)
∥l

Φ(qs)
mn (v∥, v

(s)
⊥u)v

(s)
⊥uΓ⊥(v∥, v

(s)
⊥u) dv∥

− δn0

∫ v
(q)
∥u

v
(q)
∥l

Φ(qs)
mn (v∥, v

(s)
⊥l)v

(s)
⊥l Γ⊥(v∥, v

(s)
⊥l) dv∥

−
∫ v

(q)
∥u

v
(q)
∥l

∫ v
(s)
⊥u

v
(s)
⊥l

∂Φ
(qs)
mn

∂v⊥
Γ⊥ v⊥dv⊥dv∥.

(70)

The boundary flux terms in equations (69) and (70) will cancel identically at the

assembly stage, or vanish at v⊥ = 0 or v⊥ = L⊥, v∥ = −L∥, and v∥ = L∥ by the

boundary conditions that F → 0 as |v| → ∞.

We are now in a position to write down the final matrix row. We use the expansion

(62) for both the distribution function F and the coefficients that are derived from the

Rosenbluth potentials Gs′ and Hs′ . With these choices, recalling the definitions of the

fluxes Γ∥ and Γ⊥, equations (14) and (15), respectively, the result is

∑
j,k

M
(q)
∥mjM

(s)
⊥nk

∂F qs
jk

∂t
= −γss′

m2
s

∑
jklr

F qs
jk

([
∂2Gs′

∂v∥2

](qs)
lr

Y
(q)
∥2mjlY

(s)
⊥0nkr

+

[
∂2Gs′

∂v⊥∂v∥

](qs)
lr

Y
(q)
∥1mjlY

(s)
⊥3nkr − 2

ms

ms′

[
∂Hs′

∂v∥

](qs)
lr

Y
(q)
∥1mljY

(s)
⊥0nkr

+

[
∂2Gs′

∂v⊥∂v∥

](qs)
lr

Y
(q)
∥3mjlY

(s)
⊥1nkr +

[
∂2Gs′

∂v⊥2

](qs)
lr

Y
(q)
∥0mjlY

(s)
⊥2nkr

−2
ms

ms′

[
∂Hs′

∂v⊥

](qs)
lr

Y
(q)
∥0mjlY

(s)
⊥1nkr

)

+ δnNgrid

∫ v
(q)
∥u

v
(q)
∥l

Φ(qs)
mn (v∥, v

(s)
⊥u)v

(s)
⊥uΓ⊥(v∥, v

(s)
⊥u) dv∥

− δn0

∫ v
(q)
∥u

v
(q)
∥l

Φ(qs)
mn (v∥, v

(s)
⊥l)v

(s)
⊥l Γ⊥(v∥, v

(s)
⊥l) dv∥

+ δmNgrid

∫ v
(s)
⊥u

v
(s)
⊥l

Φ(qs)
mn (v

(q)
∥u , v⊥)Γ∥(v

(q)
∥u , v⊥) v⊥dv⊥

− δm0

∫ v
(s)
⊥u

v
(s)
⊥l

Φ(qs)
mn (v

(q)
∥l , v⊥)Γ∥(v

(q)
∥l , v⊥) v⊥dv⊥,

(71)

Report 2070839-TN-07 13

where we have defined stiffness matrices with three indices

Y
(q)
∥0mjl =

∫ v
(q)
∥u

v
(q)
∥l

φ(q)
m φ

(q)
j φ

(q)
l dv∥, Y

(q)
∥1mjl =

∫ v
(q)
∥u

v
(q)
∥l

∂φ
(q)
m

∂v∥
φ
(q)
j φ

(q)
l dv∥,

Y
(q)
∥2mjl =

∫ v
(q)
∥u

v
(q)
∥l

∂φ
(q)
m

∂v∥

∂φ
(q)
j

∂v∥
φ
(q)
l dv∥, Y

(q)
∥3mjl =

∫ v
(q)
∥u

v
(q)
∥l

φ(q)
m

∂φ
(q)
j

∂v∥
φ
(q)
l dv∥,

(72)

and

Y
(s)
⊥0nkr =

∫ v
(s)
⊥u

v
(s)
⊥l

φ(q)
n φ

(q)
k φ(q)

r v⊥ dv⊥, Y
(s)
⊥1nkr =

∫ v
(s)
⊥u

v
(s)
⊥l

∂φ
(q)
n

∂v⊥
φ
(q)
k φ(q)

r v⊥ dv⊥,

Y
(s)
⊥2nkr =

∫ v
(s)
⊥u

v
(s)
⊥l

∂φ
(q)
n

∂v⊥

∂φ
(q)
k

∂v⊥
φ(q)
r v⊥ dv⊥, Y

(s)
⊥3nkr =

∫ v
(s)
⊥u

v
(s)
⊥l

φ(q)
n

∂φ
(q)
k

∂v⊥
φ(q)
r v⊥ dv⊥.

(73)

Note that the stiffness matrices in (71) are all 1D integrals of 1D basis functions,

as a result of the choice to use the representation (62) where the 2D basis function

Φ
(qs)
mn (v∥, v⊥) is a product of two 1D lagrange polynomials – one for the v∥ dimension,

and one for the v⊥ dimension.

The assembly step is carried out by defining a compound index that indexes over

all the rows in (v∥, v⊥), and then forming a matrix equation in that index. We use

continuity of F to demand that F q,s
jNgrid

= F q,s+1
j0 , F q,s

Ngridk
= F q+1,s

0k , and remove the

duplicated points at interior element boundaries by summing the matrix rows there.

3.5. The weak form of the equations for the Rosenbluth potentials

We still need to determine the coefficients derived from the Rosenbluth potentials. We

start by considering the solution of Poisson’s equation, equation (24). Multiplying by

the 2D basis function Φ
(rp)
jk = φ

(r)
j

(
v∥
)
φ
(p)
k (v⊥) and integrating over velocity space we

have

−
∫ ∫

Φ
(rp)
jk

(
∂2H

∂v∥2
+

1

v⊥

∂

∂v⊥

(
v⊥

∂H

∂v⊥

))
v⊥ dv⊥ dv∥ = −4π

∫ ∫
Fv⊥ dv⊥ dv∥. (74)

Integrating by parts and neglecting the boundary terms (which either vanish or will be

cancelled at the assembly step) we have that∫ ∫ (
∂Φ

(rp)
jk

∂v∥

∂H

∂v∥
+

∂Φ
(rp)
jk

∂v⊥

∂H

∂v⊥

)
v⊥ dv⊥ dv∥ = −4π

∫ ∫
Fv⊥ dv⊥ dv∥. (75)

Defining the matrices

K
(s)
⊥nk = −

∫ v
(s)
⊥u

v
(s)
⊥l

∂φ
(s)
n

∂v⊥

∂φ
(s)
k

∂v⊥
v⊥dv⊥ (76)

and

K
(s)
∥nk = −

∫ v
(s)
∥u

v
(s)
∥l

∂φ
(s)
n

∂v∥

∂φ
(s)
k

∂v∥
dv∥ (77)

Report 2070839-TN-07 14

and expanding

F =
∑
rp

∑
jk

Φ
(rp)
jk F rp

jk , H =
∑
rp

∑
jk

Φ
(rp)
jk Hrp

jk , (78)

we find that the row of the unassembled matrix is∑
mn

(
K

(r)
∥jmM

(p)
⊥kn +K

(p)
⊥knM

(r)
∥jm

)
Hrp

mn = −4π
∑
mn

M
(r)
∥jmM

(p)
⊥knF

rp
mn. (79)

We impose Dirichlet boundary conditions on the assembled matrices using the exact

values of the required functions. Once the coefficients Hrp
jk are known then the same

matrices can be used in an identical fashion to solve for Grp
jk. A similar matrix equation

can be written down to solve for Grp
20jk and Hrp

10jk, with the only difference being in the

source terms on the right-hand side. Explicitly, these results are∑
mn

(
K

(r)
∥jmM

(p)
⊥kn +K

(p)
⊥knM

(r)
∥jm

)
Hrp

01mn = −4π
∑
mn

P
(r)
∥jmM

(p)
⊥knF

rp
mn. (80)

where we have defined

P
(r)
∥mj =

∫ v
(r)
⊥u

v
(r)
⊥l

φ(r)
m

∂φ
(r)
j

∂v∥
dv∥, (81)

and ∑
mn

(
K

(r)
∥jmM

(p)
⊥kn +K

(p)
⊥knM

(r)
∥jm

)
Grp

mn = 2
∑
mn

M
(r)
∥jmM

(p)
⊥knH

rp
mn. (82)

Note that a double Poisson solve is required to obtain G from F . We choose to find

∂H/∂v∥ by a separate Poisson solve rather than differentiating H to improve numerical

accuracy.

To find the equations for the other coefficients in the fluxes, we must repeat the

exercise above. The PDE defining G01 = ∂G/∂v⊥ is distinct from Poisson’s equation

and will require different matrix elements on the left-hand side. We again start by

multiplying equation (30) by the function v2⊥Φ
(rp)
jk , we find that∫ ∫

v2⊥Φ
(rp)
jk

(
∂2G01

∂v∥2
+

1

v⊥

∂

∂v⊥

(
v⊥

∂G01

∂v⊥

)
− G01

v2⊥

)
dv⊥ dv∥

= 2

∫ ∫
v2⊥

∂H

∂v⊥
dv⊥ dv∥.

(83)

Integrating by parts, expanding the derivatives, and neglecting boundary terms, we find

that

−
∫ ∫ (

v2⊥
∂Φ

(rp)
jk

∂v∥

∂G01

∂v∥
+ v2⊥

∂G01

∂v⊥

∂Φ
(rp)
jk

∂v⊥
+ v⊥Φ

(rp)
jk

∂G01

∂v⊥
+ Φ

(rp)
jk G01

)
dv⊥ dv∥

= 2

∫ ∫
v2⊥

∂H

∂v⊥
dv⊥ dv∥.

(84)

Report 2070839-TN-07 15

Expanding G01 =
∑

rp

∑
mnΦ

(rp)
mn G

rp
01mn we thus find the unassembled matrix row

−
∑
mn

Grp
01mn

∫ ∫ (
v2⊥

∂Φ
(rp)
jk

∂v∥

∂Φ
(rp)
mn

∂v∥
+ v2⊥

∂Φ
(rp)
mn

∂v⊥

∂Φ
(rp)
jk

∂v⊥
+ v⊥Φ

(rp)
jk

∂Φ
(rp)
mn

∂v⊥
+ Φ

(rp)
jk Φ(rp)

mn

)
dv⊥ dv∥

= 2
∑
mn

Hrp
mn

∫ ∫
v2⊥Φ

(rp)
jk

∂Φ
(rp)
mn

∂v⊥
dv⊥ dv∥.

(85)

If we define the matrix elements

R
(s)
⊥nk =

∫ v
(s)
⊥u

v
(s)
⊥l

φ(s)
n (v⊥)φ

(s)
k (v⊥) v

2
⊥dv⊥, N

(s)
⊥nk =

∫ v
(s)
⊥u

v
(s)
⊥l

φ(s)
n (v⊥)φ

(s)
k (v⊥) dv⊥,

J
(s)
⊥nk = −

∫ v
(s)
⊥u

v
(s)
⊥l

∂φ
(s)
n

∂v⊥

∂φ
(s)
k

∂v⊥
v2⊥dv⊥, P

(s)
⊥nk =

∫ v
(s)
⊥u

v
(s)
⊥l

φ(s)
n

∂φ
(s)
k

∂v⊥
v⊥dv⊥,

(86)

and

U
(s)
⊥nk =

∫ v
(s)
⊥u

v
(s)
⊥l

φ(s)
n

∂φ
(s)
k

∂v⊥
v2⊥dv⊥ (87)

then we can write the row as∑
mn

(
K

(r)
∥jmR

(p)
⊥kn +M

(r)
∥jmJ

(p)
⊥kn −M

(r)
∥jmP

(p)
⊥kn −M

(r)
∥jmN

(p)
⊥kn

)
Grp

01mn

= 2
∑
mn

M
(r)
∥jmU

(p)
⊥knH

rp
mn.

(88)

The PDE for G11 = ∂2G/∂v∥∂v⊥ is identical to the one for G01 apart from the

right-hand side. We obtain the weak form

−
∫ ∫ (

v2⊥
∂Φ

(rp)
jk

∂v∥

∂G11

∂v∥
+ v2⊥

∂G11

∂v⊥

∂Φ
(rp)
jk

∂v⊥
+ v⊥Φ

(rp)
jk

∂G11

∂v⊥
+ Φ

(rp)
jk G11

)
dv⊥ dv∥

= 2

∫ ∫
v2⊥

∂2H

∂v∥∂v⊥
dv⊥ dv∥.

(89)

The corresponding matrix row is∑
mn

(
K

(r)
∥jmR

(p)
⊥kn +M

(r)
∥jmJ

(p)
⊥kn −M

(r)
∥jmP

(p)
⊥kn −M

(r)
∥jmN

(p)
⊥kn

)
Grp

11mn

= 2
∑
mn

P
(r)
∥jmU

(p)
⊥knH

rp
mn.

(90)

Similarly, the PDE for H01, equation (39) has the weak form∑
mn

(
K

(r)
∥jmR

(p)
⊥kn +M

(r)
∥jmJ

(p)
⊥kn −M

(r)
∥jmP

(p)
⊥kn −M

(r)
∥jmN

(p)
⊥kn

)
Hrp

01mn

= −4π
∑
mn

M
(r)
∥jmU

(p)
⊥knF

rp
mn.

(91)

Report 2070839-TN-07 16

To complete the set of coefficients, we can either use the algebraic equation (35)

or the elliptic problem (36) for G02 = ∂2G/∂v⊥
2. First considering equation (35) and

projecting on to the basis functions, we have that∫ ∫
Φ

(rp)
jk G02 v⊥dv⊥dv∥ =

∫ ∫
Φ

(rp)
jk (v⊥(2H −G20)−G01) dv⊥dv∥. (92)

The corresponding matrix row therefore becomes∑
mn

M
(r)
∥jmM

(p)
⊥knG

rp
02mn =

∑
mn

M
(r)
∥jmM

(p)
⊥kn(2H

rp
mn −Grp

20mn)−M
(r)
∥jmN

(p)
⊥knG

rp
01mn. (93)

Secondly, considering equation (36), we have the weak-form

−
∫ ∫ (

v2⊥
∂Φ

(rp)
jk

∂v∥

∂G02

∂v∥
+ v2⊥

∂Φ
(rp)
jk

∂v⊥

∂G02

∂v⊥
− v⊥Φ

(rp)
jk

∂G02

∂v⊥
− 4Φ

(rp)
jk G02

)
dv⊥dv∥

= −
∫ ∫ (

v2⊥
∂Φ

(rp)
jk

∂v⊥

∂H

∂v⊥
+ 2v⊥Φ

(rp)
jk

∂H

∂v⊥
+ 2Φ

(rp)
jk H

)
dv⊥dv∥ +

∫ ∫
Φ

(rp)
jk G20 dv⊥dv∥,

(94)

where we have carried out the integration by parts and neglected to write boundary

terms. The corresponding row of the unassembled matrix therefore becomes∑
mn

(
K

(r)
∥jmR

(p)
⊥kn +M

(r)
∥jm(J

(p)
⊥kn − P

(p)
⊥kn − 4N

(p)
⊥kn)

)
Grp

02mn

= 2

(∑
mn

M
(r)
∥jm(J

(p)
⊥kn − 2P

(p)
⊥kn −N

(p)
⊥kn)H

rp
mn − 2

∑
mn

M
(r)
∥jmN

(p)
⊥knG

rp
20mn

)
.

(95)

3.6. Velocity space integration in the spectral element scheme

To compute the boundary data for the elliptic solvers obtained in the last section, we

need to integrate a function F = F (v′∥, v
′
⊥) multiplied by a kernel function

G = G(v∥, v⊥, v′∥, v′⊥), (96)

i.e., we wish to compute

I =

∫ ∞

−∞

∫ ∞

0

G(v∥, v⊥, v′∥, v′⊥)F (v′∥, v
′
⊥)v

′
⊥dv

′
⊥dv

′
∥. (97)

We expand F in the Lagrange polynomial basis functions using equation (62) and thus

obtain that

I =
∑
rp

∑
jk

F rp
jk I

(rp)
jk (98)

with the integration over local elements

I
(rp)
jk =

∫ v
(r)
∥u

v
(r)
∥l

∫ v
(p)
⊥u

v
(p)
⊥l

G(v∥, v⊥, v′∥, v′⊥)φ
(r)
j (v′∥)φ

(p)
k (v′⊥)v

′
⊥dv

′
⊥dv

′
∥. (99)

When assembling the element problem, one must recall that at element boundaries the

nodal value of F has an interpolating polynomial that should be integrated over on both

elements.

Report 2070839-TN-07 17

4. Boundary conditions for time evolution

The collision operator described in this report is intended to be used alongside explicit

pseudo-spectral advection terms in both space and velocities. As such, boundary

conditions are imposed explicitly at the boundaries of the domain each time step, by

explicitly forcing the appropriate conditions on Fs.

In the assembly of the collision operator (71), we imposed a “zero-flux” boundary

condition Γ∥(v∥ = ±L∥) = Γ⊥(v⊥ = L⊥) = 0 by virtue of neglecting the boundary fluxes

in the implementation. However, for the advection terms, we must impose Fs = 0 at

the upwind boundaries of velocity space. For physical solutions we would expect Fs = 0

and the “zero-flux” boundary conditions to be equivalent.

The use of cylindrical coordinates introduces a spurious boundary into the

coordinate system at v⊥ = 0. To ensure regularity of the solution at v⊥ = 0, we

impose
∂Fs

∂v⊥

∣∣∣∣
v⊥=0

= 0. (100)

We motivate this by noting that for Fs = Fs(v) to be continuous and differentiable as

a function of the vector velocity argument v near v = 0, then (100) must be satisfied.

5. Ad-hoc numerical conserving terms

The numerical scheme here is chosen for speed and accuracy rather than for exact

satisfaction of the necessary conservative properties (5)-(7). To ensure that the

numerical scheme also preserves the density, parallel velocity and pressure at each

time step (to machine precision), for time-evolving simulations we introduce ad-

hoc conserving terms which make a correction which is (in principle) of order the

discretisation error. Noting the definitions of the plasma density ns and parallel flow

u∥,s,

ns =

∫ ∫
Fs 2πv⊥dv⊥ dv∥, (101)

and

nsu∥,s =

∫ ∫
v∥Fs 2πv⊥dv⊥ dv∥, (102)

respectively, we define

Css [Fs, Fs] = C∗
ss [Fs, Fs]−

(
x0 + x1(v∥ − u∥,s) + x2

(
(v∥ − u∥,s)

2 + v2⊥
))
)Fs, (103)

where C∗
ss [Fs, Fs] denotes the numerically calculated finite-element collision operator

given by ∂F/∂t in equation (71), and the coefficients x0, x1 and x2 are determined

by the requirements that (5)-(7) are exactly satisfied. These requirements lead to the

matrix equation ns 0 3ps
0 p∥,s q∥,s
3ps q∥,s R̃s


 x0

x1

x2

 =

 ∆ns

ns∆u∥,s − u∥,s∆ns

3∆ps

 (104)

Report 2070839-TN-07 18

where the vector components on the right hand side are the moments of C∗
ss [Fs, Fs]

∆ns =

∫ ∫
C∗

ss [Fs, Fs] 2πv⊥dv⊥dv∥,

∆u∥,s =
1

ns

∫ ∫
v∥C

∗
ss [Fs, Fs] 2πv⊥dv⊥dv∥, and

∆ps =
1

3

∫ ∫ (
(v∥ − u∥,s)

2 + v2⊥
)
C∗

ss [Fs, Fs] 2πv⊥dv⊥dv∥,

(105)

and the compoments of the matrix on the left-hand side are given by the moments of Fs.

We have that the total pressure ps = (2p⊥,s+p∥,s)/3 with the parallel and perpendicular

pressures given by

p∥,s =

∫ ∫
(v∥ − u∥,s)

2Fs 2πv⊥dv⊥ dv∥, (106)

and

p⊥,s =
1

2

∫ ∫
v2⊥Fs 2πv⊥dv⊥ dv∥, (107)

respectively. The parallel heat flux is given by

q∥,s =

∫ ∫
(v∥ − u∥,s)((v∥ − u∥,s)

2 + v2⊥)Fs 2πv⊥dv⊥ dv∥, (108)

and the higher-order moment

R̃s =

∫ ∫
((v∥ − u∥,s)

2 + v2⊥)
2Fs 2πv⊥dv⊥ dv∥. (109)

To achieve good results with this method, the boundary conditions that are imposed

on Fs should also be imposed on C∗
ss [Fs, Fs] before evaluating the values of the set of

coefficients {xi}.
We note the similarity of these ad-hoc conserving terms to those employed for

similar reasons where the density, parallel flow, and pressure are required to be conserved

exactly [10, 21].

6. Numerical implementation and results

We have implemented an explicit form of the weak-form collision operator in a

script to test the numerical properties, as well as in the main time-advance loop

of “moment kinetics”. Specifically, we have implemented the assembled weak-

form problems defined by equations (71), (79), (80), (82), (88), (90), (91), (95),

using sparse matrices https://docs.julialang.org/en/v1/stdlib/SparseArrays/,

using the “moment kinetics” shared-memory MPI, with appropriate calculations

of the boundary data using the integration weights defined by (99). We use

Gauss-Legendre polynomials to define the Lobatto and Radau collocation grid

points. We have implemented the scheme for arbitrary order of polynomial.

The implementation may be found in the branch at the following URL https://

https://docs.julialang.org/en/v1/stdlib/SparseArrays/
https://github.com/mabarnes/moment_kinetics/tree/merge_fkpl_collisions
https://github.com/mabarnes/moment_kinetics/tree/merge_fkpl_collisions

Report 2070839-TN-07 19

github.com/mabarnes/moment_kinetics/tree/merge_fkpl_collisions. The soft-

ware required to execute the tests described in section 6.1 are contained in the

test script in the following URL https://github.com/mabarnes/moment_kinetics/

tree/merge_fkpl_collisions/test_scripts/2D_FEM_assembly_test.jl, on com-

mit c24dbc6. This relaxation test described in section 6.2 uses an input

file based on https://github.com/mabarnes/moment_kinetics/blob/merge_fkpl_

collisions/examples/fokker-planck/fokker-planck-relaxation.toml.

6.1. Evaluation tests

We wish to test the three properties of the collision operator (5)-(7). To facilitate

this test we define three quantities which measure the change in the moments of the

distribution function due to the collision operator, given by equation (105). We test

whether or not the collision operator vanishes on a prescribed Maxwellian distribution,

i.e.,

Css

[
FM
s , FM

s

]
= 0, (110)

as a proxy for testing the entropy production inequality (8). In figures 1, 2, 3, and 4,

we carry out the test on 2 cores for varying Nelement at fixed Ngrid = 3, 5, 7, and 9,

respectively. Here Nelement is the number of elements in the v⊥ dimension and half the

number of elements in the v∥ dimension. The quantity Ngrid is the number of points

per element. We take the maximum velocity to be L∥ = L⊥ = 6.0. Note that reducing

the maximum v∥ and v⊥ on the grids for a fixed integrand reduces the accuracy of

the numerical integration because the true velocity integrals should extend to infinite

velocities. We choose to carry out the test with a Maxwellian with a normalised density

ns/nref = 1.0, a normalised u∥,s/cref = 1.0, with cref =
√
2Tref/mref and a normalised

Ts/Tref = 1.0.

In the figure (a) of figures 1-4, we plot both the infinity norm of the error ϵ∞ and

the L2 norm of the error ϵL2 of calculating the collision operator with respect to the

expected value (which is zero). We see that the infinity norm gives a larger value than

the L2 norm in all cases by a factor of an order of magnitude. This is due to numerical

oscillations near v⊥ = 0 where the differential equations become singular. For Ngrid = 3

(quadratic interpolating polynomials) the error in computing the collision operator does

not decrease rapidly with Nelement, but the error does follow the expected scaling for

differentiation (
1

Nelement

)Ngrid−1

. (111)

However, the quantities ∆ns, ∆u∥,s, and ∆ps approach zero rapidly at (or better than)

the expected scaling for numerical integration errors(
1

Nelement

)Ngrid+1

. (112)

This picture becomes clearer for larger Ngrid, as evidenced in figures 2-4.

https://github.com/mabarnes/moment_kinetics/tree/merge_fkpl_collisions
https://github.com/mabarnes/moment_kinetics/tree/merge_fkpl_collisions
https://github.com/mabarnes/moment_kinetics/tree/merge_fkpl_collisions/test_scripts/2D_FEM_assembly_test.jl
https://github.com/mabarnes/moment_kinetics/tree/merge_fkpl_collisions/test_scripts/2D_FEM_assembly_test.jl
https://github.com/mabarnes/moment_kinetics/blob/merge_fkpl_collisions/examples/fokker-planck/fokker-planck-relaxation.toml
https://github.com/mabarnes/moment_kinetics/blob/merge_fkpl_collisions/examples/fokker-planck/fokker-planck-relaxation.toml

Report 2070839-TN-07 20

To demonstrate the attained performance of the explicit collision operator, in

figure (b) of figures 1-4, we plot the timing data (in milli seconds) for completing

the initialisation and evaluation of the collision operator. The expected scaling for

the initialisation is N3
element, by virtue of the calculation of the integration weights for

the boundary data. The expected scaling for the evaluation of the collision operator

depends on which operation dominates the calculation. If it is the computation of the

boundary data it is N3
element, whereas if it is the elliptic solve or the assembly of the

right hand side of equation (71) then the scaling would be expected to be N2
element due

to the sparse nature of these operations. In figure 1b for Ngrid = 3 the timing for both

the initialisation and single evaluation scales like N3
element, whereas, in figures 2b-4b for

Ngrid = 5-9, respectively, we see that a scaling closer to N2
element is acheived for the

evaluation step. This is promising for the scaling of the operator to large problem sizes.

To understand the dominant source of the numerical error, we find it useful

to plot the infinity and L2 norm error measures of the numerically calculated

Rosenbluth potential coefficients ∂H/∂v∥, ∂H/∂v⊥, ∂
2G/∂v∥

2, ∂G/∂v⊥, ∂
2G/∂v∥∂v⊥,

and ∂2G/∂v⊥
2. The exact values are known and may be computed easily for shifted

Maxwellian distributions [22]. We plot this data for Ngrid = 3 in figure 5, and for

Ngrid = 9 in in figure 6. We see that for both Ngrid = 3 and Ngrid = 9, the L2

norm error is smaller by one or two orders of magnitude than the infinity norm error.

This is due to numerical oscillations near v⊥ = 0. However, in both cases the errors

decay to zero at least at the rate given by equation (111) (for Ngrid = 3), or at the

proper expected rate given by equation (112) (for Ngrid = 9). Note that our numerical

calculation of the boundary data does involve a numerical differentiation of F , see

equations (47)-(52). In the case of Ngrid = 9, we see that the errors deviate from the

scaling for high resolution, which we take to mean that we have reached the smallest

error possible with double floating point precision. We take this to indicate that the

dominant source of numerical error in evaluating the collision operator in fact comes

from the unavoidable numerical differentiation, rather than from the errors in obtaining

the Rosenbluth potential coefficients. Indeed, comparable levels of error to that seen in

computing the collision operator may be obtained by simply using the weak method to

differentiate F to find the second derivatives in v∥ and v⊥.

6.2. Relaxation to a Maxwellian distribution: testing equation (8)

It is important to test whether or not the numerical self-collision operator can provide

a stable, steady-state numerical solution which is close to a Maxwellian distribution,

whilst satisfying equation (8). Using the ad-hoc numerically conserving model (103),

we find that we can obtain a stable solution even for very low numerical resolution. In

figure 7, we show time traces of the change in the density, parallel flow and pressure over

the course of the simulation. In figure 8 we show the entropy production, calculated

using the definition (8) and using the following approximation for the logarithm of the

Report 2070839-TN-07 21

(a)

(b)

Figure 1: The numerical error and timing data for the test carried out on 2 cores with

Ngrid = ng = 3 points per element. The infinity and L2 norms of the collision operator

are shown and compared to the expected scalings for differentiation and integration

(111) and (112), respectively. The timing data for the initialisation (init) and a single

evaluation of the collision operator (step) is given in milliseconds.

Report 2070839-TN-07 22

(a)

(b)

Figure 2: The numerical error and timing data for the test carried out on 2 cores with

Ngrid = ng = 5 points per element.

Report 2070839-TN-07 23

(a)

(b)

Figure 3: The numerical error and timing data for the test carried out on 2 cores with

Ngrid = ng = 7 points per element.

Report 2070839-TN-07 24

(a)

(b)

Figure 4: The numerical error and timing data for the test carried out on 2 cores with

Ngrid = ng = 9 points per element.

Report 2070839-TN-07 25

(a)

(b)

Figure 5: In figure (a) we plot the infinity norm of the error ϵ∞ in computing the

Rosenbluth potential coefficients, for Ngrid = 3. In figure (b) we plot the L2 norm of

the error ϵL2 for Ngrid = 3.

Report 2070839-TN-07 26

(a)

(b)

Figure 6: In figure (a) we plot the infinity norm of the error ϵ∞ in computing the

Rosenbluth potential coefficients, for Ngrid = 9. In figure (b) we plot the L2 norm of

the error ϵL2 for Ngrid = 9

Report 2070839-TN-07 27

Figure 7: The changes in the first three moments of the distribution function ns, u∥,s,

and ps as a result of time evolution with the Fokker-Planck collision operator defined

by equations (71) and (103) (i.e., with the numerical conserving terms). The moments

are well conserved, despite the low resolution used: here we use Ngrid = 5, Nelement = 4

elements in the v⊥ dimension and 2Nelement = 8 elements in the v∥ dimension. We take

the maximum velocity to be L∥ = L⊥ = 6.0. We take ∆t = 10−3.

distribution function

lnF =
∑
rp

∑
ij

ln
(
|F rp

jk |+ ϵ
)
Φ

(rp)
jk , (113)

where ϵ = 10−15. The approximation (113) is adequate if the solution is converging with

increasing resolution in a strong sense. In figure 9 we show the L2 norm of Fs − FM
s .

The simulation uses a collision frequency νss = γssnref/m
2
sc

3
ref = cref/Lref , and is run

for a time of 200Lref/cref . We use Ngrid = 5, Nelement = 4 elements in the v⊥ domain,

2Nelement = 8 elements in the v∥ domain, and we take the maximum velocity to be

L∥ = L⊥ = 3.0. We take ∆t = 10−3 and we use the RK4 explicit time integration

method. Despite the low resolution, the numerical solution is stable. The small errors

in the moments are of order 10−7 at t = 200Lref/cref , which is larger than machine

precision. To reach this time, 200× 1000× 4 ≃ 108 evaluations of Css [Fs, Fs] have been

carried out. This might explain the errors in the moments if the correction terms have

a machine-precision ≃ 10−15 systematic bias. Simulations with increasing numerical

resolution show a steady states with smaller L2(Fs − FM
s).

Report 2070839-TN-07 28

Figure 8: We plot the the entropy production Ṡ, defined in equation (8). Note that Ṡ

remains positive and tends to 0+. The resolutions are provided in the main text.

Figure 9: We plot the L2 norm of Fs − FM
s . This figure indicates that Fs becomes

increasingly close to FM
s before converging on a steady-state numerical Maxwellian.

The resolutions are provided in the main text.

Report 2070839-TN-07 29

7. Discussion and outlook

In this report we have investigated a particular weak-form representation of the explicit

Landau Fokker-Planck collision operator. We choose to use the RMJ form of the Fokker-

Planck operator to permit the use of sparse elliptic solves for determining the coefficients

of the nonlinear operator. We have demonstrated that this choice can lead to an optimal

scaling of the cost of evaluating the operator for a single time step ∝ N2
element with the

number of elements Nelement in each of the velocity space dimensions v∥ and v⊥. We also

demonstrated a successful time-evolving simulation with low resolution, demonstrating

that the self-collision operator can successfully relax the distribution function to a stable

steady state that is close to a Maxwellian distribution.

Unfortunately, the order unity factor in front of the expected cost scaling is large

for all Ngrid. To permit the collision operator to be routinely used in the time evolving

“moment kinetics” code alongside other physics features we would ideally want to further

optimise the implementation for speed. This might be achieved with an improvement

to the shared-memory paralellism, distributed-memory parallelisation across nodes or

through optimisations of the numerical method for speed at the cost of accuracy.

The use of distributed memory to parallelise the collision operator calculation

should be fairly straightforward. The dominant costs which contribute to the time taken

to evaluate the operator are the calculation of the boundary data and the assembly of

the right-hand side of equation (71). Both of these steps are embarrassingly parallel.

Possible optimisations of the numerical method could involve the following. First,

choosing to determine the boundary data for the elliptic solves using a multipole

expansion of the Green’s functions definition of G and H, equations (16) and (17),

respectively. This method may permit the evaluation of the boundary data using only

an order unity number of velocity integrals, providing the maximum value of v∥ and v⊥
on the grid, L∥ and L⊥, respectively, are sufficiently large. Second, choosing to evaluate

the boundary data at fewer locations and constructing a larger-scale interpolation of the

coefficients on the boundary might save computation time without sacrificing significant

accuracy, again if L∥ and L⊥ are large enough for the Rosenbluth potential coefficients to

have a simple functional form. Finally, one could choose to use a different interpolation

scheme defining the right-hand side of equation (71). One could consider using the

commonly used spectral-element method “quadrature crime” of assuming that mass

matrices are diagonal [23] to reduce the number of operations due to the nonlinear

stiffness matrices defined by equations (72) and (73).

Appendix A. Evaluating the gyroaveraged functions

To see how to evaluate the required gyroaveraged functions IG1, IH0, IH1, and IH2,

consider

IG0 =
1

2π

∫ π

−π

g dϑ′, (A.1)

Report 2070839-TN-07 30

as well as

IG2 =
1

2π

∫ π

−π

g (e⊥ · e′⊥)2 dϑ′, (A.2)

and

IG3 =
1

2π

∫ π

−π

g (e⊥ · e′⊥ × b)2 dϑ′. (A.3)

We note that e⊥ · e′⊥ = cos(ϑ′ −ϑ) and e⊥ · e′⊥ ×b = sin(ϑ−ϑ′). Expanding g, we have

that

IG0(v∥, v⊥, v
′
∥, v

′
⊥) =

1

2π

∫ π

−π

((
v∥ − v′∥

)2
+ v2⊥ + v′⊥

2 − 2v⊥v
′
⊥ cos (ϑ′ − ϑ)

)1/2
dϑ′.

(A.4)

Here we can recognise an Elliptic integral. Suitable rearrangement and relabeling give

us

IG0(v∥, v⊥, v
′
∥, v

′
⊥) =

2

π

((
v∥ − v′∥

)2
+ (v⊥ + v′⊥)

2
)1/2

E(m(v∥, v⊥, v
′
∥, v

′
⊥)) (A.5)

with

m(v∥, v⊥, v
′
∥, v

′
⊥) = 4v⊥v

′
⊥

((
v∥ − v′∥

)2
+ (v⊥ + v′⊥)

2
)−1

(A.6)

and we have used the definition of the complete elliptic integral of the first kind

K(m) =

∫ π/2

0

1√
1−m sin2 θ

dθ (A.7)

Complete elliptic integral of the second kind

E(m) =

∫ π/2

0

√
1−m sin2 θ dθ (A.8)

The remaining integrals are

IG1(v∥, v⊥, v
′
∥, v

′
⊥) =

− 2

π

((
v∥ − v′∥

)2
+ (v⊥ + v′⊥)

2
)1/2(2−m

3m
E(m)− 2

3

(1−m)

m
K(m)

)
(A.9)

IG2(v∥, v⊥, v
′
∥, v

′
⊥) =

2

π

((
v∥ − v′∥

)2
+ (v⊥ + v′⊥)

2
)1/2 1

15m2

(
(7m2 + 8m− 8)E(m) + 4(2−m)(1−m)K(m)

)
(A.10)

IG3(v∥, v⊥, v
′
∥, v

′
⊥) =

2

π

((
v∥ − v′∥

)2
+ (v⊥ + v′⊥)

2
)1/2 1

15m2

(
8(m2 −m+ 1)E(m)− 4(2−m)(1−m)K(m)

)
(A.11)

Report 2070839-TN-07 31

where we have used the identities∫ π/2

0

sin2 θ
√

1−m sin2 θ dθ =
1−m

3m
K(m) +

2m− 1

3m
E(m) (A.12)∫ π/2

0

sin4 θ
√

1−m sin2 θ dθ =
1

15m2

(
2(2m+ 1)(1−m)K(m) + (8m2 − 3m− 2)E(m)

)
(A.13)∫ π/2

0

(1− 2 sin2 θ)
√

1−m sin2 θ dθ =
2−m

3m
E(m)− 2

3

(1−m)

m
K(m) (A.14)∫ π/2

0

(1−2 sin2 θ)2
√
1−m sin2 θ dθ =

1

15m2

(
(7m2 + 8m− 8)E(m) + 4(2−m)(1−m)K(m)

)
(A.15)∫ π/2

0

(
1− (1− 2 sin2 θ)2

)√
1−m sin2 θ dθ

=
1

15m2

(
8(m2 −m+ 1)E(m)− 4(2−m)(1−m)K(m)

)
(A.16)

If we wish to evaluate directly the integral equations for ∂Hs′/∂v∥ and ∂Hs′/∂v⊥
then we require the following elliptic integrals

IH0 =
1

2π

∫ π

−π

1

g
dϑ′, (A.17)

IH1 =
1

2π

∫ π

−π

e⊥ · e′⊥
g

dϑ′, (A.18)

and

IH2 =
1

2π

∫ π

−π

(e⊥ · e′⊥)2

g
dϑ′. (A.19)

Using the methods described above, we find that

IH0 =
2

π

(
(v∥ − v′∥)

2 + (v⊥ + v′⊥)
2
)−1/2

K(m), (A.20)

IH1 = − 2

π

(
(v∥ − v′∥)

2 + (v⊥ + v′⊥)
2
)−1/2

(
m− 2

m
K(m) +

2

m
E(m)

)
, (A.21)

and

IH2 =
2

π

(
(v∥ − v′∥)

2 + (v⊥ + v′⊥)
2
)−1/2

(
3m2 − 8m+ 8

3m2
K(m) +

4m− 8

3m2
E(m)

)
.

(A.22)

Here we have used that∫ π/2

0

(
1− 2 sin2 θ

) (
1−m sin2 θ

)−1/2
dθ =

m− 2

m
K(m) +

2

m
E(m), (A.23)

and∫ π/2

0

(
1− 2 sin2 θ

)2 (
1−m sin2 θ

)−1/2
dθ =

3m2 − 8m+ 8

3m2
K(m) +

4m− 8

3m2
E(m).

(A.24)

Report 2070839-TN-07 32

Figure B1: We plot the infinity norm of the errors ϵ of the potentials ∂H/∂v∥, ∂H/∂v⊥,

∂G/∂v⊥, ∂2G/∂v⊥
2, ∂2G/∂v∥

2, ∂2G/∂v⊥∂v∥ for a Maxwellian input distribution,

compared to the expected scalings for differentiation and integration, equations (111)

and (112), respectively.

Appendix B. Computing the Rosenbluth potentials by direct integration

A more direct, but less efficient, method for computing the Rosenbluth potentials is

to use the integral expressions (47)-(52) for all (v∥, v⊥) rather than just the boundary

values. Here we show the results of such a calculation to demonstrate the correct

implementation of (47)-(52) and the results in Appendix A.

In figure B1 we plot the infinity-norm errors on the calculation by direct integration

of the derivatives of the Rosebluth potentials for a Maxwellian input, for which the

results are known analytically (see e.g. [22]). We see that the integration error becomes

small for increasing resolution, indicating that the definitions of the integrands are

correct. However, the errors eventually deviate from the expected scaling. This is

due to problems carrying out the integral accurately in the region on the integrand

where v′ is such that Fs(v
′) ∼ O(1). This problem might be addressed with an

improved integration quadrature, or by using higher than double precision to compute

the integrand. Note that this difficulty does not affect the integration of the potentials

in the far-field region at the velocity space boundary – meaning that machine-precision

accuracy can be achieved in the numerical method presented in the main text. This is

evident from figures 5 and 6. The script used to generate figure B1 may be found at

Report 2070839-TN-07 33

the following URL: https://github.com/mabarnes/moment_kinetics/blob/merge_

fkpl_collisions/test_scripts/fkpl_direct_integration_test.jl.
[1] Kardar M 2007 Statistical Physics of Particles (Cambridge University Press)

[2] Dellar P Kinetic Theory University of Oxford Master Course in Mathematical and Theoretical

Physics: lecture series. URL https://people.maths.ox.ac.uk/dellar/MMPkinetic.html

[3] Rosenbluth M N, MacDonald W M and Judd D L 1957 Phys. Rev. 107 1–6

[4] Hazeltine R D and Meiss J D 2003 Plasma Confinement (New York: Dover)

[5] Helander P and Sigmar D J 2002 Collisional Transport in Magnetized Plasmas (Cambridge, UK:

Cambrige University Press)

[6] Parra F I Collisional Plasma Physics: (I) Fokker-Planck collision operator University of

Oxford Master Course in Mathematical and Theoretical Physics: 2019 lecture series. URL

https://www-thphys.physics.ox.ac.uk/people/FelixParra/CollisionalPlasmaPhysics/

CollisionalPlasmaPhysics.html

[7] Alouani-Bibi F, Shoucri M and Matte J P 2004 Computer physics communications 164 60–66

[8] Pataki A and Greengard L 2011 Journal of Computational Physics 230 7840–7852

[9] Hirvijoki E and Adams M F 2017 Phys. Plasmas 24 032121

[10] Abazorius M 2023 University of Oxford DPhil Thesis (In Progress)

[11] Wilkie G J, Keßler T and Rjasanow S 2023 Comput. Phys. Commun. 291 108812

[12] Catto P J and Simakov A N 2004 Phys. Plasmas 11 90

[13] Hinton F L and Hazeltine R D 1976 Rev. Mod. Phys. 48 239–308

[14] Catto P J and Tsang K T 1977 Phys. Fluids 20 396–401

[15] Abel I G, Barnes M, Cowley S C, Dorland W and Schekochihin A A 2008 Phys. Plasmas 15 122509

[16] Barnes M, Abel I, Dorland W, Ernst D, Hammett G, Ricci P, Rogers B, Schekochihin A and

Tatsuno T 2009 Phys. Plasmas 16

[17] Sugama H, Watanabe T H and Nunami M 2009 Phys. Plasmas 16 112503

[18] Abel I G, Plunk G G, Wang E, Barnes M, Cowley S C, Dorland W and Schekochihin A A Rep.

Prog. Phys. 76 116201

[19] Parra F I Collisionless Plasma Physics: (II) Drift-Kinetics University of Oxford Master

Course in Mathematical and Theoretical Physics: 2019 lecture series. URL https:

//www-thphys.physics.ox.ac.uk/people/FelixParra/CollisionlessPlasmaPhysics/

CollisionlessPlasmaPhysics.html

[20] Boyd J P 2001 Chebyshev and Fourier Spectral Methods (Dover)

[21] Barnes M, Parra F I, Hardman M R and Omotani J 2021 Excalibur/Neptune Report 2047357–

TN–D2.2+M2.5

[22] Hardman M R, Omotani J, Barnes M, Newton S L and Parra F I 2023 Excalibur/Neptune Report

2070839–TN–06

[23] Teukolsky S A 2015 J. Comput. Phys. 283 408–413

https://github.com/mabarnes/moment_kinetics/blob/merge_fkpl_collisions/test_scripts/fkpl_direct_integration_test.jl
https://github.com/mabarnes/moment_kinetics/blob/merge_fkpl_collisions/test_scripts/fkpl_direct_integration_test.jl
https://people.maths.ox.ac.uk/dellar/MMPkinetic.html
https://www-thphys.physics.ox.ac.uk/people/FelixParra/CollisionalPlasmaPhysics/CollisionalPlasmaPhysics.html
https://www-thphys.physics.ox.ac.uk/people/FelixParra/CollisionalPlasmaPhysics/CollisionalPlasmaPhysics.html
https://www-thphys.physics.ox.ac.uk/people/FelixParra/CollisionlessPlasmaPhysics/CollisionlessPlasmaPhysics.html
https://www-thphys.physics.ox.ac.uk/people/FelixParra/CollisionlessPlasmaPhysics/CollisionlessPlasmaPhysics.html
https://www-thphys.physics.ox.ac.uk/people/FelixParra/CollisionlessPlasmaPhysics/CollisionlessPlasmaPhysics.html

	Introduction
	Rosenbluth-MacDonald-Judd form of the collision operator
	Finding elliptic problems for the Rosenbluth potentials
	Evaluating the boundary data

	Obtaining the weak formulation of the problem
	The basis functions
	The projection
	The mass matrix
	The nonlinear stiffness matrices for the collision operator
	The weak form of the equations for the Rosenbluth potentials
	Velocity space integration in the spectral element scheme

	Boundary conditions for time evolution
	Ad-hoc numerical conserving terms
	Numerical implementation and results
	Evaluation tests
	Relaxation to a Maxwellian distribution: testing equation (8)

	Discussion and outlook
	Evaluating the gyroaveraged functions
	Computing the Rosenbluth potentials by direct integration

