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1 Executive summary

In this report we summarise experience gained in the application of non-intrusive
uncertainty quantifiaction (UQ) to a sample test case from the SD1D [1] test
cases set out in task 83-2.1 [2]. This provides a test ground for the practical
aspects of UQ for somewhat realistic plasma simulations and showcases the
easyvvuq package to faciliate the construction of UQ workflows.

2 Introduction

Simulations are a vital tool for developing understanding of systems and for
extrapolating beyond existing facilities. This means that they can be used as
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evidence towards significant decisions, such as substantial investment in produc-
t/facility development (e.g. STEP [3]). The output of such simulations will be
sensitive to its inputs to varying degrees. Understanding how sensitive outputs
are to inputs is known as sensitivity analysis and this can give an insight into
how important it is to pin down the inputs to simulations. A related, but dif-
ferent, area is that of uncertainty quantification (UQ). Here, we are interested
in the uncertainty on the output of simulations given some probability distribu-
tion function for the input parameters. This can play an important role in the
verification and validation (VV) of computational models, improving our confi-
dence in these models whilst also allowing more nuanced interpretation of the
predictions the model makes. There are several approaches to uncertainty quan-
tification. One split is between intrusive and non-intrusive. Applying intrusive
approaches to an existing simulation code can require substantial modification
of the code in order to effectively project the system state onto a “random trial
basis” of size N and substitute this into the system of equations. This gives an
increase in the effective number of equations to evolve in a single run by a factor
related to N . Such approaches can be challenging to implement into an existing
code due to the significant modifications potentially required. Non-intrusive
UQ, on the other hand, does not require modification to the existing code but
rather requires the user to effectively run multiple copies of the simulation with
inputs varied according to their probability distribution.

One of the exciting opportunities offered by exascale computing is the increased
throughput which will greatly enable our ability to run large ensembles of sim-
ulations. This will start to enable more routine study of sensitivity and uncer-
tainty in code outputs due to inputs, by directly simulating a range of cases
within the probable inputs. One challenge introduced by this is the need to
analyse a large number of simulations in order to extract information about the
expected results and associated uncertainty. Fortunately such analysis exhibits
regular patterns across different domains and several generic toolkits exist to
assist with implementing a UQ workflow with existing codes. Here we explore
the easyvvuq toolkit [4, 5] developed through the VECMA project [6].

In essence, the UQ work flow can be summarised as being comprised of several
distinct generic stages, with the breakdown used by easyvvuq outlined in fig-
ure 1. Discussion of these stages is provided in the easyvvuq documentation [7],
so here we only give a brief summary of the key aspects. Firstly it is useful to
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Figure 1: Breakdown of stages in a generic VVUQ workflow as considered by
easyvvuq. Figure reproduced from [7].

note that easyvvuq introduces the concept of a Campaign. This is a class de-
signed to coordinate a given UQ workflow instance and interfaces to a database
stored on the filesystem recording information about the model system, the runs
performed and other aspects of the workflow. To construct a campaign, the first
step, “Parameter Space Description”, is to describe the relevant model param-
eters along with their properties. This takes the form of a python dictionary
with parameter names as the keys and then other relevant properties such as
data type, default values and expected ranges forming a secondary dictionay as
the value. This does not need to be a complete listing of all model parameters,
but rather any parameters which one may wish the UQ tools to be aware of.
This is most likely to contain the uncertain input parameters for which we wish
to perform a UQ analysis. Alongside this information, the campaign must also
be able to generate relevant simulation inputs, execute simulations using these
inputs and extract the appropriate output of the simulations. This corresponds
to the “Encoder”, “Model Evaluation” and “Decoder” stages respectively and
these are stored together within a easyvvuq “Actions” class . Whilst easyvvuq
provides some example decoders useful for output stored in a few simple file
types1 it will often be necessary to write a specific decoder for the code at hand.
Indeed, it is possible for this decoder to go beyond simply returning the raw
output of the simulation and instead to perform any required post-processing,
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analysis and data reduction stages before returning the relevant data of interest.
Similarly, it will often be necessary to write a custom decoder for the particular
input format of the code being used. This will be given a set of parameters
with values and must be able to create the relevant input file(s) in a provided
directory alongside any further setup (e.g. providing other files to be accessed
by the code). It is also necessary to describe how to run the simulation. This
can take several forms but here we will focus on the “local execute” approach,
in which we simply provide a list of strings with the command to be run and any
options. More sophisticated approaches, including the submission of runs to a
slurm queue-managed system are provided by easyvvuq. Given this information
about how to construct, execute and extract the output of runs all that remains
is to decide which runs should be performed and the collation and analysis of
the series of runs generated. The decision of which simulation cases should be
performed is controlled by a “Sampler” object. This can be a key choice in the
construction of the UQ workflow and it can determine how many and which
simulations are required as well as how the analysis is performed. We defer
further discussion of this stage to section 5. Finally, analysis of the collection
of simulations is automated by easyvvuq and leverages other packages such as
ChaosPy [8], with the user simply needing to choose what properties to explore
such as the mean and standard deviation of the result and the Sobol indices
representing the relative importance of the different input uncertainities on the
output quantity of interest.

3 Using easyvvuq with BOUT++ models

Here we briefly describe the approach taken within this work in order to use
easyvvuq with BOUT++ [9] (and specifically SD1D [1]). Encoders and de-
coders for use with BOUT++ have been created 2 and have been made publicly
available [10]3. We use these encoders and decoders in this work. The input
format for BOUT++ is a simple text file in “config” format and we note that
the test cases here do not require any further inputs (i.e. no grid files). As

1Specifically json, csv and yaml.
2This work was supported through VECMA hackathons run through the financial year

2021/22 and the access to the VECMA team that this provided.
3We also note that there are severals examples of using easyvvuq with various models

implemented with BOUT++ also provided in this repository. The SD1D examples in branch
“sd1d” of [10] are closely related to the approach used here.
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such, the encoder is relatively straightforward. Several decoders are provided
to demonstrate a number of different scenarios, such as

1. Reading a quantity at the final time in the simulation. This is a relatively
simple, but common use case.

2. Sampling a quantity onto a fixed grid. This can be helpful to allow com-
parison across cases in which the simulation grid may change, for example.

3. A decoder specific to the blob2d model, calculating and returning derived
quantities rather than the raw output.

For the results shown later we make use of the first, simple, option. Finally,
it is helpful to discuss the approach taken to executing simulations. As the
test cases used here, based on case-04 of SD1D, are relatively cheap to run on
a single core we opt to use the “local execute” approach and we will describe
this in more detail in section 4. Clearly, for more expensive simulations one
must look to use a distributed approach. Branch “slurm” of the repository [10]
demonstrates one approach to the use of a slurm managed system.

4 SD1D configuration and general approach

We will use case-04 of SD1D as an example case with which we can demonstrate
an easyvvuq facilitated UQ workflow. This test case consists of coupled single
plasma and neutral fluids in 1D with sheath boundary conditions and is de-
scribed in more detail in the report for 83-2.2 [11]. We note that we use branch
bout-next of SD1D at commit 7bd6bc91 and then build this using BOUT++
commit 080f3b27 4. We configure BOUT++ to enable its interface to PETSc
[12] and link to a version of PETSc configured with HYPRE [13] support. This
enables access to the “beuler” time solver, which is very effective when seeking
steady state solutions, and the efficient preconditioners provided by HYPRE.

To demonstrate how this is implemented, we show example python code for
running a small UQ analysis workflow for case-02 of SD1D. In listing 1 we

4This is not the BOUT++ commit which will be used by default if SD1D is not supplied
with an existing BOUT++ build.
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show the creation of the encoder, decoder and local exectute action and how
these are used to create a campaign. For completeness, listing 2 shows how one
then creates a sampler, adds this to the campaign and launches the simulations,
whilst listing 3 shows how this is used to create some simple plots showing
the uncertainty on the plasma density, Ne, output. Figure 2 shows example
outputs from these listings for second and sixth order PCE samplers. One can
see that whilst the mean density agrees fairly well between the two orders, there
is more significant disagreement between the 1st and 99th percentiles and the
Sobol indices. Whilst the second order sampler required 9 separate simulations
and the sixth order sampler required 49 simulations, the time to solution was
broadly comparable here as we ran on a single node of Archer2. This provides
128 cores and the “local execute” action provided by easyvvuq will create a
thread pool which uses these cores to run the planned simulations in parallel.
This demonstrates the useful ability to run a number of the identified simulations
in parallel, dependent on available CPU resource. However, it is perhaps worth
noting that this can lead to inefficient resource utilisation. For example, when
running a large analysis the run time across the parameter space being sampled
may vary somewhat. The analysis cannot be completed until all simulations
are complete. As such, the total resource usage is dependent on the slowest
simulation encountered and this is likely to become a more significant concern
as the number of samples increases. In such scenarios a more suitable approach
may be to use the slurm action instead.
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#!/usr/bin/env python3
import boutvecma
import easyvvuq as uq
import chaospy
import os
import numpy as np
import time
import matplotlib.pyplot as plt

# Path to the executable
EXE_PATH="./sd1d"

# Create an encoder to produce input files
encoder = boutvecma.BOUTEncoder(template_input="BOUT.inp")
# Create a decoder to extract data of interest (here just Ne)
decoder = boutvecma.SimpleBOUTDecoder(variables=["Ne"])
# Specify the parameters of interest
params = {

"P:powerflux": {"type": "float", "min": 1e7, "max": 1e8, "default": 2e7},
"Ne:flux": {"type": "float", "min": 1e23, "max": 1e24, "default": 4e23},

}

# Now we can create a local_execute action describing how to create, run and analyse
# a single run
actions = uq.actions.local_execute(

encoder,
os.path.abspath(

EXE_PATH + " -d . solver:type=beuler input:error_on_unused_options=false -q -q -q"
),
decoder,

)

# Create the campaign
campaign = uq.Campaign(name="SD1D_Case02_order3.", actions=actions, params=params)

Listing 1: Example python code to create a BOUT++ UQ campaign.
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# Describe the distribution of the uncertain inputs
vary = {

"P:powerflux": chaospy.Uniform(1e7, 1e8),
"Ne:flux": chaospy.Uniform(1e23, 1e24),

}

# Create a PCE sampler for this system of uncertain inputs
sampler = uq.sampling.PCESampler(vary=vary, polynomial_order=3)
# Attach sampler to campaign
campaign.set_sampler(sampler)

print(f"Code will be evaluated {sampler.n_samples} times")

# Actually run the simulations, wait for the runs to finish and collect outputs
time_start = time.time()
campaign.execute().collate(progress_bar=True)
time_end = time.time()
print(f"Finished, took {time_end - time_start}")

results_df = campaign.get_collation_result()
print(results_df)
results = campaign.analyse(qoi_cols=["Ne"])

Listing 2: Example python code to create a polynomial chaos expansion sampler,
add this to an existing campaign and run and analyse the simulations.
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# Helper method to make standard plots
def make_plots(campaign, variable_name, xlabel = r'$\rho$', ylabel = None):

# Plot results of interest
moment_plot_filename = os.path.join(f"{campaign.campaign_dir}",

variable_name + "_moments.png")
sobols_plot_filename = os.path.join(f"{campaign.campaign_dir}",

variable_name + "_sobols_first.png")

fig, ax = plt.subplots()
xvalues = np.arange(len(results.describe(variable_name, "mean")))
ax.fill_between(

xvalues,
results.describe(variable_name, "mean") - results.describe(variable_name, "std"),
results.describe(variable_name, "mean") + results.describe(variable_name, "std"),
label="std",
alpha=0.2,

)
ax.plot(xvalues, results.describe(variable_name, "mean"), label="mean")
try:

ax.plot(xvalues, results.describe(variable_name, "1%"),
"--", label="1%", color="black")

ax.plot(xvalues, results.describe(variable_name, "99%"),
"--", label="99%", color="black")

except RuntimeError:
pass

ax.grid(True)
if ylabel is None: ylabel = variable_name
ax.set_ylabel(ylabel)
ax.set_xlabel(xlabel)
ax.legend()
fig.savefig(moment_plot_filename)

plt.figure()
results.plot_sobols_first(variable_name,

xlabel=xlabel, filename=sobols_plot_filename)
print(f"Results are in:\n\t{moment_plot_filename}\n\t{sobols_plot_filename}")

make_plots(campaign, "Ne", ylabel = r'$N_e$')

Listing 3: Example python code using the analysed results to produce a sum-
mary of the simulation output with uncertainties.
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(a) (b)

(c) (d)

Figure 2: Plots of the mean normalised plasma density, Ne, as a function of par-
allel arc length along with the mean ± the standard deviation and 1st and 99th

percentiles for a 2nd (a) and 6th (c) order PCE sampler and the corresponding
first order Sobol indices (b/d).
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5 Uncertainty quantification for SD1D case-04

We now turn to our more realistic case, including a neutral fluid. As discussed
in the report for 83-2.2 [11], the performance of this case can be quite sensi-
tive to the preconditioning approach adopted. Here we choose to use HYPRE’s
euclid preconditioner. This implements a parallel ILU preconditioner. Whilst
we continue to run each simulation on a single core, it has been observed that
the euclid preconditioner gives runs with the default input file which are ap-
proximately twice as fast as PETSC’s serial ILU, resulting in run times of the
order of 30 seconds per simulation. We will comment further on performance
considerations shortly.

We will explore two approaches to sampling; the “polynomial chaos expansion”
(PCE) sampler and stochastic collocation (SC) sampler. By default, these result
in the same set of simulations (i.e. the same input samples). However, they
enable different analysis chains. In particular, SC is compatible with an adaptive
approach in which the UQ study can be refined by adding points in the “most
useful” quantity (i.e. the one in which we have identified having the most
influence on the uncertainty of the result). This is important as the number
of uncertain inputs increases as unfortunately, as this increases the number of
samples increases rapidly. Specifically the number of samples (i.e. simulations)
in a non-adaptive approach is (p + 1)d where p is the order of polynomial and
d is the number of uncertain inputs.

5.1 Polynomial Chaos Expanison

We begin by exploring the uncertainty associated with the input plasma density
and pressure sources, as done in section 4 and no change is required to the
earlier code listings aside from changing the template input file. Figures 3
and 4 show the uncertainty in plasma density and pressure for order 1, 2, 3
and 4 polynomials (corresponding to 4, 9, 16 and 25 simulations respectively)
from a study with uncertain density and pressure sources. The distributions
are taken to be uniform ranging from 2 × 1023 to 1 × 1024 and 1 × 107 to
5 × 107 respectively. One can see that the first order case gives somewhat
different results for the density than the other orders. By fourth order, the
results have mostly converged to a good degree. Figure 5 shows the Sobol indices
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for the density and pressure from the fourth order simulation. This demonstrates
that the uncertainty on the density is primarily due to the uncertainty in the
density source. However, the pressure is sensitve to both sources and is in
fact most sensitive to the density source near the target. In performing such
studies one can note that the run time of the individual samples can be quite
variable. Here we can identify the slowest simulations as those with the largest
pressure source and the smallest density source, suggesting effectively a large
upstream temperature source, potentially increasing the significance of the heat
conduction term.

(a) (b)

(c) (d)

Figure 3: Plots of the mean normalised plasma density, Ne, as a function of
parallel arc length along with the mean ± the standard deviation and 1st and
99th percentiles for first (a), second (b), third (c) and fourth (d) order PCE
samplers with uncertain density and pressure sources.

In addition to the density and pressure sources one may wish to explore the
uncertainty in the recyling fraction, the redistribution of neutrals, the sheath
heat transmission coefficient etc. Here we include uncertainty on the sheath heat
transmission coefficient with uniform distribution from 6 to 7 and uncertainty
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(a) (b)

(c) (d)

Figure 4: Plots of the mean normalised plasma pressure, P , as a function of
parallel arc length along with the mean ± the standard deviation and 1st and
99th percentiles for first (a), second (b), third (c) and fourth (d) order PCE
samplers with uncertain density and pressure sources.

on the recycling fraction with uniform distribution from 0 to 0.95. We show
results from a second order case in figure 6 and it can be seen that introducing
these additional terms has had a significant impact on the density and pressure.
We note that the Sobol indices indicate that both the density and pressure are
most sensitive to the recycling fraction, whilst both have very little dependence
on the sheath heat transmission coefficient. Despite the lack of dependence on
sheath heat we have had to treat this as all other parameters. If we had excluded
this parameter from the sampling the number of simulations would have reduced
from 81 to 27. This motivates an adaptive scheme which can iteratively refine
along the most significant directions.
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(a) (b)

Figure 5: Plots of the Sobol indices for the normalised plasma density, Ne, (a)
and pressure, P , (b) for a fourth order PCE sampler with uncertain density and
pressure sources.

5.2 Stochastic Collocation

We now turn our attention to developing an adaptive scheme more appropriate
for systems with a large number of uncertain inputs. The general strategy for
an adaptive scheme is as follows

1. Draw initial samples and run simulations

2. Analyse current results.

3. If stopping condition has been met go to step 8.

4. Determine all allowable sample points at the next refinement level. This
is handled by look ahead of the SC sampler.

5. Run simulations at all new sample points.

6. Determine which of the new sample points should be included in the anal-
ysis stage. This is handled by adapt dimension of the SC analysis in-
stance and one must choose which quantity of interest (output) to use in
determing the optimal direction.

7. Go to step 2.

8. Peform final analysis and save results.
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(a) (b)

(c) (d)

Figure 6: Plots of the mean normalised plasma density (a) and pressure (b) as a
function of parallel arc length along with the mean ± the standard deviation and
1st and 99th percentiles for second order PCE samplers with uncertain density
and pressure sources, recycling fraction and sheath heat transmission coefficient.
The first order Sobol indices are also shown for the density (c) and pressure (d).

In order to achieve this practically, we switch our sampler type from PCE to
SC. Whilst this can be used in the same way as the PCE solver, some additional
settings are required in order make this suitable for an adaptive scheme. The
full code listing is given in appendix A and the other steps to construct the
campaign are unchanged from the earlier examples. Once the campaign has been
created we must launch our simulations. We then continue to refine the study
by executing steps 2-7 of the general strategy. One must choose an appropriate
stopping condition. This could be something simple like halting after a fixed
number of refinements or something more sophisticated. Here, we track the
mean change in the first order Sobol indices between iterations and halt when
this drops below some tolerance5. Of course each simulation output of interest
will have different Sobol indices, so one must consider how to deal with this.

15



Common options will be to average the Sobol indices over all outputs or to focus
on the “main” output of interest used in adapt dimension.

We start by repeating the original case of section 5.1 in which there are just
two uncertain inputs, the density and pressure source fluxes. We choose a Sobol
convergence tolerance of 0.005 and use just the density Sobol indices in the
convergence test. For this setup the analysis finishes after 4 iterations, having
run 13 simulations. Figure 7 shows the total sampling points used at each
iteration of the refinement. It can be seen that we start by refining the density
flux, and it was shown in the equivalent PCE study that this has the most
influence on the density (i.e. largest Sobol index). Following this, the direction
of refinement alternates, indicating that both inputs have a significant impact
on the density output. Figure 8 shows the mean density and the Sobol indices at
the second and fourth (final) iteration. There is very little discernable difference
in the density output, but it can be seen that the Sobol metrics have gained a
higher order contribution by the final iteration. This study was repeated with
the plasma pressure as the output of interest. This used the same number of
simulations but completed in just three iterations. The refinement began in the
pressure flux direction, but was qualitatively similar to that seen in the density
focused study.

We now turn to the system with four uncertain inputs; the density and pressure
sources, the sheath heat transmission coefficient and the recycling fraction. To
achieve this one simply needs to add the relevant distributions to the vary object
passed to the sampler. This study completed after seven iterations and used
41 simulations. Figure 9 shows the sampling points during the start, middle
and end of the refinement phase. It can be seen that the first input refined is
the recycling fraction, sd1d:frecycle, and that this input is the most heavily
refined by the end of the study. Furthermore, it can be seen that no refinement
has occured in the sheath heat transmission coefficient, sd1d:sheath gamma.
These observations are consistent with the results of the PCE results in figure 6
which showed that the density output was most sensitive to the recycling fraction
and insensitive to the sheath coefficient. The adaptive scheme here has therefore
correctly avoided refining inputs which do not impact the final results. The

5Whilst often effective, it is important to note that there is no guarantee that the Sobol
indices have a monotonic dependence and one can sometimes find promising convergence
followed by signifcant jumps. Such jumps can indicate a physics regime change or may be
associated with refinement along a new input.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Sample points for each iteration of the adaptive SC scheme for the
case with uncertain density and pressure sources (a-e) along with the error vs
iteration count (f).

change in output from the second iteration to the final (seventh) interation is
shown in figure 10

The 41 simulations used here sits between that required for the equivalent PCE
study of second order (81) and first order (16). Despite involving around half the
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(a) (b)

(c) (d)

Figure 8: Plots showing mean density (a/c) and first order Sobol indices (b/d)
at the second/final iteration for the case with two uncertain inputs.

simulations of the second order PCE study, the time to solution was very similar
in this instance. Whilst the PCE sampler is able to generate and run all cases at
once, the adaptive SC sampler can only generate a small number of cases at each
refinement interation. This effecitvely limits the opportunity for simulation level
parallelisation, forcing more synchronisation points within the UQ workflow.
This is likely to become particularly accute in systems using a large number
of refinement levels with jobs being submitted to a queue managed system. It
is currently not possible to generate the simulations for the next refinement
iteration until the current iteration has completed in full. This means that
the simulations for each level cannot be generated and submitted to the queue
until the previous stage has completed. For facilities and problem sizes where
the queuing time is substantial this could lead to a large increase in the time
to solution when compared to an approach which can more readily pipeline the
simulations. Despite this, the adaptive approach outlined here is a powerful tool
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enabling the study of systems with a large number of uncertain inputs which
would not be possible with a direct approach such as the PCE sampler.

(a)

(b)

(c)

Figure 9: Sample points for the first (a), third (b) and seventh (c) iteration
of the adaptive SC scheme for the case with uncertain density and pressure
sources, sheath heat transmission coefficient and recycling fraction.
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(a) (b)

(c) (d)

Figure 10: Plots showing mean density (a/c) and first order Sobol indices (b/d)
at the third/final iteration for the case with four uncertain inputs.

6 Conclusions

In this report we have introduced some of the practical aspects of using the
easyvvuq toolkit to construct a non-intrusive UQ workflow for an existing real-
istic physics code. In producing such a workflow the user both needs to supply
a means to generate, run and analyse simulations for passed settings and to
decide which approaches to sampling and analysis will be taken. We explored
non-adaptive PCE and adaptive SC based approaches and applied this to an
SD1D realistic test case. Whilst the PCE based approach offered some perfor-
mance related benefits (e.g. a single trivially parallelisable group of simulations)
the adaptive SC approach is more flexible and can avoid sampling along inputs
which do not impact the final result. This can potentially save a lot of cpu time
and can enable the study of problems with a large number of uncertain inputs.
It also enables campaigns to be easily restarted and expanded, although this
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has not been shown here6.

Future work should move towards yet more realistic problems. In particular
it will be useful to explore changes to the approach required when studying
problems for which the simulations require a substantial number of processors.
This will require a change to the execution approach to use the slurm executor.
It will also be important to explore appropriate convergence criteria to halt
adaptive studies. As the problem becomes yet more complex it may be necessary
to consider developing cheaper surrogate models. Fortunately, projects such as
VECMA are developing additional packages alongside easyvvuq to facilitate the
construction of such problems and as these are developed further the entire
community can benefit from improvements.

7 Acknowledgements

We gratefully acknowledge compute time provided on CIRRUS and Archer2
through the Excalibur SEAVEA project [14].

A Stochastic collocation code listing

The code used in section 5.2 is shown below. This is based on workflows available
in reference [10] and [15].

#!/usr/bin/env python3

import boutvecma
import easyvvuq as uq
import chaospy
import os
import numpy as np
import time
import matplotlib

6See the sc adaptive restartable workflow of [10] for an example.
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# Do not open figures:
matplotlib.use("Agg")
import matplotlib.pyplot as plt

# Path to the executable
EXE_PATH="./sd1d"
MINIMUM_NUMBER_OF_REFINEMENTS = 3
MAXIMUM_NUMBER_OF_REFINEMENTS = 30
ERROR_TOLERANCE = 5.0e-4
QOI="Ne"
QOI_YLABEL=r'$N_e$'

# Determine which points are allowable, run simulations here and then accept
# must relevant points into campaign.
def refine_sampling_plan(number_of_refinements, campaign, analysis, sampler):

for i in range(number_of_refinements):
# compute the admissible indices
sampler.look_ahead(analysis.l_norm)

# run the ensemble
campaign.execute().collate(progress_bar = True)

# accept one of the multi indices of the new admissible set
data_frame = campaign.get_collation_result()
analysis.adapt_dimension(QOI, data_frame)

# Plot the current set of sample points. Here we assume four
# parameters in vary, powerflux, flux, frecycle and sheath_gamma
def plot_grid_2D(i, sample, analysis, filename="out.pdf"):

fig = plt.figure(figsize=[12, 4])
ax1 = fig.add_subplot(

121
)
ax2 = fig.add_subplot(

122
)
accepted_grid = sampler.generate_grid(analysis.l_norm)
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ax1.plot(accepted_grid[:, 0], accepted_grid[:, 1], "o")
ax1.set_xlabel('P:powerflux') ; ax1.set_ylabel('Ne:flux')
ax2.plot(accepted_grid[:, 2], accepted_grid[:, 3], "o")
ax2.set_xlabel('sd1d:frecycle') ; ax2.set_ylabel('sd1d:sheath_gamma')
ax1.set_title("iteration " + str(i))
plt.tight_layout()
plt.savefig(filename)
plt.close()

# Produce plot of output with uncertainty
def custom_moments_plot(results, filename, i, quantity, ylabel = None):

fig, ax = plt.subplots()
xvalues = np.arange(len(results.describe(quantity, "mean")))
ax.fill_between(

xvalues,
results.describe(quantity, "mean") - results.describe(quantity, "std"),
results.describe(quantity, "mean") + results.describe(quantity, "std"),
label="std",
alpha=0.2,

)
ax.plot(xvalues, results.describe(quantity, "mean"), label="mean")
ax.grid(True)
if ylabel is None: ylabel = quantity
ax.set_ylabel(ylabel)
ax.set_xlabel(r"$\rho$")
ax.set_title("iteration " + str(i))
ax.set_ylim(-0.5,2.5)
ax.legend()
fig.savefig(filename)
plt.close()

def make_error_vs_iterations_plot(error_vs_its):
plt.figure()
plt.plot(error_vs_its)
plt.xlabel("Iterations")
plt.ylabel("Summed error")
plt.tight_layout()
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plt.savefig("error_vs_iterations.png")
plt.close()

plt.figure()
plt.semilogy(error_vs_its)
plt.xlabel("Iterations")
plt.ylabel("Summed error")
plt.tight_layout()
plt.savefig("error_vs_iterations_log.png")
plt.close()

def make_samples_vs_iterations_plot(samples_vs_its):
plt.figure()
plt.plot(samples_vs_its)
plt.xlabel("Iterations")
plt.ylabel("Samples")
plt.tight_layout()
plt.savefig("samples_vs_iterations.png")
plt.close()

plt.figure()
plt.semilogy(samples_vs_its)
plt.xlabel("Iterations")
plt.ylabel("Samples")
plt.tight_layout()
plt.savefig("samples_vs_iterations_log.png")
plt.close()

if __name__ == "__main__":
encoder = boutvecma.BOUTEncoder(template_input="./BOUT.inp")
decoder = boutvecma.SimpleBOUTDecoder(variables=[QOI])
params = {

"P:powerflux": {"type": "float", "min": 1e7, "max": 5e7, "default": 2e7},
"Ne:flux": {"type": "float", "min": 2e23, "max": 1e24, "default": 5e23},
"sd1d:frecycle": {"type": "float", "min": 0.0, "max": 1.0, "default": 0.2},
"sd1d:sheath_gamma": {"type": "float", "min": 6.0, "max": 7.0, "default": 6.5},

}
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actions = uq.actions.local_execute(
encoder,
os.path.abspath(

EXE_PATH + " -d . -q -q -q solver:type=beuler" +
"input:error_on_unused_options=false " +
"solver:petsc:ksp_initial_guess_nonzero=yes " +
"solver:kspsetinitialguessnonzero=true solver:petsc:pc_type=ilu"

),
decoder,

)
campaign = uq.Campaign(name="adaptive_sc.", actions=actions, params=params)

vary = {
"P:powerflux": chaospy.Uniform(1e7, 5e7),
"Ne:flux": chaospy.Uniform(2e23, 1e24),
"sd1d:frecycle": chaospy.Uniform(0.0, 0.95),
"sd1d:sheath_gamma": chaospy.Uniform(6.0,7.0),

}

sampler = uq.sampling.SCSampler(
vary=vary,
polynomial_order=1,
quadrature_rule="C",
sparse=True,
growth=True,
midpoint_level1=True,
dimension_adaptive=True,

)
campaign.set_sampler(sampler)

print(f"Computing {sampler.n_samples} samples")

time_start = time.time()
campaign.execute().collate(progress_bar = True)

# Create an analysis class and run the analysis.
analysis = uq.analysis.SCAnalysis(sampler=sampler, qoi_cols=[QOI])
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campaign.apply_analysis(analysis)
plot_grid_2D(0, sampler, analysis, "grid0.png")

i = 0
sobols_error = 1e6
error_vs_its = [ np.nan]
samples_vs_its = [ 1 ]
while sobols_error > ERROR_TOLERANCE or i < MINIMUM_NUMBER_OF_REFINEMENTS:

print("Iteration "+str(i))
i += 1
refine_sampling_plan(1, campaign, analysis, sampler)
campaign.apply_analysis(analysis)
results = campaign.last_analysis
samples_vs_its.append(sampler.n_samples)

plot_grid_2D(i, sampler, analysis, "grid" + str(i) + ".png")
moment_plot_filename = os.path.join(

f"{campaign.campaign_dir}", "moments" + str(i) + ".png"
)
sobols_plot_filename = os.path.join(

f"{campaign.campaign_dir}", "sobols_first" + str(i) + ".png"
)
plt.figure()
results.plot_sobols_first(

QOI,
ylabel=r"Sobol indices at iteration " + str(i),
xlabel=r"$\rho$",
filename=sobols_plot_filename,

)
plt.ylim(-0.05, 1.05)
plt.savefig("sobols" + str(i) + ".png")
plt.close()

plt.figure()
custom_moments_plot(results, moment_plot_filename, i,

QOI, ylabel = QOI_YLABEL)
plt.close()
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# Prevent overwrite of old fig
plt.figure("stat_conv").clear()
analysis.plot_stat_convergence()
plt.savefig("stat_convergence.png")
plt.close()

sobols = analysis.get_pce_sobol_indices(QOI)[2]

if i > 1:
sobols_error = 0
count = 0
for j in sobols:

count += 1
sobols_error += np.mean(abs(sobols[j] - sobols_last[j]))

sobols_error = sobols_error / count
error_vs_its.append(sobols_error)
print("Iteration "+str(i) + " : Error " + str(sobols_error))

else:
# Not possible to compute error here so store Nan
error_vs_its.append(np.nan)
sobols_last = sobols

# Make plot of error vs iteration now to allow user
# to monitor progress of the job
make_error_vs_iterations_plot(error_vs_its)
make_samples_vs_iterations_plot(samples_vs_its)

if i > MAXIMUM_NUMBER_OF_REFINEMENTS:
break

time_end = time.time()

print(f"Finished, took {time_end - time_start}")

make_error_vs_iterations_plot(error_vs_its)
make_samples_vs_iterations_plot(samples_vs_its)
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sobols_plot_filename = os.path.join(
f"{campaign.campaign_dir}", "sobols_first_final.png"

)
moment_plot_filename = os.path.join(

f"{campaign.campaign_dir}", "moments_final.png"
)

results.plot_sobols_first(QOI, xlabel=r"$\rho$", filename=sobols_plot_filename)

custom_moments_plot(results, moment_plot_filename, 'final', QOI, ylabel = QOI_YLABEL)

analysis.merge_accepted_and_admissible()
df = campaign.get_collation_result()
results = analysis.analyse(df)

sobols_plot_filename = os.path.join(
f"{campaign.campaign_dir}", "sobols_first_final_all.png"

)
moment_plot_filename = os.path.join(

f"{campaign.campaign_dir}", "moments_final_all.png"
)

results.plot_sobols_first(QOI, xlabel=r"$\rho$", filename=sobols_plot_filename)
custom_moments_plot(results, moment_plot_filename, 'final (merged)',

QOI, ylabel = QOI_YLABEL)

print(f"Results are in:\n\t{moment_plot_filename}\n\t{sobols_plot_filename}")
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