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1. Introduction

Magnetic field lines beyond the last-closed-flux-surface begin and end on the vessel wall.

For these field lines, the periodic boundary condition along the field line employed in our

previous numerical treatment of parallel dynamics [1, 2, 3] must be modified. To that

end we summarise in this document the numerical algorithm we employ to solve parallel-

to-the-field dynamics for a standard, i.e., not moment-based, drift kinetic model with

wall boundary conditions. A brief summary of the 1+1D model and the wall boundary

conditions is given before describing code normalisation and implementation details. An

analytical solution is provided to serve as a code benchmark, and results are presented

to demonstrate that the code behaves as expected.

2. Model equations

A detailed derivation of the drift kinetic model we consider is provided in our May

2021 report [4]. For the Reader’s convenience we produce an overview of this drift

kinetic model, noting any additional simplifying assumptions. The system we consider

consists of a single ion species of charge e and mass mi, a single neutral species of

mass mn = mi, and an electron species modelled as having a Boltzmann response, all

immersed in a straight, uniform magnetic field in the z direction. We allow for charge

exchange collisions between ions and neutrals and ionization collisions involving ions,

electrons and neutrals, but do not account for intra-species collisions. Finally, we assume

that the plasma is homogeneous in the plane perpendicular to the magnetic field. With

these assumptions, our model system of equations is

∂fi
∂t

+ v‖
∂fi
∂z
− e

mi

∂φ

∂z

∂fi
∂v‖

= −Rin (nnfi − nifn) +Rionnefn, (1)

∂fn
∂t

+ v‖
∂fn
∂z

= −Rin (nifn − nnfi)−Rionnefn, (2)
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ns(z, t) =

∫ ∞
−∞

dv‖fs(z, v‖, t), (3)

and

ni = ne = Ne exp

(
eφ

Te

)
, (4)

with fs
.
=
∫
dϑdv⊥v⊥Fs the marginalized particle distribution function for species s,

v‖ and v⊥ the components of the particle velocity parallel and perpendicular to the

magnetic field, respectively, ϑ the gyro-angle, t the time, φ the electrostatic potential,

and Rin and Rion charge exchange and ionization collision frequency factors.

2.1. Wall BCs

Complicated dynamics can occur very close to the wall, leading to a hierarchy of narrow

layers with different dynamics. Derivation of the equations that describe these ‘sheaths’

is an ongoing research activity in the magnetic confinement fusion community. We avoid

such complications here by considering a plasma domain whose boundaries in z are the

entrances to the sheaths furthest from the wall.

Ions that exit the simulation domain are assumed to continue on to the wall, where

they recombine. As a result, no ions enter the domain from the walls, giving a zero

incoming BC for the ions:

Fi(z = 0, v‖ > 0, v⊥, t) = 0 = Fi(z = Lz, v‖ < 0, v⊥, t). (5)

Neutrals that leave the domain are assumed to hit the wall and thermalise at the

temperature of the wall, Tw. Ions that recombine at the wall also re-enter as neutrals.

The resulting boundary condition on the neutrals is

Fn(z = 0, v‖ > 0, v⊥, t) = Γ0FKw(v‖, v⊥), Fn(z = Lz, v‖ < 0, v⊥, t) = ΓLzFKw(v‖, v⊥),

(6)

where

FKw(v‖, v⊥)
.
=

3

π

(
mi

2Tw

)2
∣∣v‖∣∣√
v2‖ + v2⊥

exp

−mi

(
v2‖ + v2⊥

)
2Tw

 (7)

is the Knudsen cosine distribution, and

Γ0
.
=
∑
s=i,n

2π

∫ 0

−∞
dv‖

∫ ∞
0

dv⊥v⊥
∣∣v‖∣∣Fs(z = 0, v‖, v⊥, t) (8)

and

ΓLz

.
=
∑
s=i,n

2π

∫ ∞
0

dv‖

∫ ∞
0

dv⊥v⊥
∣∣v‖∣∣Fs(z = Lz, v‖, v⊥, t) (9)

are the combined fluxes of neutrals and ions towards the walls at z = 0 and z = Lz,

respectively.
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We next marginalise the above distribution functions by integrating over gyro-angle

and v⊥ to get

fi(z = 0, v‖ > 0, v⊥, t) = 0 = fi(z = Lz, v‖ < 0, v⊥, t) (10)

and

fn(z = 0, v‖ > 0, t) = Γ0fKw(v‖), fn(z = Lz, v‖ < 0, t) = ΓLzfKw(v‖), (11)

with

fKw(v‖)
.
= 2π

∫ ∞
0

dv⊥v⊥FKw(v‖, v⊥) = 3
√
π

(
mi

2Tw

)3/2 ∣∣v‖∣∣ erfc

(√
mi

2Tw

∣∣v‖∣∣) (12)

and erfc the complementary error function. The fluxes toward the wall at the domain

boundaries can be recast in terms of the marginalised distribution function:

Γ0 =
∑
s=i,n

∫ 0

−∞
dv‖
∣∣v‖∣∣ fs(z = 0, v‖, t) (13)

and

ΓLz =
∑
s=i,n

∫ ∞
0

dv‖
∣∣v‖∣∣ fs(z = Lz, v‖, t). (14)

2.2. Density evolution

If we consider the evolution of the line-averaged species densities, ns, we obtain

∂ns
∂t

=
1

Lz
(Γs(z = 0)− Γs(z = Lz))±Rionninn, (15)

with the + and - signs corresponding to ions and to neutrals, respectively. For the ions

Γi(0) =

∫ 0

−∞
dv‖v‖fi(z = 0, v‖) < 0, (16)

and

Γi(Lz) =

∫ ∞
0

dv‖v‖fi(z = Lz, v‖) > 0, (17)

where we have used the boundary conditions on fi given by expression (10).

For the neutrals

Γn(0) =

∫ 0

−∞
dv‖v‖fn(z = 0, v‖) + Γ0

∫ ∞
0

dv‖v‖fKw(v‖)

=

∫ 0

−∞
dv‖v‖fn(z = 0, v‖) + Γ0,

(18)

and

Γn(Lz) =

∫ ∞
0

dv‖v‖fn(z = Lz, v‖) + ΓLz

∫ 0

−∞
dv‖v‖fKw(v‖)

=

∫ ∞
0

dv‖v‖fn(z = Lz, v‖)− ΓLz ,

(19)
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where we have used the boundary conditions on fn given by expression (11) and the

fact that
∫∞
0
dv‖v‖fKw = −

∫ 0

−∞ dv‖v‖fKw = 1.

Combining the results for the ion and neutral densities and noting that the

ionization contributions to the ion and neutral densities cancel, we obtain a constraint

on the evolution of the total (species-summed), line-averaged density:

∂

∂t

∑
s=i,n

ns =
1

Lz

∑
s=i,n

(Γs(z = 0)− Γs(z = Lz))

=
1

Lz

(∑
s=i,n

∫ 0

−∞
v‖fs(z = 0, v‖) + Γ0 −

∑
s=i,n

∫ ∞
0

v‖fs(z = Lz, v‖) + ΓLz

)

=
1

Lz
(−Γ0 + Γ0 − ΓLz + ΓLz)

= 0.

(20)

This is a consequence of the assumed wall boundary condition, which dictates that any

particles leaving the domain re-enter as neutrals (and thus total density is conserved).

It can (and will) be used to test the numerical implementation of the wall boundary

condition.

2.3. Normalisation

We normalize Eqs. (1)-(4) by defining

f̃s
.
= fs

cs
√
π

Ne

, (21)

t̃
.
= t

cs
Lz
, (22)

z̃
.
=

z

Lz
, (23)

ṽ‖
.
=
v‖
cs
, (24)

ñs
.
=
ns
Ne

, (25)

φ̃
.
=
eφ

Te
, (26)

R̃in
.
= Rin

NeLz
cs

, (27)

and

R̃ion
.
= Rion

NeLz
cs

, (28)
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with cs
.
=
√

2Te/ms. In terms of these normalised quantities, Eqs (1)-(4) become

∂f̃i

∂t̃
+ ṽ‖

∂f̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂f̃i
∂ṽ‖

= −R̃in

(
ñnf̃i − ñif̃n

)
+ R̃ionñif̃n, (29)

∂f̃n

∂t̃
+ ṽ‖

∂f̃n
∂z̃

= −R̃in

(
ñif̃n − ñnf̃i

)
− R̃ionñif̃n, (30)

eφ̃ = ñi =
1√
π

∫ ∞
−∞

dṽ‖f̃i, (31)

and

ñn =
1√
π

∫ ∞
−∞

dṽ‖f̃n. (32)

The normalised forms for the wall boundary conditions are

f̃i
(
z̃ = 0, ṽ‖ > 0, t̃

)
= 0 = f̃i

(
z̃ = 1, ṽ‖ < 0, t̃

)
(33)

and

f̃n
(
z̃ = 0, ṽ‖ > 0, t̃

)
= Γ̃0(t̃)f̃Kw(ṽ‖), f̃n

(
z̃ = 1, ṽ‖ < 0, t̃

)
= Γ̃Lz(t̃)f̃Kw(ṽ‖), (34)

where

f̃Kw(ṽ‖) = c2nfKw(v‖) =
3
√
π

T̃
3/2
w

∣∣ṽ‖∣∣ erfc

( ∣∣ṽ‖∣∣√
T̃w

)
, (35)

Γ̃0(t̃) =
∑
s=i,n

∫ 0

−∞
dṽ‖
∣∣ṽ‖∣∣ f̃s(z̃ = 0, ṽ‖, t̃), (36)

and

Γ̃Lz(t̃) =
∑
s=i,n

∫ ∞
0

dṽ‖
∣∣ṽ‖∣∣ f̃s(z̃ = 1, ṽ‖, t̃), (37)

with T̃w
.
= Tw/Te.

3. Analytical solution

To derive an analytical solution for the electrostatic potential for our system, we neglect

charge exchange collisions and replace the ionization source term appearing in Eq. (1)

with a simplified source. In particular, we follow the approach of Ref. [5] and assume that

ionization occurs at a constant rate and gives birth to ions with zero parallel velocity.

The resulting ion kinetic equation is

∂fi
∂t

+ v‖
∂fi
∂z
− e

mi

∂φ

∂z

∂fi
∂v‖

= RionN
2
e δ(v‖), (38)

with δ(v‖) the Dirac delta distribution. With these assumptions, the ion kinetic equation

decouples from the kinetic equation for the neutrals and makes the problem tractable.
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Ions that are formed at a given spatial location z0 are accelerated by the parallel

electric field setup by the wall BC toward the walls. The parallel speed of this ion after

travelling to a location z closer to the wall, v‖(z) is obtained via conservation of energy:

miv‖(z)2

2
= e (φ(z0)− φ(z)) . (39)

In steady-state, the flux of ions with speeds in the range v‖ to v‖ + dv‖ through the

location z must equal the rate at which these ions are generated between z0 and z0+dz0:

v‖(z)fi(v‖(z))dv‖ = N2
eRiondz0. (40)

Combining Eqs. (39) and (40) and imposing quasineutrality gives

Ne exp

(
eφ(z)

Te

)
=

∫
dv‖fi(z, v‖) =

∫ Lz/2

z

√
mi

2e

N2
eRion√

φ(z0)− φ(z)
dz0

=

∫ φ(Lz/2)

φ(z)

√
mi

2e

N2
eRion√

φ(z0)− φ(z)

dz0
dφ(z0)

dφ(z0),

(41)

which is an implicit equation for φ(z). Setting our gauge so that φ(Lz/2) = 0 and

defining x
.
= −eφ(z0)/Te and y

.
= −eφ(z)/Te, we have

Ne exp (−y) =

∫ y

0

h(x)√
y − x

dx, (42)

where

h(x)
.
=
N2
eRion

ci

dz0
dx

. (43)

The density integral appearing in Eq. (42) is of the form of an Abel transform [6], which

can be inverted to yield

h(x) =
Ne

π

d

dx

∫ x

0

dy
exp (−y)√
x− y

(44)

Equating (43) and (44) yields an expression for dz/dx:

dz

dx
=

ci
NeRionπ

d

dx

∫ x

0

dy
exp (−y)√
x− y

. (45)

Integrating with respect to x yields an implicit expression for φ(z):

z − Lz
2

= ± ci
πRionNe

∫ x

0

dy
exp (−y)√
x− y

= ± 2ci
πRionNe

D

√−eφ(z)

Te

 ,

(46)

with D(a) = exp(−a2)
∫ a
0

exp(b2)db the Dawson function, the + sign corresponds to

z > Lz/2 and the − sign corresponds to z < Lz/2.



Numerical study of drift kinetic model with wall BCs 7

4. Numerical implementation

A detailed description of the time and space discretisation employed in the code is

given in [2], and the code itself is publicly available at https://github.com/mabarnes/

moment_kinetics. Here we focus on the numerical treatment of the wall boundary

conditions encapsulated in Eqs. (10)-(14).

Note that the boundary condition for the neutrals at z = 0 for v‖ > 0 depends

on the neutral distribution function at z = 0 for v‖ < 0 through Γ0. This distribution

function requires specification of the neutral boundary condition for z = Lz and v‖ < 0,

which itself depends on the distribution function at z = Lz for v‖ > 0. Due to the

explicit time advance employed in the code, this inter-dependence is straightforward to

accommodate.

The procedure employed is to first solve for fs(z, v‖, tm+1) at all (z, v‖) locations

except for (z = 0, v‖ > 0) and (z = Lz, v‖ < 0). As the time advance is explicit, this

can be achieved given {fs(z, v‖, tm)}s=i,n. The solutions for fs(z = 0, v‖ < 0, tm+1) and

fs(z = Lz, v‖ > 0, tm+1) are then used to compute Γ0(tm+1) and ΓLz(tm+1). These fluxes

can then be used in Eq. (11) to compute the boundary values fn(z = 0, v‖ > 0, tm+1)

and fn(z = Lz, v‖ < 0, tm+1).

It is worth noting that in order to ensure the conservation of the field-line-averaged,

species-summed density (as shown in Sec. 2.2), care must be taken to ensure that the

properties
∫∞
0
dv‖v‖fKw = −

∫ 0

−∞ dv‖v‖fKw = 1 are exactly satisfied by the numerics.

This is achieved in our case by first obtaining the numerical approximation to these

integrals and then defining a modified fKw that is normalised by this result.

5. Numerical results

We first compare our simulation results to the analytical solution presented in Sec. 3.

The ion equation being solved in the code is

∂f̃i

∂t̃
+ ṽ‖

∂f̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂f̃i
∂ṽ‖

= R̃ion
ci
vδ

exp

(
−ṽ2‖

c2i
v2δ

)
, (47)

where we have approximated δ(v‖) ≈ (1/
√
πvδ) exp(−v2‖/v2δ ) with the proviso that

vδ � ci. In terms of normalised quantities, the solution (46) is

z̃ =
1

2
± 2

πR̃ion

D

(√
−φ̃
)
. (48)

For our benchmark simulation, we use a Chebyshev pseudo-spectral method in both

z and v‖. The z grid consists of two z elements, each containing nine grid points, and

the v‖ grid consists of ten elements, each containing seventeen grid points. The wall

temperature Tw is taken to be equal to Te, the source width parameter is vδ = 0.1ci,

R̃ion = 0.688 and the ions are initialised to a Maxwellian velocity distribution with initial

temperature Te and an initial density with Gaussian distribution in z. The resulting

https://github.com/mabarnes/moment_kinetics
https://github.com/mabarnes/moment_kinetics
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Figure 1. The steady-state electrostatic potential profile obtained by solving Eq. (47)

(blue line) and by using the analytical solution of Eq. (46) (red line).

steady-state solution for φ̃(z̃), along with a comparison to the analytical solution (48)

is given in Fig. 1.

Figure 2. Time trace of the species-summed, line-averaged density, normalised by its

initial value.

We next consider the original model system of equations given in Sec. 2.3. We

take the normalised collision frequency factors to be R̃ion = R̃in = 2 and otherwise

use the same numerical parameters and initial conditions as we did for the analytical

benchmark, except that we use eight z elements rather than two. A cross-section of the

numerical results are presented in Figures 2 - 4. In Fig. 2 we consider the evolution of

the species-summed, line-averaged density. As shown in Sec. 3, this density should be

conserved, and this is indeed the case in the simulation. The steady-state electrostatic

potential and particle distribution functions for ions and neutrals are given in Figs. 3

and 4. As might be expected, the loss of electrons to the wall gives rise to an electric
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field that pulls ions out of the simulation domain. These ions are replaced by neutrals

traveling back into the simulation domain, leading to the regions of high neutral density

near the walls (with neutral velocities away from the walls) visible in Fig. 4. The phase

space structure in the ion distribution function is likely a result of the ionisation of

neutrals in the high-density regions near the walls, followed by an acceleration of these

ions towards the nearest wall. This reduces their initial speed away from the walls and

eventually changes their direction of motion and accelerates them into the wall near

which they were generated. Conversely, ions generated sufficiently far from the nearest

wall can cross the symmetry point in z and are accelerated towards the wall furthest

from where they were generated.

As an aside, we note that the kinetic Bohm criterion, which for the case of

Boltzmann electrons can be written [5]∫
dv‖

c2i
v2‖
fi(v‖) ≤ 2ni, (49)

is satisfied for this simulation.

Figure 3. Electrostatic potential profile in steady state.

6. Future plans

Now that we have a working implementation of the standard drift kinetic equation with

wall boundary conditions, we will move on to implementation of the wall boundary

conditions for the moment-kinetic system of equations.
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Figure 4. Phase space portraits of the steady-state, normalised ion (left) and neutral

(right) particle distribution functions, f̃i and f̃n.
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