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1. Introduction

Calculation of the electrostatic potential is a challenge within the drift kinetic

approximation. This is because, without further manipulation of the drift kinetic system

of equations, there is no explicit equation to be solved for the potential: Instead, it

appears as a parameter in the drift kinetic equations for both electrons and ions, which

are then related to one another via quasineutrality. In report 2047357-TN-07-01 [1],

we showed how the electrostatic potential could be calculated self-consistently for a 2D

drift kinetic model with a helical magnetic field and with wall boundary conditions

appropriate for open field lines. Considerable care had to be taken to obtain an

expression for the electrostatic potential. In particular, a set of fluid equations had

to be formulated for the electron dynamics, with closure via coupling to the kinetic

equation for a modified electron particle distribution function. In this moment-kinetic

formulation, the parallel electron momentum equation becomes the equation for the

electrostatic potential, with an additional complication that the boundary value for the

potential must be determined implicitly as it enters in the limits of integration for the

parallel current at the plasma boundary.

Thus far we have mostly side-stepped the issue of calculating the potential in

our ProxyApps by using a Boltzmann response for the electron dynamics so that no

electron equations need to be solved at all. In report 2070839-TN-04, we made a start

on addressing this limitation by implementing electron fluid equations for the 1+1D

system described in report 2047357-TN-05-01 [2], with a Braginskii fluid closure for the

electrons [3]. In this report we describe our numerical implementation of a moment-

kinetic closure for the electron fluid equations.
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2 DRIFT KINETIC SYSTEM OF EQUATIONS 2

To begin we will provide a brief overview of the physical system we aim to model,

and provide the system of evolution equations for the various plasma species. At present,

we are unable to obtain steady-state solutions for the electron distribution function: We

provide illustrative examples of the difficulties we have encountered and discuss possible

causes of and solutions to the problems observed.

2. Drift kinetic system of equations

We consider a plasma consisting of a single ion species of charge e and mass mi, a single

neutral species with mass mn = mi, and electrons with charge −e and mass me. The

plasma is immersed in a straight, homogeneous magnetic field of the form

B = Bẑ, (1)

where z is the field-aligned coordinate, and ẑ is the unit vector in the direction of ∇z.

We assume that the plasma is electrostatic and that the magnetic field terminates at

each end on a conducting wall. The spatial domain we consider is z ∈ [z−, z+], with

z+ − z− = Lz. The boundaries of the domain in z are assumed to be the entrances to

the magnetic pre-sheath.

We restrict our attention to parallel dynamics only and define the marginalised

distribution function

fs(z, v∥, t)
.
=

〈
f̂s(z, v∥, v⊥, ϑ, t)

〉
.
= 2π

∫ ∞

0

dv⊥v⊥f̂s, (2)

with f̂s the particle distribution function for species s, t the time, v∥ the parallel

component of the particle velocity v, and the angle brackets denoting integration over

gyro-angle ϑ and the perpendicular component of the particle velocity v⊥. To facilitate

this one-dimensional treatment of the velocity space, we neglect collisions between

charged particles and elastic electron-neutral collisions, as the associated operators

would introduce non-trivial dependence on v⊥ into the electron drift kinetic equation.

As described in, e.g., Report 2047537-TN-05-1 [2], the drift kinetic equations

describing the evolution of the marginalised particle distribution fs for the ions, electrons

and neutrals are

∂fi
∂t

+ v∥
∂fi
∂z

− e

mi

∂ϕ

∂z

∂fi
∂v∥

= −Rin (nnfi − nifn) +Rionnefn + Si (3)

∂fe
∂t

+ v∥
∂fe
∂z

+
e

me

∂ϕ

∂z

∂fe
∂v∥

= Ce,ion[fe, fn] + Se, (4)

and

∂fn
∂t

+ v∥
∂fn
∂z

= Rin (nnfi − nifn)−Rionnefn + Sn, (5)

where ϕ is the electrostatic potential, ns =
∫
dv∥fs is the particle density, Ss =

〈
Ŝs

〉
is a

marginalised source accounting for, e.g., heating and fueling, Rin and Rion are constants
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that determine the ion-neutral charge exchange and ionisation rates, respectively, and

Ce,ion is an operator accounting for the effect on electrons of ionisation collisions. The

distribution functions fi and fe are related to one another via quasineutrality:

ni =

∫ ∞

−∞
dv∥fi =

∫ ∞

−∞
dv∥fe = ne. (6)

One of the main challenges in solving this system of equations is that there is no

explicit equation for the electrostatic potential. If one were to try, e.g., to solve the

ion and electron drift kinetic equations (3)-(4) using an explicit time advance algorithm

with ϕ at the previous time level as an input, then in general the solutions for fi and fe
so obtained would not satisfy Eq. (6). This procedure could be iterated, with ϕ varied

until quasineutrality were satisfied, or one could develop an approach that guarantees

satisfaction of quasineutrality from the outset. We have presented two such approaches

in previous reports: The first assumes a Boltzmann electron response and thus avoids

entirely the need to solve for the electron dynamics, while the second uses a novel

moment-kinetic approach in which the electron parallel momentum equation can be

used to solve for the potential explicitly while enforcing quasineutrality. In this report

we describe the numerical implementation and testing of the moment-kinetic treatment

for electrons.

We will assume in this report that fi and fn can be obtained, provided ϕ, either via

direct solution of the above drift kinetic equations or via the moment-kinetic approach

derived in report 2047357-TN-05-01 [2]. Our focus here will be on describing the

numerical treatment of the moment-kinetic electron equations and their relationship

to the calculation of the electrostatic potential.

3. Electron fluid equations

Electron fluid equations are obtained by taking the appropriate velocity moments of the

electron drift kinetic equation (4) and expanding in the small parameter me/mi. Details

can be found in [2]. The electron continuity equation is‡

∂ne

∂t
+

∂neue

∂z
= nennRion +

∫ ∞

−∞
dv∥Se, (7)

where the parallel flow of species s is given by

us
.
=

1

ns

∫ ∞

−∞
dv∥v∥fs. (8)

The charge conservation equation, obtained by combining the electron and ion continuity

equations and enforcing quasineutrality, is

∂

∂z
(ne (ui − ue)) = 0. (9)

‡ Here we have corrected a typo in the sign of the electron ionisation particle source appearing in [2].
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Note that we have assumed
∫
d3v (Si − Se) is small to obtain the above result. The

electron parallel momentum equation is (after using me/mi ≪ 1)

−∂p∥,e
∂z

+ ene
∂ϕ

∂z
= 0, (10)

where p∥,e is the electron parallel pressure,

p∥,e
.
=

∫
dv∥ meŵ

2
∥fe, (11)

and ŵ∥
.
= v∥ − ue ≈ v∥ is the parallel component of the electron peculiar velocity. The

time derivative term and the term proportional to Se have been neglected in (10) as small

in me/mi because we order ∂/∂t ∼ vth,i/Lz and Se ∼ fevth,i/Lz, with vth,i
.
=

√
2Ti/mi

and Ts
.
= p∥,s/ns.

Finally, the electron parallel energy equation is

∂p∥,e
∂t

+
∂q∥,e
∂z

+ ue

∂p∥,e
∂z

+ 3p∥,e
∂ue

∂z
= nnRion

(
p∥,e − neEion

)
+ Sp,e, (12)

where q∥,e is the electron parallel heat flux,

q∥,e
.
=

∫
dŵ∥msŵ

3
∥fe, (13)

Sp,e =
∫
dv∥meŵ

2
∥Se is the electron heat source, and we have used the simple model∫

dv∥meŵ
2
∥Ce,ion[fe, fn]

.
= nnRion

(
p∥,e − neEion

)
(14)

for the ionisation source, with Eion the ionisation energy cost (including radiation from

excited states).

The set of fluid equations (9), (10), (12) and (13) require some form of closure to

calculate the parallel heat flux. We use a 1+1D version of the modified electron kinetic

equation derived in [2] as our closure:

ż
∂ge
∂z

+ ẇ∥
∂ge
∂w∥

= G, (15)

where

w∥
.
=

v∥ − ue

vth,e
≈ v∥

vth,e
, (16)

is the normalised, parallel component of the electron peculiar velocity,

ge
.
= fe

vth,e
ne

(17)

is a modified particle distribution function for the electrons,

ż = w∥vth,e, (18)
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ẇ∥ =
1

menevth,e

∂p∥,e
∂z

+
w∥
2p∥,e

∂q∥,e
∂z

− w2
∥
∂vth,e
∂z

, (19)

and

G =

(
− 1

2p∥,e

∂q∥,e
∂z

− w∥vth,e

(
∂ lnne

∂z
− ∂ ln vth,e

∂z

))
ge. (20)

With the definition (17), the modified distribution function ge satisfies the following

integral constraints: ∫
dw∥

(
1, w∥, w

2
∥
)
ge =

(
1, 0,

1

2

)
. (21)

The set of equations (3), (5), (6), (9), (10), (12), and (15) constitute a closed set

of equations for fi, fn, ϕ, ne, ue, p∥,e, and ge, provided an appropriate set of boundary

conditions. We turn our attention to these boundary conditions next.

4. Boundary conditions

To ensure uniqueness of our solution, we must specify boundary conditions in z on the

ion and neutral particle distributions, the modified electron particle distribution (17),

and on the electron parallel flow and pressure. For the ions, we assume that all ions

that reach the end of the domain escape to the wall, where they recombine. Thus, no

ions return; i.e.,

fi(z+, v∥ < 0, t) = 0, (22)

and

fi(z−, v∥ > 0, t) = 0. (23)

Neutrals that leave the domain are assumed to hit the wall and thermalise at the

temperature of the wall, Tw. Ions that recombine at the wall also re-enter as neutrals.

The resulting boundary condition on the neutrals is

fn(z−, v∥ > 0, t) = Γ−fKw(v∥), (24)

and

fn(z+, v∥ < 0, t) = Γ+fKw(v∥), (25)

where

fKw(v∥)
.
= 3

√
π

(
mi

2Tw

)3/2 ∣∣v∥∣∣ erfc(√ mi

2Tw

∣∣v∥∣∣) (26)

is the (marginalised) Knudsen cosine distribution [4], and

Γ−
.
=

∑
s=i,n

∫ 0

−∞
dv∥

∣∣v∥∣∣ fs(z−, v∥, t) (27)

and

Γ+
.
=

∑
s=i,n

∫ ∞

0

dv∥
∣∣v∥∣∣ fs(z+, v∥, t) (28)
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are the combined fluxes of neutrals and ions towards the walls at z = z− and z = z+,

respectively.

For electrons that leave the domain, their parallel energy E∥ = mev
2
∥/2 − eϕ

is conserved. As a result, electrons with parallel speeds greater than vc,+
.
=√

2e(ϕ(z+, t)− ϕw)/me at z+ reach the wall, with ϕw the potential of the wall beyond

z = z+; electrons with speeds less than vc,+ are repelled back into the domain:

ge(z+, v∥ < 0, t) =

{
ge(z+,−v∥, t), |v∥| < vc,+

0, |v∥| > vc,+.
(29)

The boundary condition at z = z− is similar:

ge(z−, v∥ > 0, t) =

{
ge(z−,−v∥, t), |v∥| < vc,−

0, |v∥| > vc,−,
(30)

where vc,−
.
=

√
2eϕ(z−, t)/me, and we have chosen ϕ to be zero at the wall beyond z−.

Note that while we have formulated the boundary conditions in terms of v∥, the fact

that ue ∼ ui ≪ vth,e implies that v∥ ≈ w∥vth,e.

Integrating the charge conservation equation (9) and using (29)-(30) gives a

constraint on the parallel current at the domain boundaries:

0 = J∥(z+, t)− J∥(z−, t) =

∫ ∞

0

dv∥v∥fi(z+, v∥, t)−
∫ ∞

vc,+

dv∥v∥fe(z+, v∥, t)

−
∫ 0

−∞
dv∥v∥fi(z−, v∥, t) +

∫ −vc,−

−∞
dv∥v∥fe(z−, v∥, t).

(31)

Note that there is no contribution to the electron current from particles with |v∥| < vc,+
at z = z+ nor from particles with |v∥| < vc,− at z = z−. This is because the outgoing

current of electrons with these speeds is cancelled by the return current of these electrons.

As proposed in [2], we simplify our system by assuming that the parallel current

into the wall vanishes individually at each boundary; i.e., J∥(z+, t) = J∥(z−, t) =

0. Combined with quasineutrality, this imposes ue(z±, t) = ui(z±, t). The charge

conservation equation (9) can then be integrated to find ue = ui for all z.

Our boundary condition on p∥,e is chosen based on the physics we intend to model;

for the cases considered in this report, we either set Te(z±, t) = Ti(z±, t) (when νei is

large) or we assume that the electron temperature is constant throughout the sheath

so that Te(z±, t) = Tw (when we wish to force a Boltzmann electron response), with Tw

the temperature of the wall.

5. Normalisations

The normalisations used in the code are given in Table 1.

The normalised drift kinetic equations for ions and neutrals are

∂f̃i

∂t̃
+ ṽ∥

∂f̃i
∂z̃

− 1

2

∂ϕ̃

∂z̃

∂f̃i
∂ṽ∥

= −R̃in

(
ñnf̃i − ñif̃n

)
+ R̃ionñef̃n + S̃i (32)
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and
∂f̃n

∂t̃
+ ṽ∥

∂f̃n
∂z̃

= R̃in

(
ñnf̃i − ñif̃n

)
− R̃ionñef̃n + S̃n. (33)

The normalised electron fluid equations are

ñe = ñi, (34)

∂

∂z̃
(ñe (ũi − ũe)) = 0, (35)

−∂p̃∥,e
∂z̃

+
ñe

2

∂ϕ̃

∂z̃
= 0, (36)

and
∂p̃∥,e
∂t̃

+
∂q̃∥,e
∂z̃

+ ũe

∂p̃∥,e
∂z̃

+ 3p̃∥,e
∂ũe

∂z̃
= ñnR̃ion

(
p̃∥,e − ñeẼion

)
+ S̃p,e, (37)

where

S̃p,e
.
=

Lref

cref

1

2nrefTref

Sp,e. (38)

The zero current boundary condition at the wall, combined with quasineutrality (34)

and charge conservation (35), imposes ũe = ũi. Note that with these normalisations the

electron thermal speed and parallel pressure are related via ṽth,e =
√
2(mi/me)p̃∥,e/ñe.

Additionally, the electrostatic potential is ϕ̃(z±, t) = T̃eṽ
2
c,± and T̃e = (me/mi)ṽ

2
th,e.

Finally, the normalised parallel heat flux is obtained from

q̃∥,e = 2p̃∥,eṽth,e

∫ ∞

−∞
dw∥w

3
∥ge, (39)

with the modified distribution function ge satisfying

w∥ṽth,e
∂ge
∂z̃

+

(
ṽth,e
2p̃∥,e

∂p̃∥,e
∂z̃

+
w∥
2p̃∥,e

∂q̃∥,e
∂z̃

− w2
∥
∂ṽth,e
∂z̃

)
∂ge
∂w∥

= G̃, (40)

and

G̃
.
=

Lref

cref
G =

(
− 1

2p̃∥,e

∂q̃∥,e
∂z̃

− w∥ṽth,e

(
∂ ln ñe

∂z̃
− ∂ ln ṽth,e

∂z̃

))
ge. (41)

6. Numerical approach

A detailed description of the space and time discretisations employed in the code can

be found in report 2047357-TN-14 [5]. Briefly, we employ an explicit time advance

algorithm (a strong-stability-preserving Runge-Kutta variant) to evolve the ion and

neutral particle distribution functions. A Chebyshev spectral element scheme is used

for the spatial discretisation. An iterative method is used to solve the electron energy

equation, coupled to the electron kinetic equation. Solution of the coupled equations

proceeds schematically in the following way:
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normalised

variable definition

t̃ t(cref/Lref)

z̃ z/Lref

ṽ∥ v∥/cs

w̃ w/cs

ñs ns/nref

ũs us/cref

p̃∥,s p∥,s/(2nrefTref)

q̃∥,e q∥,s/(2nrefTrefcref)

T̃s Ts/Tref

ṽth,s vth,s/cref

ϕ̃ eϕ/Tref

Ẽz eLrefEz/Tref

R̃sn Rsn(nrefLref/cref)

R̃ion Rion(nrefLref/cref)

Ẽion Eion/(2Tref)

ν̃ei νei(Lref/cref)

f̃s fs(csπ
1/2/nref)

F̃∥ F∥(Lref/2nrefTref)

S̃s Ss(Lrefπ
1/2/nref)(cs/cref)

m̃e me/mi

ṽc,± vc,±/vth,e

reference

quantity definition

Lref = Lz ref. length

Tref ref. temperature

nref ref. density

cref
√
2Tref/mi

mi ion mass

Table 1. Definitions for normalised and reference quantities used in the report. Note

that cs = cref
√
mi/ms.

• Solve the ion (32) and neutral (33) drift kinetic equations for fi and fn within a

Runge-Kutta stage, provided the parallel electric field E∥ at the previous time step,

and subject to the appropriate boundary conditions (22)-(25).

• With fi and fn updated, calculate the ion density and parallel flow, and set ne = ni

and ue = ui at the new Runge-Kutta stage.

• Iteratively solve the coupled equations (37)-(41) for the updated electron

distribution ge and the corresponding heat flux q∥,e and parallel pressure p∥,e. The

boundary values for the potential ϕ will be determined such that the moment

constraints on ge are satisfied at the boundaries.
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• Solve the electron parallel momentum equation (36) for the parallel electric field

E∥.

• Repeat.

There are various options for solving the electron kinetic equation (40). We

have tried three different possibilities: an iterative method, a shooting method, and

a relaxation method. Thus far, none of the methods we have attempted have resulted

in a steady-state solution for the electron distribution function. As we have focused

primarily on the relaxation method, we describe it along with the numerical difficulties

we have encountered.

6.1. Relaxation method

The relaxation method involves adding an artificial time derivative to the electron kinetic

equation and evolving it in time until a steady-state solution is obtained. This has two

clear advantages: many of the existing techniques for solving the ion kinetic equation

can be re-used, and there is no need for repeated construction and decomposition of

a large matrix operator as may be the case for an iterative method. The modified,

time-dependent electron kinetic equation to be solved is

∂ge

∂t̃
+ w∥ṽth,e

∂ge
∂z̃

+

(
ṽth,e
2p̃∥,e

∂p̃∥,e
∂z̃

+
w∥
2p̃∥,e

∂q̃∥,e
∂z̃

− w2
∥
∂ṽth,e
∂z̃

)
∂ge
∂w∥

= G̃. (42)

This equation is currently solved using an explicit (forward Euler) time advance method,

with options to treat the derivatives using either a two-point, upwinded finite difference

scheme or the same Chebyshev spectral element scheme employed for the ion and neutral

kinetic equations. There is the option to evolve the electron kinetic equation with a fixed

p∥,e (obtained via explicit-in-time solution of the electron energy equation) or to evolve

the energy equation for p∥,e in tandem with the kinetic equation.

In the rest of this section, we will discuss some other notable details of the numerical

implementation, including treatment of the initial and boundary conditions. We will

then describe the current state of the simulation results in the final section.

6.2. Initial condition for ge

As we seek a solution to the electron kinetic equation that is time-independent (for given

values of the ion density and parallel flow), the initial conditions on ge and p∥,e are in

principle unimportant. However, choosing an initial condition for ge with discontinuities

or other unsavoury behaviour could potentially lead to numerical instabilities or to ge
going negative over part of the phase space. We have attempted to avoid such issues by

choosing a distribution function that smoothly varies from a Maxwellian distribution of

velocities at the centre of the domain in z to a Maxwellian with a cutoff velocity at the
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walls. The particular form we use is

ge(z, w∥, t = 0) = e−w2
∥

(
1− e−b(z−z−)2 tanh

(
a
(
w∥ − wc,−

)))
×
(
1− e−b(z−z+)2 tanh

(
−a

(
w∥ − wc,+

)))
,

(43)

where wc,± = (vc,± − ue(z±))/vth,e(z±) and a and b are user-specified parameters

(typically chosen to be 10 and 100, respectively). We then normalise ge by its zeroth

velocity moment. A visual representation of this distribution function is provided in

Fig. 1 for a case with wc,± = ∓1.

−0.4 −0.2 0 0.2 0.4

z

−4

−3

−2

−1

0

1

2

3

4

w
∥

0

0.2

0.4

0.6

0.8

1

Figure 1. A sample initial condition on ge, for which wc,± = ∓1.

6.3. Enforcing the wall BC

We need to simultaneously ensure that the wall boundary conditions and the integral

constraints on g are satisfied. Here’s how we do this: First, we interpolate from our w∥
grid to one which is symmetric about v∥ = 0. In practice, we choose to use the same

Gauss-Chebyshev-Lobatto grid in v∥ that is used in w∥. Next construct the distribution

function, g
(0)
e that is symmetric about v∥ = 0 via

g(0)e (z±, v∥, t) =

{
ĝe(z±,±v∥, t), v∥ > 0

ĝe(z±,∓v∥, t), v∥ < 0,
(44)
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where ĝe is the electron distribution function from the previous time step (or iteration,

depending on the algorithm used). Then, interpolate back onto the original w∥ grid.

Next, choose the cutoff speeds vc,± – and corresponding electrostatic potentials ϕ(z±, t)

– to ensure that the moment constraint
∫
dw∥w∥g

(1)
e = 0 is satisfied, where we have

denoted the distribution function g
(0)
e with these speed cutoffs as g

(1)
e . Finally, we

ensure satisfaction of the remaining moment constraints by defining our final distribution

function ge as

ge(z±, w∥, t) =
(
A± +B±v

2
∥ exp

(
−av2∥

)
+ C±v

4
∥ exp

(
−bv2∥

))
g(1)e (z±, w∥, t), (45)

where A±, B± and C± are constants that will be fixed by demanding that the moment

constraints on ge be satisfied. The form of the velocity-dependent pre-factor is arbitrary,

aside from the fact that it should be even in v∥ so that the wall boundary condition

continues to be satisfied. We have chosen the above form for the velocity-dependence

because it is smooth and differentiable (unlike, e.g., terms involving |v∥|) and, with

appropriate choices for a and b, can maintain positivity of ge; i.e., in the absence of the

Gaussian weighting factors, we found that the modified distribution would be slightly

negative at larger w∥. In practice, we use a = 0.1 and b = 0.2. By imposing the moment

constraints on ge, the constants are found to be

A± =
1

G00,±

(
1 +

(
G21,±G40,±

G41,±
−G20,±

)
B±

)
, (46)

B± =

(
1

2
− G02,±

G00,±

)(
G22,± − G21,±G42,±

G41,±
+

G02,±
G00,±

(
G21,±G40,±

G41,±
−G20,±

))−1

, (47)

and

C± = −B±
G21,±
G41,±

, (48)

with

Gjk,± =

∫
dw∥v

j
∥w

k
∥g

(1)
e (z±, w∥, t). (49)

With these choices, one can verify that∫
dw∥

(
1, w∥, w

2
∥
)
ge(z±, w∥, t) =

(
1, 0,

1

2

)
, (50)

as required. An example of this process is illustrated in Fig. 2.

7. Current status

We have tried solving this equation using an explicit (forward Euler) time advance,

using both the Chebyshev spectral element scheme employed successfully for the ion

and neutral kinetic equations and a two-point, upwind finite difference scheme. We

have also tried solving the equation with a fixed p∥,e obtained via explicit advance of

the electron energy equation and by evolving the energy equation in tandem with the
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Figure 2. Illustration of the process for ensuring that ge satisfies both the wall

boundary conditions and the moment constraints. Shown in red is the initial

distribution at z−, with the symmetrised distribution in blue, inclusion of the cutoff

in purple and the final distribution satisfying all of the constraints in black.

electron kinetic equation. In all cases, we have been unable to find a steady-state solution

for ge at the initial ion-time-scale step. Indicative data showing how the simulations

evolve is given in Fig. 3. Generally, we find that the time step required to satisfy the

CFL condition for the electron kinetic equation becomes prohibitively small, and this

is accompanied by the development of sharp changes in the parallel heat flux at the

boundaries in z, followed by sharp changes of the parallel pressure at the boundaries.

These oscillations then spread into the rest of the z domain. The distribution function

at the boundaries also develop grid-scale oscillations in w∥ that originate near v∥ = 0.

Artificial dissipation terms in the form of diffusion in w∥ and z have been implemented

in the electron kinetic equation, but they do not seem to eliminate these sharp features.

There are numerous possibilities for why we have been unable to obtain a steady-

state solution for ge. We provide a non-exhaustive list here:

• There is a bug in the code. We have tried to minimise the likelihood of this by

performing three main tests. First, we artificially set the advection speeds in z and

w∥ to be independent of z and w∥ so that we could solve analytically for ge (and

this test passed). Second, we verified that the time-evolved solution to the electron
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Figure 3. Snapshots showing the evolution of the electron parallel heat flux (top left),

pressure (top right), thermal speed (bottom right) and modified distribution function.

The three fluid quantities are plotted as a function of location along the field line, z at

the same five time slices. The pressure and thermal speed increase in magnitude and

develop strong gradients near the boundaries in z before ringing behaviour appears at

the boundaries. The modified distribution function ge at the right boundary in z is

shown as a function of w∥. The first three time slices are the same as for the fluid

quantities, and one can see ge develop a dip at w∥ = 0 that is the consequence of

forcing a symmetric distribution about v∥ = 0. The final time slice at which ge is

plotted is earlier than the corresponding slices for the fluid quantities: This is because

ge has already developed grid-scale oscillations around w∥ = 0 that quickly grow in

amplitude as time continues.

kinetic equation satisfies the required moment constraints to within the accuracy

of the numerical scheme. Third, we verified that with the appropriate source, a

Maxwellian manufactured solution satisfied the steady-state kinetic equation with

a residual that decreased with increasing resolution. However, the manufactured

solution could not be obtained when initialising with a ge different from the expected

solution.

• Related to the first item, it may be that steady-state solutions for ge with the

specified ion plasma profiles are unstable.

• Another possibility is that the use of fixed profiles for the ion density and parallel
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flow prohibit steady-state solutions (or maybe just stable solutions) of the electron

kinetic equation with the specified wall boundary conditions. One possible solution

for this would be to evolve the ion quantities at the same time as the electron ones,

though this would be numerically costly.

• The initial condition on the electron parallel pressure may not be conducive to

finding a steady-state ge, and obtaining such a solution via coupled evolution of

p∥,e may simply be prohibitively expensive.

• The numerical approach taken to ensure satisfaction of the wall boundary conditions

and the moment constraints may be problematic. Fig. 3 suggests this could be the

case. Modifications could be made to the procedure described in Section 6.3 to try

to improve the robustness of the boundary condition.

As the numerical issues appear to originate at the boundaries, it seems like the

natural place to probe next to overcome the numerical difficulties. Ultimately, we should

identify the source of the oscillations in the boundary distribution, but an intermediate

solution may be to simply smooth the boundary distribution every time step via, e.g.,

filtering out high frequency components in w∥.
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