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1 Introduction

Tokamak reactors aim to use confined plasma to create energy by nuclear fusion [57]. Due to the complex
combination of interactions at multiple length-scales, flow instabilities can arise that cause reduced per-
formance and damage to the reactor’s walls [41, 48]. The interplay between multiple interacting design
and operating parameters creates a difficult optimisation problem to maximise power output of future
tokamak reactors. These parameters are also likely to have some degree of uncertainty, which will need to
be quantified by future users of software in the NEPTUNE codebase. Additionally, the complex plasma
flow is prone to instabilities that limit the confinement achieved by tokamaks. Identifying the onset of
instabilities and developing passive/active control strategies is therefore crucial for the success of nuclear
fusion reactors. The adjoint method has been used extensively in stability analysis, uncertainty quantifi-
cation, optimisation and control problems [37, 43, 64]. Sensitivity information obtained from the adjoint
method is also useful for adaptive mesh refinement [4]. This report aims to review the adjoint method
to determine how it may be used in optimising plasma flows within the NEPTUNE project.
This report is structured as follows. In Section 2, we present the background and theory of the adjoint
method. We then compare different methods of computing the adjoint variables, which can be done using
a continuous or discrete adjoint method (Section 2.1). We discuss some recent advancements in algorithms
used to solve the adjoint equations in Section 2.2. In Section 3, we review a variety of applications of the
adjoint method in the literature that are relevant to NEPTUNE. This includes (i) sensitivity and stability
analysis, (ii) parameter optimisation and sensitivity, (iii) uncertainty quantification, (iv) adaptive mesh
refinement and (v) shape optimisation. Finally, in Section 4, we draw our conclusions.

2 Adjoint method

The adjoint method computes the sensitivity of a cost function (based on a quantity of interest) relative
to a change in any relevant parameters (operating conditions, design parameters, modelling parameters)
[42]. This information can be used to optimise parameters at a significantly lower cost than iteratively
performing simulations in a non-intrusive way.
As explained by Giles and Pierce [29], the theory behind the adjoint method is easiest understood in the
context of a linear problem. In the series of problems discussed in this report, we are aiming to find the
change in some cost function (or quantity of interest), J , relative to a small perturbation in the operating
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parameters p (dJ/dp) which will change the flow field. The state vector containing different flow field
variables is q, the perturbed state vector is q

′
, and the perturbed cost function is

gTq
′
=

∂J
∂q

q
′
, (1)

where g is a vector describing the cost function gradient.
Therefore, we are aiming to find gTq

′
, where the perturbed state vector is described by the linear problem

Lq
′
= f =

∂q
′

∂t
, (2)

where L is a linear operator, and f is a vector acting as a source term. The dual of this problem being

LTq+ = g, (3)

where q+ is the state vector containing the adjoint solutions.
The equivalence between (2) and (3) is

(
q+

)T
f =

(
q+

)T
Lq

′
=

(
LTq+

)T

q
′
= gTq

′
, (4)

which is simply (
q+

)T
f = gTq

′
. (5)

The sensitivity of J to a set of parameters can be found by the chain rule [43]

dJ
dp

=
∂J
∂p

+
∂J
∂q

dq

dp
. (6)

The issue is that computing dq/dp is very expensive when the dimension of p is large. Hence, the
challenge is then how to compute this without directly solving dq/dp for all values of p.
We know that the state vector must satisfy some governing equations that vary in space based on the
flow parameters (R(q,p) = 0), where R is the residual of the governing equations. The term dq/dp
should also satisfy

dR
dp

=
∂R
∂p

+
∂R
∂q

dq

dp
= 0. (7)

In the explanation of Giles and Pierce [29], (7) is related to the linear variables in (4) by

q
′
=

dq

dp
, (8)

L =
∂R
∂q

, (9)

gT =
∂J
∂q

, (10)

f = −∂R
∂p

, (11)

which can be combined with (1) and (4) to give

dJ
dp

=
∂J
∂p

+ gTq
′

(12)

=
∂J
∂p

+
(
q+

)T
f . (13)

For multiple design/operating parameters (p), we note that each design variable has a different f but
the same g. Therefore, instead of solving multiple equations of the form Lq

′
= f and using (12), the

computational cost can be significantly reduced by solving the single equation LTq+ = g to compute q+

and then use (13), which is known as the adjoint method.

2



Figure 1: Gradient error, ε, compared to step-size, α, for discrete adjoint with varying floating point
precision, and continuous adjoint (64-bit precision) [77].

2.1 Continuous or discrete adjoint method

The gradients can be obtained by (i) the continuous method, where the user derives the derivatives of the
governing equations analytically prior to discretisation or (ii) the discrete method, where the derivatives
are calculated after the governing equations are discretised [54], which is simpler to implement [43]. In
the latter, the exact gradients can be computed to machine precision [43]. Since the discrete adjoint
method computes derivatives from the discretised governing equations, we can ensure no inconsistencies
are introduced to the simulations during discretisation. This property is extremely attractive for chaotic
turbulent flows [9] (such as might be found in tokamak reactors), since minor inaccuracies can propa-
gate/amplify to large errors [38, 77]. In aerodynamic optimisation, it has been shown that the continuous
adjoint method approaches the exact gradients when the mesh is sufficiently resolved (as discretisation
error decreases) [52, 53]. However, for aeroacoustic control of a compressible flow mixing layer, it was
shown by Vishnampet et al. that the continuous adjoint gradient error saturated well above the error
of numerical precision (continuous adjoint error was O(10−8) compared to O(10−12) for discrete adjoint,
both with 64 bit precision, Figure 1) [77]. This may be attributed to the complexity and chaotic nature
of the compressible flow which amplifies errors, or the low amplitude of the pressure fluctuations respon-
sible for aeroacoustic noise creating gradients that are highly susceptible to discretisation errors [77].
Importantly, the authors mention that even errors introduced by the numerical imprecision in the dis-
crete adjoint will eventually accumulate to corrupt the solution for longer simulations due to the chaotic
nature of turbulence [77]. In stellarator parameter optimisation, the error from the continuous adjoint
was found to be around one order of magnitude larger than the discrete adjoint due to discretisation
error [60]. However, the authors state that the continuous adjoint error is still very small (≈ 0.1%) and
acceptable for their application. This suggests that discretisation errors in the continuous adjoint are
broadly negligible except in extremely chaotic flows.
Comparing the discrete and continuous adjoint methods, Chandler [11] showed qualitatively the same
global modes in sensitivity analysis of non-isothermal low density jets, see Figure 2. However, Chandler’s
results showed some numerical artefacts for the discrete adjoint method that were not present in the
continuous adjoint formulation. Chandler also reported that the continuous adjoint formulation converged
faster than the discrete adjoint but with increased debugging issues.

2.2 Adjoint algorithm developments

Although the adjoint equation is significantly less expensive than computing sensitivities with finite
differences, in-practice it can be computationally expensive to solve. Here we review recent algorithmic
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Figure 2: Real part of most unstable global mode from a (a) continuous adjoint and (b) discrete adjoint,
in simulations performed by Chandler [11].
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developments improving the ease of implementing and solving adjoint problems.

2.2.1 Parallel-in-time

The iterative nature of forward-backward computations in the adjoint method can create a compu-
tationally expensive process. Recently, a parallel-in-time algorithm for linear [23] and non-linear [24]
initial-value problems was extended to improve performance of adjoint optimisation [14, 71]. The orig-
inal algorithm decomposes a linear initial-value problem into a homogeneous and inhomogeneous part.
The homogeneous equation can be integrated with significantly greater speed and efficiency. The inho-
mogeneous part (usually dependent on a source term) is decomposed in time and distributed to each
processor [23]. The parallel-in-time adjoint method was tested on a forced advection-diffusion equation
(linear) and harmonically-forced Burgers equation (non-linear) [71]. This method was recently extended
to solve the adjoint equation in problems governed by the incompressible Navier-Stokes equations [14].
However, it is not yet clear if this approach is suitable for multiscale, coupled problems such as plasma
transport in tokamaks. Furthermore, the parallel-in-time approach would require significant modification
of the codes developed throughout the NEPTUNE project thus far. Another ExCALIBUR-funded project
is currently working on advancing parallel-in-time algorithms and determining optimal problem-specific
parallel-in-time approaches for different applications such as weather and fusion modelling [22], which
may be useful in the future.

2.2.2 Checkpointing unsteady adjoint problems

One major challenge in using adjoint optimisation of time-dependent problems is that the adjoint equation
requires knowledge of a state variable computed from the primal solution, u, and its adjoint, u∗, at each
time step [56]. For long time series, this is not feasible as the full time-series of the primal solution must
either be (1) stored in memory and accessed at each step of the adjoint calculation, which may not be
possible for simulations with a long time series or many degrees of freedom [30], or (2) written to the disk
and read at each step, which is prohibitively slow. To counteract this, checkpointing algorithms can be
used such as revolve [30], which saves checkpoints at a pre-defined time interval (based on available
memory and number of timesteps), and the intermediate timesteps are recomputed. For simulations where
the number of timesteps is not known a priori, an adaptive checkpointing scheme must be used (referred
to as ‘online’ checkpointing) [33, 74]. A checkpointing algorithm has been implemented in the spectral
element code Nek5000 [66]. The authors also improved the standard revolve algorithm to include disk
I/O checkpoint (two-level checkpointing), which significantly reduced the number of recomputed forward
steps in simulations with a large number of timesteps [66]. The lower number of recomputation is only
beneficial if the I/O time is not prohibitively large [66]. The I/O time can be reduced by using efficient file
formats such as HDF5 [79]. A two-level checkpointing algorithm based on revolve has been implemented
in PETSc: the implementation was described in [45, 80].
Recently, an alternative method to checkpointing was proposed that uses the incremental singular value
decomposition (iSVD) to store a reduced-order model of the primal solution [39, 76]. In this method,
snapshots of the flow are added to the SVD at each time step. Since the rank of the SVD is reduced,
only storing the main modes of the flow, the memory consumption is significantly reduced and this gives
improved performance (CPU time) compared to checkpointing with the same memory consumption. In
contrast to the checkpointing method where time-instants of an exact primal field are stored in memory
and the remaining time-series is re-computed (sacrificing CPU time), using iSVD does not require expen-
sive re-computations since an approximation of the primal’s full time-series can be stored. This method
obviously introduces some error due to the reduced amount of information contained in the primal solu-
tion but it has been shown that this has very little influence on the objective function [76]. For example,
when performing a shape optimisation study, Vezyris et al. found the iSVD approach to be within 0.01%
of the objective function obtained with checkpointing but with a 29% lower CPU time and 0.5% of the
memory overhead [76]. Reduced-order modelling can be leveraged using the recently developed libROM
library from Lawrence Livermore National Lab [12] which has an iSVD implementation. However, there
is little work published using libROM and, therefore, its performance level is unknown.
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3 Applications of adjoint method relevant to plasma modelling

The adjoint method has been applied to many problems in fluid mechanics. Many of the studies discussed
crossover multiple applications because topics such as parameter optimisation often make use of the
adjoint method’s ability to interpret sensitivity and stability properties for understanding optimisation
results. The adjoint sensitivity field is also a highly useful error indicator for adaptive mesh refinement.
In this section, we will discuss various applications of the adjoint method in the literature.

3.1 Sensitivity and stability analysis

A suitable toolkit to extract information on the response of a base flow to a perturbation is stability,
receptivity and sensitivity analysis [68]. The stability can be computed by obtaining the eigenvalues of the
direct problem, which is done by first expressing the perturbed state-vector using a Fourier decomposition

q
′
= eλtq̂ (14)

where the notation ·̂ represents a complex vector field that describes the spatial structure of the pertur-
bation (eigenvectors of L), and λ = σ + iω is a complex scalar describing the temporal evolution of the
perturbation (eigenvalues of L), with a growth rate, ω, and a frequency, ω. By substituting (14) into (2),
we arrive at the eigenvalue problem

Lq̂ = λq̂, (15)

which represents the ‘direct global modes’. If σ > 0 (or Re(λ) > 0) for any single mode, the flow is
asymptotically unstable [70]. These instabilities can be absolute (growing from a fixed point in space) or
convective (growing in magnitude but propagating in space) [34]. The growth of convective instabilities
was the subject of several works by Blackburn et al. [5–7]. In stability problems, J is based on the
amplification of energy (energy at time T compared to energy in the base flow) [67].
From the adjoint problem, we obtain the receptivity, which represents the flow’s response to (external)
open-loop forcing [43]. Similar to the direct method (15), the adjoint global modes can be expressed as
[47]

L+q̂+ = λ+q̂+, (16)

where L+ is the adjoint of L. When both the direct and adjoint global modes are stable but short-term
instabilities are present, this suggests that the direct and adjoint operators are non-normal [70].
The (‘structural’) sensitivity is then computed as the product of the stability and receptivity, and can
be used to obtain information on instabilities such as the location of a ‘wavemaker’ [28]. The wavemaker
identifies the flow region where a change in problem’s structure would produce the largest eigenvalue
drift. This structural sensitivity is computed simply as S = q̂q̂+ [62]. Qadri used the Frobenius norm
of the tensor to identify the wavemaker region but stated that each component of the tensor should be
visualised to better understand the flow’s feedback mechanism to perturbations [62].
Giannetti and Luchini [28] studied the wavemaker region in a low Reynolds number flow over a cylinder
near the critical Reynolds number (Recrit ≈ 47), where the steady structure of the flow is broken. They
compared the structural sensitivity field with previously reported experimental data [73] that showed the
placement of a small control cylinder a few diameters downstream of the wake can completely suppress
the onset of unsteadiness. The exact recommended location of the control cylinder was identified as
being within the separation bubble from the structural sensitivity, providing a theoretical explanation
for the instability suppression observed experimentally that was not possible from analysing the adjoint
or direct modes alone [28]. This approach has been used in many studies since the original development
[28], including an extension to 3D flow over a cylinder with a periodic base flow [27] and other geometries
such as flow over an open cavity [13]. Citro et al. [13] considered stability analysis of flow over an open
cavity. They evaluated adjoint eigenmodes to show the region where an instability is most receptive to
momentum forcing (Figure 3 right). They then computed the product of the direct and adjoint fields to
find the structural sensitivity and the wavemaker that followed a streamline around the cavity (Figure 3
bottom). Clearly, the sensitivity field is strongest where the adjoint and direct modes overlap. Murali [49]
studied hydrodynamic and magnetohydrodynamic (MHD) flow in cooling blanket ducts with repeated
wedge-shaped protrusions, relevant for fusion reactors. They computed the structural sensitivity and
growth rate of perturbations in the flow [51], this was then used to later study the generation of quasi-2D
vortices to enhance heat transfer within the duct at various Reynolds numbers [49, 50]. The use of the
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adjoint method to evaluate receptivity and (when combined with the direct modes) structural sensitivity
is relevant to the study of fusion reactors as it can be used to evaluate areas for passive or active controls
to prevent instabilities that would hinder the confinement [72].
Several works have been done recently using the adjoint method for sensitivity analysis of stellarator-
based problems [2, 60]. Paul et al. used the adjoint method to evaluate the sensitivity of ion particle
flux and bootstrap current to changes in the Fourier amplitudes of the magnetic field strength [60]. The
same group also studied shape gradients of MHD equilibria within a stellarator [2], and the sensitivity
of magnetic island size to magnetic field variations [26]. Similar methods have recently been applied,
where Nies et al. [55] derived a shape-gradient-like sensitivity function to quantify quasi-symmetry on a
flux surface, with the aim of minimising quasi-symmetry-breaking modes in the flow. This is similar to
the study of Murali on quasi-2D vortices breaking into full 3D flows in cooling blanket ducts of fusion
reactors [49, 50].

3.2 Parameter optimisation and sensitivity

When experimental data is available, the adjoint method has been used to tune empirically-determined
parameters in plasma edge-physics models [3]. The authors used the adjoint method to attempt to
optimise coefficients of a simple transport model with neutral density, ion density and temperature
profiles obtained from high fidelity simulations (performed with B2-EIRENE code [69]). This did not
appear to work well at matching profiles of plasma in the edge region of a JET configuration. Particularly,
the temperature profiles obtained from the simplified model with optimised parameters significantly over-
estimated the high-fidelity simulations. This was likely due to the simplified form of the transport model
used [3].
Adjoint methods were used to control the electron profile in ITER with electron cyclotron current drive
(ECCD) [32]. The authors varied the driving current beam injection angles to evaluate the current density
sensitivity and determine the optimal beam position. This approach can be used to stabilise MHD wave
modes.
In tokamak and stellarator reactors, MHD instabilities can arise that hinder fusion performance by re-
ducing the plasma confinement [72]. Paul et al. [61] developed an adjoint method to minimise MHD
instabilities in stellarator equilibria, demonstrating it on three optimisation problems: (i) a target ro-
tational transform profile that would enable low shear flow, (ii) creation of a magnetic well, (iii) and
quasi-symmetry on a magnetic axis. This was then extended by Gaur et al. [25], who focused on the
‘balloon mode’ MHD instability in a fixed geometry. Specifically, they optimised the field line geometry
to find MHD equilibria that were stable against this mode by minimising the maximum eigenvalue. Their
final results gave a maximum eigenvalue with a stable growth rate.
Blommaert et al. [8] performed sensitivity analysis of uncertain parameters in a plasma edge model in a
tokamak configuration. Their model had 34 parameters such as radial transport coefficients, boundary
conditions, rate coefficients (such as charge exchange rate), and parameters controlling the magnetic
equilibrium profile. They considered two cost functions: one related to the heat load and the other
related to the temperature on the outer strike point of the divertor. Their sensitivity analysis showed
strong dependence of both objectives on the boundary conditions and equilibrium profile parameters.
Using the adjoint method, this only required 2 simulations instead of 34 (one for each cost function).
Their sensitivities were also validated against finite difference calculations.
In reactive flows, the adjoint method was used for optimisation of spark location for laminar flame ignition
by Qadri et al. [64]. As is common in gradient-based methods, they showed that the optimal solution is
dependent on the initial condition [64]. Kord and Capecelatro used the adjoint method to determine a
momentum source term that could control a mixing layer, limiting the Kelvin-Helmholtz instability that
was observed in the baseline solution to a small spatial region [36]. In a previous study, the same authors
used the adjoint method to control a Rayleigh-Taylor instability [37]. Also in reactive flows, Qadri et al.
[63] studied low density jets and their global modes. They used an adjoint analysis to identify regions
receptive to external forcing that may control the growth rate/frequency of the unstable mode.
Mao et al. [44] studied control strategies for base flow perturbations using the adjoint method in a
stenotic flow and Batchelor flow. They used a boundary condition that varied in time and space, given
by uΓc

= c(x)f(t, ω), where Γc is the control boundary, c is the spatial change in the velocity amplitude
of the control boundary (to be optimised), f is the temporal change in velocity with a circular frequency
ω. The cost function (6) was based on the kinetic energy of the flowfield, which was minimised with
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Figure 3: Contours of stability (direct mode, left), receptivity (adjoint mode, right) and structural
sensitivity (bottom row) in flow over an open cavity at a Reynolds number near the transition from 2D
to 3D flow. Panels show (a,d) streamwise direction, (b,e) wall-normal direction, (c,f) spanwise direction.
Figures taken from Citro et al. [13].
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respect to the amplitude of c. In tokamaks, the flow may depend on wall temperature, which could be
optimised/controlled in a similar way.
Related to parameter optimisation, the adjoint method is also widely used in numerical weather prediction
to perform four-dimensional data assimilation [40]. This was discussed in a previous NEPTUNE report
on model order reduction [21]. In the case of numerical weather prediction, flow data of varying type and
location can be combined with a parameterised mathematical model to determine unknown parameters
which describe the flow. The unknown parameters are determined through a gradient-based optimisation
process where the cost function is based on the mean-square error of the model and data [31]. The
assimilated parameters can then be used to forecast and predict future weather (or more generally, future
flow states). Given the large number of diagnostic devices in tokamaks which provide measurements, the
use of adjoint methods for data assimilation is highly relevant to NEPTUNE.

3.3 Uncertainty quantification

Uncertainties can enter complex simulations such as plasma models through a variety of sources including
initial conditions, boundary conditions, geometrical parameters, modelling errors [20], numerical errors,
etc [78]. The latter point on numerical errors is also relevant for adaptive mesh refinement (Section 3.4).
Wang [78] studied flow past a cylinder, where the cylinder is subject to small but finite, random and
unknown oscillations in its angular velocity (around a mean of 0), given as

ω(t) =

10∑
i=1

ξ2i−1 cos(2πifV t) + ξ2i sin(2πifV t), (17)

where ω is the angular velocity, ξ0...ξ20 are random variables from a distribution N (0, 0.01), fV is the
vortex shedding frequency. The cost function gradient w.r.t the random variables is∇ξJ . Wang found the
sensitivity of the drag coefficient, CD, using the adjoint method, and used this in combination with Monte
Carlo sampling to determine the probability of the drag coefficient passing a certain critical threshold,
CD,crit, due to the random perturbations in (17) [78].
Wang’s study aimed to use the sensitivity information to improve the efficiency and accuracy of un-
certainty quantification done with a brute force Monte Carlo estimator. Instead of simulating random
instances of ξ and the resultant cost function, J , Wang simply evaluated the cost function once for one
set of ξ and used the following linear approximation to estimate the probability of P (CD > CD,crit):

J ≈ J̃ = J0 +∇ξJ · ξ, (18)

where the approximation J̃ can be computed with minimal cost (particularly compared to evaluating J
by brute force methods). This is extremely fast since the forward and adjoint problems should only be
solved once, but the confidence interval of P (CD > CD,crit) was similar to a brute force Monte Carlo.
The confidence interval on P (CD > CD,crit) was reduced one order of magnitude using an importance

sampling method, which used J̃ to lower the variance of the Monte Carlo solution in the heavy-tailed
region [78].
For plasma problems, Carli et al. [10] used a Bayesian approach to quantify uncertainty in turbulence
modelling parameters in a plasma-edge code (SOLPS-ITER), where the Bayesian posterior distribution
was found through gradient-descent with adjoint mode algorithmic differentiation.

3.4 Adaptive mesh refinement

Several studies have researched using adjoint sensitivity as an error estimator for adaptive mesh refinement
[39, 58, 59, 75]. Classical adaptive mesh refinement has used heuristic error estimators such as velocity
gradients (for wall-bounded turbulence) [39]. This has been shown to have poor performance since all flow
features are treated equally and the user must iteratively determine controls for the adaptation process
[39]. In contrast, the adjoint method can be used as a ‘goal-orientated’ error estimator that can identify
regions where a cost function is sensitive to perturbations and can refine there to avoid introducing
numerical artefacts into a sensitive region [4, 65]. This ‘dual-weighted residual’ method uses the residuals
of the primal solution, weighted by the adjoint sensitivities to estimate local error and identify regions
that would benefit from mesh refinement [65]. Initial tests of steady flow past a cylinder showed that
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one could obtain one order of magnitude improvement of drag coefficient error (with the same number
number of cells) by using an error estimator based on adjoint sensitivities [65]. Adjoint methods were
used to estimate local error in adaptive mesh-refinement in spectral element simulations of a turbulent
flow over a periodic hill with the incompressible Navier-Stokes equations [58]. Their adjoint problem
followed the cost function

J =

∫
Ω

u · jΩ,udV +

∫
Ω

p · jΩ,pdV +

∫
ΓD

(
1

Re
∇u · n− pn

)
· jΓD

ds+

∫
Γo

u · jΓo
ds, (19)

where u is the fluid velocity, p is the fluid pressure, Re is the Reynolds number, n is a unit vector normal
to the boundary, Ω is the internal domain, Γo is the outlet boundary and ΓD is a Dirichlet boundary
(e.g. walls with no-slip condition). j is a problem-specific set of coefficients. For example, in a lid-driven
cavity problem, Offermans et al. used ulid = −jΓD

, and all other j = (0, 0) (for a 2D case) [59].
Offermans et al. then computed the error on the spectral element solution of the cost function (19) when
a polynomial of order N is used [59] with the following approximation, considering the domain is split
into E subdomains, Ωe, with boundary Γe:

δJ = J − JN ≈
E∑

e=1

[〈
R1(q),u

+ − u+
N

〉
Ωe

+
〈
R2(q),u

+ − u+
N

〉
Γe

+
〈
R3(q), p

+ − p+N
〉
Ωe

]
(20)

δJ ≈
E∑

e=1

(
||R1|| ||u+ − u+

N ||
)
Ωe

+
(
||R2|| ||u+ − u+

N ||
)
Γe

+
(
||R3|| ||p+ − p+N ||

)
Ωe

. (21)

where ⟨·⟩ is the inner product, || · || is the L2-norm, and each R is a residual from either the cell
solution (R1 is from the momentum equation and R3 is from the continuity equation) or the face residual
between two elements (R2). The terms u+ − u+

N and p+ − p+N are based on the interpolation error and
are approximated with a relationship based on the cell size (volume and edge length) and polynomial
order [59]. As we can see from (21), the error is based on the residual of the primal solutions, which are
weighted by the adjoint (also known as ‘dual’) solution, giving the name ‘dual-weighted residual’ [4].
Their results showed that the adjoint method focused the mesh refinement to areas where the objective
function sensitivity was high and left the mesh unchanged in low-sensitivity regions of the domain. This
was beneficial compared to the alternative ‘spectral error indicator’ error measure that refined the mesh
based on the truncation error and quadrature error, which are approximated based on the local decay rate
of the spectral coefficients [46]. This computes the influence of the polynomial coefficients, where a large
influence of high-order terms corresponds to a high polynomial truncation error and low grid resolution.
The spectral error indicator was shown to be much simpler to compute but provided a more uniform
mesh [58]. The computation of the adjoint error estimator was complex but provided a more focused
and localized refinement. Using the adjoint error estimator for grid refinement was shown to converge
to the correct solution with fewer refinement iterations [59] but took twice the time for one refinement
round due to increased computational complexity for a steady simulation. For an unsteady simulation,
the adjoint method was shown to be only 10% more time-consuming than the spectral error indicator
due to the low number of timesteps used for mesh refinement relative to the total simulation duration (3
iterations of mesh refinement took 21 flow-through times compared to 140 flow-through times on the final
mesh to get turbulent statistics) [58]. The adjoint error estimator was shown to improve the accuracy
of a quantity of interest after fewer rounds of mesh refinement, but the increased computational cost
of refinement iterations suggests that adjoint-based mesh refinement is not yet superior to other error
estimators (with regards to cost-accuracy trade off).
Similar to as discussed in Section 2.2.2, computing the adjoint for a long time series on a fine mesh
invokes computational challenges surrounding how to manage storing the full primal solution. For their
adaptive mesh refinement study on unsteady turbulent flows, Offermans et al. used checkpointing with
the revolve library [58]. An alternative approach, also discussed in Section 2.2.2, is storing a reduced-
order model of the primal solution and using this when computing the adjoint equations, as was done
by Li et al. [39]. This removes the bottleneck of time- and memory-consuming checkpointing schemes
(at the cost of lower accuracy). However, this reduced-order model approach makes the most sense in
an adaptive mesh refinement problem, since the point of adaptive mesh refinement is to minimise the
computational cost required to obtain the desired solution. Offermans et al. [58] also mentioned issues
in stability when solving the adjoint equations due to highly turbulent flow, which they speculated may

10



be resolved by using a reduced-order model to store the primal, since the small and chaotic motion is
generally not included in reduced-order models. Therefore, the benefit of using a reduced-order model
for storing the primal flow field in highly turbulent flows may be two-fold: (1) reduced storage, memory
and re-computation requirements, (2) improved stability when back-integrating the adjoint problem.

3.5 Shape optimisation

Early adoption of the adjoint methods in fluid flows were mainly focused on shape optimisation of airfoils
[35]. This application was later extended to fusion by optimising tokamak divertors by Dekeyser [15].
Their cost function aimed to generate a uniform heat flux profile by minimising the least squares difference
between the computed flux and a flux below the critical value of the material [17, 18]. Different approaches
for treating the moving shape include: (1) a density-based method, where the entire shape design space
is meshed and cells beyond a boundary are given a high density/low permeability, (2) a body fitted mesh
where the mesh must be morphed to new target shapes, or (3) a level-set method which requires special
numerical treatment at the wall [1]. Dekeyser et al. [17, 18] use a body-fitted mesh that is orthogonal to
the field surfaces which is common in plasmas. The divertor region was then parameterised by a function
ϕ and the new geometry in the divertor region was generated by shrinking/stretching cells here. They
also use a high-order (nine-point) discretisation stencil to calculate the convective fluxes in the plasma
edge transport model [16]. The nine-point stencil includes contributions from diagonally adjacent cells,
compared to only contributions from cells which are adjacent in the horizontal and vertical directions
[15]. This five-point stencil gave some inaccuracies in shape sensitivities compared to finite differences,
whereas the nine-point stencil agreed perfectly [16]. Later, a 1D version of the finite volume code used in
Dekeyser’s previous work for edge simulations was coupled to a Monte Carlo code for a kinetic simulation
of neutrals [19]. Even in a 1D analysis, there was a severe issue computing the cost function gradients due
to Monte Carlo statistical error. The continuous adjoint required around a factor of 100 more particles to
obtain similar cost function accuracy as the discrete adjoint, although their discrete adjoint code was 10
times more expensive (when using the same number of particles). This shows the use of adjoint methods
for shape optimisation and other applications mentioned in Section 3 becomes problematic when coupled
to a kinetic simulation. This may lead to the requirement of an unfeasibly large number of particles for
accurate adjoint analyses in NEPTUNE.

4 Conclusions

We have reviewed the adjoint method, its developments and various applications within the context
of plasma flows. The adjoint method is an effective tool for optimisation and sensitivity analysis in
flow configurations with a large number of operating parameters or modelling parameters in tokamak
simulations. A key issue when using the adjoint method to study unsteady flows is that the primal
solution must be known at each timestep, which presents some computational issues that have been
addressed through checkpointing, reduced-order modelling and parallel-in-time algorithms. Of these,
checkpointing appears the least intrusive and is already implemented in libraries such as PETSc, meaning
it is a viable fit for NEPTUNE developments in the Nektar++ framework. Applications of the adjoint
method mainly consist of analysing flow sensitivity to perturbations. Such information about sensitivity
is often used to optimise design parameters, shape or control strategies. Sensitivity information can also
be used to understand and quantify error in the presence of unknown parameters, or as an error estimator
in adaptive mesh refinement algorithms.
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