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1. Introduction

In report 2047357-TN-07-02, we presented a 2D drift kinetic model for a helical mag-
netic field with wall boundary conditions. The wall boundary conditions made it possible
to obtain the potential and the electron flow from the conservation of parallel current
and the electron parallel momentum equation. With periodic boundary conditions, ap-
propriate for closed flux surfaces, it will not be sufficient with conservation of parallel
current, and we will have to include terms small in the expansion parameter that we use,
the ion gyroradius over the characteristic width of the scrape-off layer (ρi/Lr).

In this report, we first remind the reader of the content in report 2047357-TN-07-02,
and we then explain how to modify the current conservation equations for cases with
periodic boundary conditions.

2. Magnetic field, geometry and orderings

We use the cylindrical coordinates {r, z, ζ} (see report 2047357-TN-07-02 for the direc-
tion of increase of ζ). We consider a magnetized plasma with one ion species with charge
e and mass mi, electrons with charge −e and mass me, and one species of neutrals with
mass

mn = mi. (2.1)

The plasma is magnetized by the helical magnetic field

B(r, ζ) := Bz(r)ẑ +Bζ(r)ζ̂(ζ), (2.2)

where ẑ and ζ̂ are the unit vectors in the direction of ∇z and ∇ζ. Note that the compo-
nents Bz and Bζ only depend on the radial position r.

We assume that the plasma only varies in r and z. We assume that the electric field
produced by the plasma is electrostatic, E = −(∂φ/∂r)r̂− (∂φ/∂z)ẑ, where r̂ is the unit
vector in the direction ∇r. The potential φ(r, z, t) depends on the coordinates r and z
and on time t.

We impose periodic boundary conditions at z = 0 and z = Lz. In the radial direction,
we consider the interval between r = r0 and r = r0 + Lr. The length Lr is determined
by a balance between the fast parallel velocity of the particles along magnetic field lines
and their slow drift across them. The characteristic length between the two walls along
a magnetic field line is of order

L‖ ∼
B

Bz
Lz. (2.3)

Thus, the typical time that it takes for an ion to move from wall to wall is L‖/vti ∼
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(B/Bz)(Lz/vti), where vti :=
√

2Ti/mi is the ion thermal speed and Ti is the ion tem-
perature. For a potential φ of the order of Ti/e, where e is the proton charge, the radial
E×B drift is

vEr := −Bζ
B2

∂φ

∂z
∼ ρi
Lz
vti, (2.4)

where ρi := vti/Ωi is the characteristic ion gyroradius and Ωi := eB/mi is the ion
gyrofrequency. Thus, the time it takes for an ion to cross the domain in the radial
direction is Lr/vEr ∼ LrLz/ρivti. By making this time of the same order as L‖/vti, we
solve for Lr to find

Lr ∼
B

Bz
ρi (2.5)

To simplify the problem to a tractable drift kinetic form, we assume that ρi is much
smaller than Lr. This implies that

ρi
Lr
∼ Bz

B
∼ Bz
Bζ
� 1, (2.6)

that is, we will limit our model to magnetic fields that are mostly azimuthal and have a
very small vertical component. This is an approximation that is consistent with magnetic
field geometry in conventional tokamaks and also in the edge of many shots in spherical
tokamaks.

We also assume that r0 ∼ Lz � Lr. Since r0 is the characteristic length of variation of
the magnetic field B, the magnetic field barely changes across the domain [r0, r0 + Lr].
Thus, within our ordering, we assume B to be uniform in the domain of interest.

We assume the time derivatives to be of the same order as the parallel and perpendic-
ular time scales that we have discussed above,

∂

∂t
∼ ρi
Lr

vti
Lz
. (2.7)

Our orderings above rest on the assumption φ ∼ Ti/e. In the case with wall boundary
conditions, the wall boundary conditions ensured that φ remained of this order. With
periodic boundary conditions, the size of φ is controlled by the momentum input. The
force per unit volume on the plasma due to external sources, neutral-plasma collisions or
ionization must satisfy

|Fi,ext⊥|, |Fe,ext⊥|, |Fin⊥|, |Fen⊥|, |Fi,ion⊥|, |Fe,ion⊥| .
(
ρi
Lr

)2
pi
Lz
, (2.8)

where pi is the ion pressure. This estimate for the force per unit volume comes from
making the force of the order of the perpendicular inertia, ∂(nimiui⊥)/∂t, where the
perpendicular ion velocity ui⊥ is taken to be of order (ρi/Lr)vti (see equation (4.7)
below for a justification of this ordering for ui⊥; also note that this means that the
perpendicular flow is much smaller than the parallel one, which we assume to be of the
order of vti). Equation (2.8) might seem stringent, but the friction between ions and
neutrals and electron and neutrals (due to elastic collisions or ionization) is small in the
closed field line region of the tokamak because the neutral density is small, i.e. we can
assume that

nnRin ∼ nnRen
√
me

mi
∼ nnRion .

(
ρi
Lr

)2
vti
Lz
, (2.9)

where nnRin, nnRen and nnRion are the ion-neutral, electron-neutral and ionization
collision frequencies.
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3. Summary of report 2047357-TN-07-02

The model in report 2047357-TN-07-02 is comprised of:
• three fluid equations (conservation of particles, parallel momentum and energy) for

ions that have to be solved in conjunction with an ion kinetic equation to determine
the ion density ni = ne, the ion parallel velocity ui‖, the ion temperature Ti and the
normalized ion distribution function Fi;
• five fluid equations (conservation of particles, the three components of momentum

and energy) for neutrals that have to be solved in conjunction with a neutral kinetic
equation to determine the neutral density nn, the three components of the neutral velocity
un, the neutral temperature Tn and the normalized neutral distribution function Fn;
• two fluid equations (conservation of parallel current,

Bz
B

∂

∂z

[
ni
(
ui‖ − ue‖

)]
= 0, (3.1)

and conservation of energy) for electrons that have to be solved in conjunction with
an electron kinetic equation to determine the electron parallel velocity ue‖, the electron
temperature Te and the electron normalized distribution function Fe; and
• the electron parallel momentum equation,

0 = −Bz
B

∂pe‖

∂z
+
eneBz
B

∂φ

∂z
+ Fei‖ + nemennRen(un‖ − ue‖), (3.2)

for the potential φ. Here, Fei‖ is the collisional friction force between electrons and ions.
In report 2047357-TN-07-02, we proposed a method to solve equations (3.1) and (3.2)

in conjunction with wall boundary conditions. Equation (3.1) can be integrated in z
to obtain ue‖(r, z, t) − ue‖(r, 0, t) (recall that ni and ui‖ are time-advanced using ion
equations). With this result, equation (3.2) can be integrated in z to obtain the difference
φ(r, z, t)−φ(r, 0, t) as a function of the unknown ue‖(r, 0, t) (recall that pe‖ is determined
by the electron energy equation and the electron kinetic equation, and that Fei‖ depends
on ue‖). With wall boundary conditions, we could solve for both ue‖(r, 0, t) and φ(r, 0, t).
Unfortunately, the same cannot be said for periodic boundary conditions. With periodic
boundary conditions and these equations, it is possible to find an equation for ue‖(r, 0, t),
but not for φ(r, 0, t). Indeed, dividing equation (3.2) by ne, integrating in z and using
the periodic boundary conditions for φ, we find the condition

0 =

∫ Lz

0

[
− Bz
neB

∂pe‖

∂z
+
Fei‖

ne
+mennRen(un‖ − ue‖)

]
dz. (3.3)

This condition is satisfied by choosing the correct value of ue‖(r, 0, t). Within equa-
tions (3.1) and (3.2), there is no other similar condition for φ(r, 0, t). To find such a
condition, we need to modify equation (3.1) by keeping higher order terms in ρi/Lr.

4. Current conservation for periodic boundary conditions

Parra & Catto (2008) showed that gyrokinetic equations (and consequently the sub-
sidiary limit of drift kinetics) require higher order terms in ρi/Lr in order to determine
the component of the electric field perpendicular to the flux surfaces traced by the mag-
netic field when the magnetic field is axisymmetric. In this case, this means that one
needs higher order terms to determine ∂φ/∂r.

The need for higher order terms can be demonstrated using moments of the full kinetic
equation. Before we start taking moments, we explain what we mean by full kinetic
distribution function and full kinetic equation in this report, and how they compare to
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the drift kinetic distribution function and kinetic equation that we have used so far.
Importantly, what follows does not apply to the neutral distribution function and kinetic
equation as we have not reduced them using the drift kinetic approximation in previous
reports.

We denote the ion and electron full distribution functions by gs(r, z,v, t), where the
velocity is given by

v = v‖b̂ + v⊥ = v‖b̂ + v⊥(cosϕ r̂ + sinϕ b̂× r̂), (4.1)

Here v‖ is the velocity parallel to the magnetic field, b̂ := B/B is the unit vector in the
direction to the magnetic field, and the velocity perpendicular to the magnetic field v⊥
is described by its magnitude v⊥ and its direction, given by the gyrophase ϕ. The full
kinetic distribution functions for ions and electrons, gi and ge, satisfy the full kinetic
equations

∂gi
∂t

+∇ · (vgi) +∇v ·
[
e

mi
(−∇φ+ v ×B) gi

]
= Cii + Cin + Cie + Ci,ion +Qi (4.2)

and

∂ge
∂t

+∇· (vge) +∇v ·
[
− e

me
(−∇φ+ v ×B) ge

]
= Cee +Cen +Cei +Ce,ion +Qe. (4.3)

Note that we have included like-particle collisions, electron-ion collisions, collisions with
neutrals and ionization collisions. The sources Qe represent the particle, momentum and
energy input into the plasma.

The drift kinetic ion and electron distribution functions fi and fe that we used in
previous reports are gyroaverages of the full distribution functions,

fs(r, z, v‖, v⊥, t) :=
1

2π

∫ 2π

0

gs(r, z,v(v‖, v⊥, ϕ), t) dϕ. (4.4)

(Correspondingly, the sources Ss that we used are the gyoraverage of the full sources
Qs.) For ρi/Lr � 1, the distribution functions gs and fs are almost identical, gs ' fs
(Hazeltine 1973). The difference between these distribution functions, of order ρi/Lr � 1,
was negligible in the case with wall boundary conditions, but it will be important with
periodic boundary conditions. Thus, we write

gs = fs + gs1 + . . . , (4.5)

where, neglecting the ion-neutral, electron-neutral and ionization collisions to lowest
order (recall equation (2.9)),

gs1 = sinϕ

(
v⊥
Ωs

∂fs
∂r
− 1

B

∂φ

∂r

∂fs
∂v⊥

)
∼ ρs
Lr
fs. (4.6)

Here Ωs := ZseB/ms is the gyrofrequency of species s, and Zs is the charge number (1
for ions and −1 for electrons). Using equation (4.5), we can calculate the perpendicular
average velocity of ions and electrons,

us⊥ :=
1

ns

∫
v⊥gs d3v ' 1

ns

∫
v⊥gs1 d3v = b̂× r̂

(
1

ZsensB

∂ps⊥
∂r

+
1

B

∂φ

∂r

)
∼ ρi
Lr
vti,

(4.7)
where ps⊥ :=

∫
(msv

2
⊥/2)fs d3v is the perpendicular pressure of species s. Note that since

the average of v⊥ over the gyrophase vanishes, us⊥ is only due to the small correction
gs1. Thus, us⊥ is small. Note that this is a consequence of our assumption φ ∼ Ti/e. A
larger φ would have led to a larger average velocity.
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After this brief introduction to the full distribution functions gs, we can use moments
of these distribution functions to impose current conservation following the procedure
proposed by Parra & Catto (2009). Current conservation can be written as

∇ ·
[
eni(ui‖ − ue‖)b̂

]
+∇ · J⊥ = 0, (4.8)

where J⊥ is the component of the current density perpendicular to the magnetic field.
In report 2047357-TN-07-02 we could neglect the term ∇ · J⊥ because it is small in
Lr/Lz � 1. We cannot neglect it any longer, as we need it to determine φ(r, 0, t).
Equation (4.8) can be written as

∂

∂z

[
eniBz
B

(ui‖ − ue‖) + J⊥ · ẑ
]

+
1

r

∂

∂r
(rJ⊥ · r̂) = 0. (4.9)

Due to the periodic boundary conditions, the large parallel current term can be eliminated
by integrating in z,

∂

∂r

(∫ Lz

0

J⊥ · r̂ dz

)
= 0, (4.10)

where we have also used the fact that r ' r0 is almost constant. Condition (4.10) deter-
mines φ(r, 0, t).

Unfortunately, equation (4.7) is not enough to compute J⊥ · r̂ to the sufficiently high
order needed to obtain φ(r, 0, t). The perpendicular current density can, however, be
calculated to very high order by taking moments of the full kinetic equations for ions
and electrons. Multiplying equations (4.2) and (4.3) by msv and integrating over velocity
space, we find the ion and electron total momentum equations,

∂

∂t
(nimiui) +∇ ·

(∫
mivvgi d3v

)
= −eni∇φ+ eniui ×B + Fin + Fie + Fi,ion + Fi,ext

(4.11)
and

∂

∂t
(nemeue) +∇ ·

(∫
mevvge d3v

)
= ene∇φ− eneue×B + Fen + Fei + Fe,ion + Fe,ext.

(4.12)
Here, Fα :=

∫
msvCα d3v is the force due to the collision operator Cα, and Fs,ext :=∫

msvQs d3v is the external momentum input. Summing equations (4.11) and (4.12),
using quasineutrality and Fie+Fei = 0, and neglecting the electron momentum compared
to the ion momentum, we find

J×B ' ∇·
(∫

mivvgi d3v +

∫
mevvge d3v

)
+
∂

∂t
(nimiui)−Fin−Fi,ion−Fext. (4.13)

where we have defined the total external force Fext := Fi,ext + Fe,ext. Multiplying equa-

tion (4.13) by (r̂× b̂)/B, we obtain the radial component of J⊥,

J⊥ · r̂ ' −
1

B
∇ ·
(∫

mivv · (b̂× r̂)gi d3v +

∫
mev · (b̂× r̂)ge d3v

)
+

1

B

∫
miv · ∇

(
b̂× r̂

)
· vgi d3v +

1

B

∫
mev · ∇

(
b̂× r̂

)
· vge d3v

− ∂

∂t

[nimi

B
ui · (b̂× r̂)

]
+

1

B
Fin · (b̂× r̂) +

1

B
Fi,ion · (b̂× r̂) +

1

B
Fext · (b̂× r̂),

(4.14)
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where

∇
(
b̂× r̂

)
= −

B2
ζ

B2

d

dr

(
Bz
Bζ

)
r̂b̂− BzBζ

rB2
b̂r̂ +

B2
z

rB2
(b̂× r̂)r̂ ∼ Bz

r0B
∼ ρi
Lr

1

Lz
. (4.15)

The term with the time derivative in the right side of equation (4.14) sets the size of the
equation. For ∂/∂t ∼ ρivti/LrLz, using the fact that |ui⊥| ∼ (ρi/Lr)vti, we find

∂

∂t

[nimi

B
ui · (b̂× r̂)

]
∼
(
ρi
Lr

)2
pi
BLz

. (4.16)

This estimate justifies the ordering (2.8). Also, estimate (4.16) sets the size of the terms

that we need to keep in the equation. For example, the integrals that contain ∇(b̂ × r̂)

are small because ∇(b̂ × r̂) is itself small in ρi/Lr and the integrals over velocity are
small by a factor of (ρi/Lr)

2, as can be checked using expression (4.6) for gi and ge.
Thus, integrating over z, using equation (4.7) for ui⊥ and employing the approximation
r ' r0, we find

∫ Lz

0

J⊥ · r̂ dz ' − ∂

∂t

[∫ Lz

0

nimi

B2

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)
dz

]

− 1

B

∂

∂r

[∫ Lz

0

(∫
miv · r̂(v × b̂) · r̂ gi d3v +

∫
mev · r̂(v × b̂) · r̂ ge d3v

)
dz

]

+

∫ Lz

0

[
1

B
Fin · (b̂× r̂) +

1

B
Fi,ion · (b̂× r̂) +

1

B
Fext · (b̂× r̂)

]
dz. (4.17)

The velocity integrals in equation (4.17) can be calculated using a moment of equa-

tions (4.2) and (4.3). Multiplying equation (4.2) by (m2
i /4eB)[(v · r̂)2 − ((v × b̂) · r̂)2]

and integrating in velocity space and z, we find

∫ Lz

0

dz

∫
d3vmiv · r̂(v × b̂) · r̂ gi

' 1

4Ωi

∂

∂t

[∫ Lz

0

dz

∫
d3vmi[(v · r̂)2 − ((v × b̂) · r̂)2] gi

]

+
1

4Ωi

∂

∂r

[∫ Lz

0

dz

∫
d3vmiv · r̂[(v · r̂)2 − ((v × b̂) · r̂)2] gi

]

−
∫ Lz

0

nimi

2B2

[
∂φ

∂r

(
∂φ

∂z
+

1

eni

∂pi⊥
∂z

)
+
∂φ

∂z

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)]
dz

− 1

4Ωi

∫ Lz

0

dz

∫
d3vmi[(v · r̂)2 − ((v × b̂) · r̂)2]Cii, (4.18)

where we have neglected most collision operators due to our assumption (2.9). Due to the
integrals over the gyrophase, the terms with the time derivative and the ion-ion collision
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operator vanish to the order of interest, leaving∫ Lz

0

dz

∫
d3vmiv · r̂(v × b̂) · r̂ gi

' 1

4Ωi

∂

∂r

[∫ Lz

0

dz

∫
d3vmiv · r̂[(v · r̂)2 − ((v × b̂) · r̂)2] gi

]

−
∫ Lz

0

nimi

2B2

[
∂φ

∂r

(
∂φ

∂z
+

1

eni

∂pi⊥
∂z

)
+
∂φ

∂z

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)]
dz. (4.19)

There is still another integral over velocity to be calculated. We can use the moment
(m2

i /3eB)[((v × b̂) · r̂)3 + 3(v · r̂)2(v × b̂) · r̂] of equation (4.2) to find∫ Lz

0

dz

∫
d3vmiv · r̂[(v · r̂)2 − ((v × b̂) · r̂)2] gi ' −

∫ Lz

0

2pi⊥
B

∂φ

∂z
dz. (4.20)

With this result and employing integration by parts in z to write

∂

∂r

[∫ Lz

0

2pi⊥
B

∂φ

∂z
dz

]
'
∫ Lz

0

2

B

(
∂pi⊥
∂r

∂φ

∂z
+ pi⊥

∂2φ

∂r∂z

)
dz

=

∫ Lz

0

2

B

(
∂pi⊥
∂r

∂φ

∂z
− ∂pi⊥

∂z

∂φ

∂r

)
dz, (4.21)

equation (4.19) simplifies to∫ Lz

0

dz

∫
d3vmiv · r̂(v × b̂) · r̂ gi = −

∫ Lz

0

nimi

B2

∂φ

∂z

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)
dz. (4.22)

The electron integral in equation (4.17) can be calculated using the same procedure that
has led to equation (4.22), and it turns out to be negligible due to the smallness of
me/mi.

Substituting equation (4.22) into equation (4.17) and then equation (4.17) into equa-
tion (4.10), and using the same simplified ion-neutral and ionization collision operators
that we have used in previous reports,

Cin := −Rin(nngi − nifn), Ci,ion := neRionfn, (4.23)

we find the final equation for φ(r, 0, t),

∂

∂r

{
− ∂

∂t

∫ Lz

0

[
nimi

B2

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)]
dz

+
1

B

∂

∂r

[∫ Lz

0

nimi

B2

∂φ

∂z

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)
dz

]

−
∫ Lz

0

niminnRin
B2

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)
dz

+

∫ Lz

0

niminn(Rin +Rion)unz
B

dz +

∫ Lz

0

Fext · ẑ
B

dz

}
= 0. (4.24)

Note that in several places we have used the approximation b̂× r̂ ' ẑ.
Equation (4.24) is small by a factor of (ρi/Lr)2 compared to the parallel current term in

the current conservation equation (4.8), of order (ρi/Lr)(enevti/Lz). Thus, in principle,
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to keep these terms we would need to keep terms up to order (ρi/Lr)
3 in this equation.

Thankfully, we do not need to do that because we now have equation (4.24) in explicit
form. We can add equation (4.24) to our set of equations in a consistent manner.

We finish by relating equation (4.24) to momentum conservation, a connection that we

mentioned at the end of section 2. Equation (4.24) is a radial derivative of
∫ Lz

0
J⊥ · r̂ dz

(see equation (4.10)). Then, equation (4.24) can be integrated to show that
∫ Lz

0
J⊥ · r̂ dz

is a constant that we will call Ir, giving

∂

∂t

∫ Lz

0

nimiui⊥ · ẑ dz − ∂

∂r

(∫ Lz

0

nimi

B

∂φ

∂z
ui⊥ · ẑ dz

)
= −IrB

−
∫ Lz

0

niminnRin(ui⊥ · ẑ− unz) dz

+

∫ Lz

0

niminnRionunz dz +

∫ Lz

0

Fext · ẑ dz. (4.25)

Here we have used the ẑ projection of equation (4.7) to rewrite ∂φ/∂r as a function of
ui⊥ · ẑ. Equation (4.25) is the perpendicular momentum balance in the z direction, and
it includes the magnetic force due to the radial current Ir. This magnetic force is zero in
tokamaks, where the radial current vanishes.

5. Moment drift kinetics

The moment drift kinetic formulation of the problem with periodic boundary condi-
tions is thus the equations in report 2047357-TN-07-02 plus our new equation (4.24) for
φ(r, 0, t). The perpendicular pressure appearing in this equation can be calculated from
the normalized distribution function using the formula

ps⊥[ns, vts, Fs](r, z) := πnsmsv
2
ts

∫ ∞
−∞

dw‖

∫ ∞
0

dw⊥ w
3
⊥Fs(r, z, w‖, w⊥, t). (5.1)

6. Discussion

Note that the addition of equation (4.24) has only been possible because we evolve the
densities of ions and electrons independently of their normalized distribution functions.
Had we proposed to evolve the unnormalized ion and electron distribution functions, it
would not have been possible to have an independent higher-order current conservation
equation because it would not be consistent with the density that arises from the time
evolution of the lowest order kinetic equations.

When implementing the equations proposed in this report, it is important to ensure
that there is z-variation of density, temperature and flows. Otherwise, the equations
become trivial. When connected to the open field line region (the topic of a future report),
the z-variation will arise naturally due to the wall boundary conditions. In the absence
of open field lines, one can use sources and sinks with that are not uniform in z (i.e.
excess ionization in the region close to the divertor, where most neutrals are).

REFERENCES

Hazeltine, R.D. 1973 Recursive derivation of drift-kinetic equation. Plasma Phys. 15, 77–80.
Parra, F.I. & Catto, P.J. 2008 Limitations of gyrokinetics on transport time scales. Plasma

Phys. Control. Fusion 50, 065014.



2D drift kinetic model with periodic boundary conditions 9

Parra, F.I. & Catto, P.J. 2009 Vorticity and intrinsic ambipolarity in turbulent tokamaks.
Plasma Phys. Control. Fusion 51, 095008.


