
Excalibur-Neptune report

2047356-TN-10-1

Task 0.2

Development of a performance testing and

aggregation tool for NEPTUNE proxy-apps

Edward Higgins and David Dickinson

University of York

April 1, 2022



Contents

1 Executive Summary 1

2 Motivation & Requirements 2
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Existing technology 3
3.1 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1.1 GitHub Actions and self-hosted runners . . . . . . . . . . 3
3.1.2 ReFrame HPC . . . . . . . . . . . . . . . . . . . . . . . . 3

3.2 Performance analysis . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.3 Data aggregation and visualisation . . . . . . . . . . . . . . . . . 4

4 Design & Implementation 4
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.2 RoundTable backend . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2.1 Proxy app configuration . . . . . . . . . . . . . . . . . . . 5
4.2.2 Benchmark scripts . . . . . . . . . . . . . . . . . . . . . . 6
4.2.3 Database upload . . . . . . . . . . . . . . . . . . . . . . . 7

4.3 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.4 RoundTable dashboard . . . . . . . . . . . . . . . . . . . . . . . . 7
4.5 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 References 8

1 Executive Summary

This report outlines the requirements and design of a software framework for

the automated performance testing and performance regression analysis of git-

managed software, for example the proxy apps developed as part of the ExCAL-

IBUR NEPTUNE project.

The framework allows acceptance tests and performance benchmarks to be

run automatically using GitHub Actions on self-hosted runners at a range of

local and HPC facilities such as Bede or Archer2. The results from these runs

are then collated and displayed in a web dashboard along with results from

other applications, sites and code versions.

The motivation of the project is both to allow easy tracking of performance

improvements during the development of the proxy apps, as well as to iden-

tify if and when any code changes negatively affect the performance of such

applications across a range of hardware and compiler combinations.

1



2 Motivation & Requirements

2.1 Motivation

The aim of the ExCALIBUR NEPTUNE project is to develop software and

infrastructure for simulating the behaviour of tokamak plasma edges, one of

the grand challenges[1]. In order to do this, software solutions will need to be

developed using a range of algorithms across a number of different software and

hardware configurations, and the real-time performance and scaling of these

solutions monitored.

It is often said that no significant software application is perfectly bug-

free, and the same is true in terms of optimal performance. Often, changes in

one part of the code can negatively affect application performance elsewhere in

unexpected ways. Being able to spot this performance decrease quickly, as well

as identifying which particular code change caused the decrease is incredibly

useful for rapid development of highly performant software.

Similarly, code that performs well on one system may not necessarily perform

well on others. This can be due to differing compiler/library availability, or dif-

ferences in the underlying hardware performing the calculations. For example,

algorithms that work well on GPUs are often different to those that work well on

CPUs, due to their focus on massive parallelisation rather than single-threaded

performance. Being able to compare the performance of software across a range

of hardware allows these differences to be understood.

2.2 Requirements

Due to these considerations, a framework for automated performance testing

and analysis of the NEPTUNE proxy apps was designed. The requirements for

the framework were:

1. Automated deployment: The framework needs to be able to build, run

and analyse the performance of proxy apps automatically when triggered;

2. Flexibility: The framework needs to be able to:

(a) Compile and run the range of software seen in the proxy apps (e.g.

Fortran/C, MPI, CUDA etc.)

(b) Run on the range of hardware systems & software environments of

interest (e.g. x86/ARM CPUs, GPUs etc.)

2



(c) Obtain a range of performance metrics. (e.g. run time, parallel

efficiency, memory usage etc.)

3. Interpretability: The framework needs to be able to display the results

from these runs in such a way that performance can be compared across

code versions as well as different hardware/software configurations.

3 Existing technology

A number of tools already exist that can do part of what is needed for this frame-

work. These fall under 4 main categories: automation, performance analysis,

data aggregation and visualisation.

3.1 Automation

3.1.1 GitHub Actions and self-hosted runners

For codes hosted on GitHub, a service called GitHub Actions[2] allows scripts

to be run automatically when triggered by predefined events, for example when

a new commit is pushed to a particular branch of a repository. By default these

run within containers on GitHub-provided cloud infrastructure, but they can

also be configured to run on external machines, known as self-hosted runners[3],

provided the user has sufficient access to that machine. This allows users to have

these Actions run on, for example, personal workstations or HPC facilities.

3.1.2 ReFrame HPC

In order to build and run the proxy apps on a particular system, the runner

must have knowledge of how the system is configured. For example, which

particular versions of compilers and libraries are available and where they are

stored. While for single user machines these often live in default locations, more

complex systems such as most HPC facilities will use system such as Environ-

ment Modules[4] or LMod[5] to manage multiple software environments. As

well as this, such HPC facilities often provide access to computational resources

via a queuing system, such as Slurm[6]. As these configurations are usually

site-specific, any automated runner must be made aware of how to compile and

run applications on a per-site basis.

ReFrame[7] is a regression testing and benchmarking framework which al-

lows site configuration and application run-time configurations to be defined

3



independently of each other, while also including integration of many common

tools for managing software environments, build systems and queuing systems.

3.2 Performance analysis

There are many different types of performance measures that can relevant when

developing software, for example application run-time, memory usage, parallel

efficiency and more. As such, a wide range of utilities are available to analyse

programs to quantify these. These range from simple system tools such as the

Unix ”time” utility that simply measures the amount of time a program takes to

run, up to tools such as Intel VTune[8] that can perform much deeper analysis

of a program’s run-time performance. Often, utilities like this are available on

HPC facilities.

3.3 Data aggregation and visualisation

In order to compare performance metrics from multiple applications across mul-

tiple sites, the data needs to be gathered and displayed in a web dashboard. In

order to gather the data, it needs to be writable and accessible to the dashboard

for visualisation. This can be done simply by hosting a static structured data

file, for example on GitHub, or using more advanced databases such as MySQL

or PostGRESQL services.

Displaying the data in an easy-to-understand way can be done in a number

of ways as well. These range from a simple static web page using JavaScript

graphing and visualisation packages such as Chart.js[9] or D3.js[10], up to full

dashboard solutions such as Grafana[11], which will need more advanced hosting

solutions.

4 Design & Implementation

4.1 Overview

In order to make use of existing technologies and make it as easy as possible for

application developers to use these tools, a framework called RoundTable was

designed to allow existing tools to be used together, with simple per-application

configuration files describing the details of each application.

The RoundTable framework makes use of self-hosted GitHub runners on

HPC facilities to run a range of benchmarks on applications, setting up Re-

4



Frame benchmarks for a range of performance analyses, parsing the results and

gathering them to be displayed in a web dashboard.

Self-hosted runners

Proxy apps

ReFrame

Compute resources

RT Backend
  - config parser
  - benchmark scripts
  - database upload

configuration

reframe config,
benchmark scripts

benchmark results

Source

RT Database
raw benchmark results

filtered benchmark results

RT Frontend

Figure 1: Diagram showing how all the components of RoundTable work to-
gether, and the data that is passed between them

4.2 RoundTable backend

The RoundTable backend performs 3 main roles:

• Generating the ReFrame scripts based off each proxy app’s configuration,

• Providing benchmark scripts to run various forms of analysis and parse

the results,

• Upload the results to the RoundTable database.

4.2.1 Proxy app configuration

Proxy apps are configured using TOML configuration files, describing how to

build and run the application, as well as the environments and benchmarks to

run. An example is listed below:

1 # roundtable.conf

2 app = "simple_md"

3 build = "make"

4 environments = ["gnu", "intel"]

5 execution = "simple_md -i <INPUT >"

6 [benchmarks]

7 [benchmarks.small]

8 INPUT = "examples/small.in"

9 analysis = ["vtune "]

5



10 resuorces = [

11 num_procs = 1,

12 time = "0:1:0"

13 ]

14

15 [benchmarks.large]

16 INPUT = "examples/large.in"

17 analysis = [

18 "runtime",

19 "memory",

20 ""

21 ]

22 resuorces = [

23 num_procs = 10

24 time = "0:8:0"

25 ]

This defines an app called ”simple md” which can be compiled with Make.

It has two associated benchmarks:

• A small serial benchmark which is run through VTune, and

• A larger parallel benchmark that only measures the runtime and memory

usage

4.2.2 Benchmark scripts

In order to simplify the configuration of the applications, benchmarks are wrapped

up into generic scripts that can be run with any application on any supported

system, returning the results in a common JSON format. For example, a simple

benchmark to display the program runtime is listed below:

1 #!/usr/bin/bash

2 # Returns the application runtime in seconds

3 time=$(\
4 /usr/bin/time -p "$@" 2>&1 \

5 | awk ’/real/{print $2}’ \

6 )

7

8 echo {"runtime:" $time}

Defining benchmarks in separate scripts like this allows new benchmarks to

be added centrally and immediately used for a number of different applications.

It also allows more complex analysis to be performed, such as parallel scaling

runs, averaging over multiple runs etc.

6



4.2.3 Database upload

Once all the benchmarks have been run, the RoundTable backend will push the

results, along with metadata about when and where the runs took place, to a

centralised database.

4.3 Database

The results from all application runs across all sites are stored in a centralised

database that the dashboard can get data from. This is currently just a flat

JSON file in a GitHub repository, but can easily be extended to use more ad-

vanced databases such as MySQL or PostgreSQL.

4.4 RoundTable dashboard

The dashboard is a static web application written in React.js which gets data

from the database and renders it as a series of graphs drawn using the Chart.js

package. Since it is a static web app, it can easily be hosted on GitHub Pages.

Below is a screenshot of the database, showing some dummy data.

Figure 2: A prototype RoundTable dashboard showing dummy data for two
applications run across two sites (hecate and porus).

7



4.5 Availability

The RoundTable framework will be available on GitHub soon, within the ExCALIBUR-

NEPTUNE organisation.

5 References

1. Excalibur Neptune website https://excalibur.ac.uk/projects/excalibur-fusion-

use-case-project-neptune-neutrals-plasma-turbulence-numerics-for-the-exascale/

2. GitHub Actions https://docs.github.com/en/actions

3. GitHub Actions self-hosted runners https://docs.github.com/en/actions/hosting-

your-own-runners/about-self-hosted-runners

4. Environment modules https://modules.readthedocs.io

5. LMod https://lmod.readthedocs.io

6. The SLURM scheduler https://slurm.schedmd.com/documentation.html

7. ReFrame HPC https://reframe-hpc.readthedocs.io

8. Intel VTune https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-

profiler.html

9. Chart.js graphing library https://www.chartjs.org/

10. D3.js visualisation library https://D3.js

11. Grafana dashboards https://grafana.com/

8


