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1. Introduction

We expect that two of the biggest challenges in numerically solving drift kinetic

equations in the plasma edge are treating the motions of charged particles along the

magnetic field line and accounting for the interaction between charged and neutral

particles. Both of these physics processes differ considerably depending on whether one

is in a region with closed or open field lines: charged-neutral interactions are only likely

to be significant in the open field line region nearest the wall, where recycling of particles

leads to a relatively large neutral density; and parallel dynamics in the open-field-line

region will be strongly modified relative to the core by the fact that electrons stream

rapidly along field lines into the walls – thus setting up boundary layers with strong

electric fields. Our aim with this report is to: present a set of drift kinetic models

as candidate models for describing plasma dynamics parallel to the field in both open-

field-line and closed-field-line regions of the edge, in the presence of neutrals; to describe

how these models might be implemented numerically; and to test the relative efficacy

of these models for numerical simulation.

We start in Section 2 by stating the common assumptions made for all of the

models and by presenting the standard drift kinetic model equations for parallel plasma

dynamics. We then derive a series of ‘moment kinetic’ models in Section 3 that utilise

modified particle distribution functions and parallel velocity coordinates to separate

the evolution of the distribution function from its low-order velocity moments. The

boundary conditions imposed on the system are discussed in Section 4 before providing

the normalised system of equations for each model in Section 5. The key features

of our numerical implementation of the model equations are described in Section 6

before presenting numerical results from our code in Section 7. Finally, we provide our

conclusions on the suitability of the models for numerical simulation in Section 8 and

discuss future directions for the research.
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2. Drift kinetics for parallel dynamics

A detailed derivation of the drift kinetic model we consider is provided in a previous

report [5]. Here we provide a brief overview of the model for the Reader’s convenience.

The system we consider consists of a single ion species of charge e and mass mi, a

single neutral species of mass mn = mi, and an electron species modelled as having

a Boltzmann response, all immersed in a straight, uniform magnetic field in the z

direction. We allow for charge exchange collisions between ions and neutrals and

ionisation collisions involving ions, electrons and neutrals, but do not account for intra-

species collisions. Finally, we assume that the plasma is homogeneous in the plane

perpendicular to the magnetic field.

With these assumptions, our model system of equations describing drift kinetics is

one dimensional in both configuration and velocity space:

∂fi
∂t

+ v‖
∂fi
∂z
− e

mi

∂φ

∂z

∂fi
∂v‖

= −Rin (nnfi − nifn) +Rionnefn, (1)

∂fn
∂t

+ v‖
∂fn
∂z

= −Rin (nifn − nnfi)−Rionnefn, (2)

ns(z, t) =

∫ ∞

−∞
dv‖fs(z, v‖, t), (3)

and

ni = ne = Ne exp

(
eφ

Te

)
, (4)

with fs
.
=
∫
dϑdv⊥v⊥Fs the marginalized particle distribution function for species s,

v‖ and v⊥ the components of the particle velocity parallel and perpendicular to the

magnetic field, respectively, ϑ the gyro-angle, t the time, φ the electrostatic potential,

and Rin and Rion charge exchange and ionization collision frequency factors.

3. Moment kinetics

One can separately evolve velocity space moments of the particle distribution function

(pdf) via judicious choices for the parallel velocity coordinate and for the normalisation

of the evolved pdf. This approach presents a number of potential advantages: the use

of fluid equations for low-order moments of f could be useful in formulating a scheme

that switches between fluid and kinetic treatments where appropriate (and possibly also

between small and large amplitude fluctuations of f); separate evolution of an electron

momentum equation should allow for an explicit equation for the electrostatic potential,

which otherwise must be solved implicitly or via an iterative solver; conservation

properties for the low-order moments may be easier to enforce; and use of a velocity

coordinate normalised by the local thermal speed should be more efficient than the use of

a coordinate normalised by some global speed. To our knowledge, this ‘moment kinetic’

approach has not been attempted before, and the aim of this report is to identify any
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challenges faced by this approach and to present solutions to these challenges where

possible.

We have considered four variations of the moment kinetic approach corresponding

to different combinations of the particle density, parallel flow and parallel pressure being

evolved separately from an appropriately normalised pdf. In the following sub-sections

we present the system of equations used for each of these moment kinetic models.

3.1. Density evolution

In this subsection, we describe a moment-kinetic model in which the particle density

is evolved separately from an appropriately normalised particle distribution function.

To separate the evolution of the particle density from that of the particle distribution

function, we define the normalised distribution function

gs
.
=
fs
ns
. (5)

The zeroth velocity moment of gs satisfies
∫
dv‖gs = 1, (6)

and the kinetic equations for gi and gn, obtained by substituting Eq. 5 into Eqs. (1)

and (2), are

ni
∂gi
∂t

+ gi
∂ni
∂t

+ v‖
∂fi
∂z
− eni
mi

∂φ

∂z

∂gi
∂v‖

= −Rinninn (gi − gn) +Rionninngn, (7)

and

nn
∂gn
∂t

+ gn
∂nn
∂t

+ v‖
∂fn
∂z

= −Rinninn (gn − gi)−Rionninngn, (8)

respectively.

Taking the v‖ moment of the kinetic equations (1) and (2) results in the continuity

equation that describes the time evolution of the ion and neutral densities:

∂ns
∂t

+
∂nsus
∂z

= ±Rionninn, (9)

with the plus and minus signs corresponding to the ion and neutral density evolution

equations, respectively. Substituting Eq. (9) into Eqs. (7) and (8) eliminates the time

derivatives of the density, leaving

∂gi
∂t

+
v‖
ni

∂fi
∂z
− e

mi

∂φ

∂z

∂gi
∂v‖

=
gi
ni

∂niui
∂z

+ (Rin +Rion)nn (gn − gi) , (10)

and
∂gn
∂t

+
v‖
nn

∂fn
∂z

=
gn
nn

∂nnun
∂z

−Rinni (gn − gi) . (11)

Eqs. (9)-(11), along with the assumed Boltzmann response given by Eq. (4) and

the relation (5) between f and g, constitute a closed system of equations for the evolved

quantities {gi, gn, ni, nn}. Boundary conditions must be specified to ensure a unique

solution, and this will be discussed in Sec. 4.
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3.2. Density and parallel flow evolution

In this subsection, we describe a moment-kinetic model in which both the particle

density and parallel flow are evolved separately from an appropriately normalised

particle distribution function. To separate the evolution of both the particle density

and the parallel flow from that of the particle distribution function, we again define the

normalised distribution function

gs(z, w‖, t)
.
=
fs(z, w‖, t)

ns(z, t)
, (12)

which is now a function of the peculiar velocity w‖
.
= v‖ − us, with the parallel flow

defined via

nsus
.
=

∫
dv‖v‖fs. (13)

The zeroth and first velocity moments of gs satisify
∫
dw‖gs = 1 (14)

and ∫
dw‖w‖gs = 0. (15)

The kinetic equation for gs, obtained by substituting Eq. (12) into Eqs. (1) and (2), is

∂gs
∂t

+
gs
ns

∂ns
∂t

+

(
w‖ + us

)

ns

∂fs
∂z

+ ẇ‖,s
∂gs
∂w‖

= −Rss’ns′ (gs − gs′)±Rionns′gn, (16)

where {s, s′} = {i, n} or {s, s′} = {n, i}, the + (−) sign corresponds to ions (neutrals),

the z and t derivatives are taken at fixed w‖, the effective parallel acceleration for species

s is

ẇ‖,s
.
= −

(
δs,i

e

mi

∂φ

∂z
+
∂us
∂t

+
(
w‖ + us

) ∂us
∂z

)
, (17)

and we have used
∂

∂v‖
=

∂

∂w‖
, (18)

∂

∂t

∣∣∣∣
v‖

=
∂

∂t

∣∣∣∣
w‖

+
∂w‖
∂t

∣∣∣∣
v‖

∂

∂w‖
=

∂

∂t

∣∣∣∣
w‖

− ∂us
∂t

∂

∂w‖
(19)

and
∂

∂z

∣∣∣∣
v‖

=
∂

∂z

∣∣∣∣
w‖

+
∂w‖
∂z

∣∣∣∣
v‖

∂

∂w‖
=

∂

∂z

∣∣∣∣
w‖

− ∂us
∂z

∂

∂w‖
. (20)

The continuity equation (9) is used to evolve the particle density, and the parallel

momentum equation – obtained by multiplying the kinetic equations (1) and (2) by

msv‖ and integrating over all v‖ – is now needed to evolve us:

∂ (msnsus)

∂t
= −∂

(
p‖,s +msnsu

2
s

)

∂z
−δs,iens

∂φ

∂z
+msRss′nsns′ (us′ − us)±msRionnsns′un,

(21)
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where the parallel pressure p‖,s is defined as

p‖,s
.
=

∫ ∞

−∞
msw

2
‖fs. (22)

The time derivative of us appearing in Eq. (17) can be re-expressed using the parallel

momentum equation (21) and the continuity equation (9):

∂us
∂t

=
us
ns

∂nsus
∂z

− 1

msns

∂
(
p‖,s +msnsu

2
s

)

∂z
+ (Rss′ + δs,iRion)ns′ (us′ − us)− δs,i

e

ms

∂φ

∂z
.

(23)

Substituting the above expression into the parallel acceleration equation (17) yields

ẇ‖,s =
1

msns

∂p‖,s
∂z
− (Rin + δs,iRion)ns′ (us′ − us)− w‖

∂us
∂z

. (24)

Finally, we eliminate the time derivative of the density appearing in Eq. (16) by using

the continuity equation (9), giving

∂gs
∂t

+

(
w‖ + us

)

ns

∂fs
∂z

+ ẇ‖,s
∂gs
∂w‖

= gs
∂nsus
∂z

+ (Rin + δs,iRion)ns′ (gs′ − gs) . (25)

Subject to the specification of boundary conditions in Sec. 4, Eqs. (9), (21), (24)

and (25), along with the assumed Boltzmann response given by Eq. (4) and the

relation (12) between f and g, constitute a closed system of equations for the evolved

quantities {gi, gn, ni, nn, ui, un}.

3.3. Density and parallel pressure evolution

In this subsection, we describe a moment-kinetic model in which both the particle

density and parallel pressure are evolved separately from an appropriately normalised

particle distribution function. To separate the evolution of both the particle density

and the parallel pressure from that of the particle distribution function f , we define the

normalised distribution function

ĝs(z, v̂‖, t)
.
= fs(z, v̂‖, t)

vth,s(z, t)

ns(z, t)
, (26)

where the normalised parallel velocity is

v̂‖
.
=

v‖
vth,s

, (27)

the thermal speed is

vth,s
.
=

√
2T‖,s
ms

, (28)
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the parallel pressure and temperature are

p‖,s
.
= nsT‖,s =

∫
dv‖msw

2
‖fs

= 2p‖,s

∫
dv̂‖

(
v̂2‖ −

u2s
v2th,s

)
ĝs,

(29)

the peculiar parallel velocity is w‖ = v‖ − us, and the parallel flow is

us
.
=

1

ns

∫
dv‖v‖fs = vth,s

∫
dv̂‖v̂‖ĝs. (30)

The zeroth, first and second velocity moments of ĝs satisify

∫
dv̂‖ĝs = 1, (31)

∫
dv̂‖v̂‖ĝs =

us
vth,s

(32)

and ∫
dv̂‖v̂

2
‖ ĝs =

1

2
+

u2s
v2th,s

. (33)

The kinetic equation for ĝs, obtained by substituting Eq. (26) into Eqs. (1) and (2), is

∂ĝs
∂t

+ ĝs

(
∂ lnns
∂t

− ∂ ln vth,s
∂t

)
+
v2th,s
ns

v̂‖
∂fs
∂z

+ ˙̂v‖,s
∂ĝs
∂v̂‖

= −Rss′ns′

(
ĝs − ĝs′

vth,s
vth,s′

)
±Rionĝnns′

vth,s
vth,n

,

(34)

where {s, s′} = {i, n} or {s, s′} = {n, i}, the + (−) sign corresponds to ions (neutrals),

the z and t derivatives are taken at fixed v̂‖, the effective parallel acceleration for species

s is

˙̂v‖,s
.
= −

(
δs,i

e

msvth,s

∂φ

∂z
+ v̂‖

∂ ln vth,s
∂t

+ vth,sv̂
2
‖
∂ ln vth,s
∂z

)
, (35)

and we have used
∂

∂v‖
=

1

vth,s

∂

∂v̂‖
, (36)

∂

∂t

∣∣∣∣
v‖

=
∂

∂t

∣∣∣∣
v̂‖

+
∂v̂‖
∂t

∣∣∣∣
v‖

∂

∂v̂‖
=

∂

∂t

∣∣∣∣
v̂‖

− v̂‖
∂ ln vth,s
∂t

∂

∂v̂‖
(37)

and
∂

∂z

∣∣∣∣
v‖

=
∂

∂z

∣∣∣∣
v̂‖

+
∂v̂‖
∂z

∣∣∣∣
v‖

∂

∂v̂‖
=

∂

∂z

∣∣∣∣
v̂‖

− v̂‖
∂ ln vth,s
∂z

∂

∂v̂‖
. (38)

The continuity equation (9) is used to evolve the particle density, and the parallel

energy equation – obtained by multiplying the kinetic equations (1) and (2) by msw
2
‖
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and integrating over all w‖ – is now needed to evolve p‖,s:

∂p‖,s
∂t

+ us
∂p‖,s
∂z

= msnsvth,s

(
∂vth,s
∂t

+ us
∂vth,s
∂z

)
+ T‖,s

(
∂ns
∂t

+ us
∂ns
∂z

)

= −∂q‖,s
∂z
− 3p‖,s

∂us
∂z
−Rss’

(
ns′p‖,s − nsp‖,s′

)
±Rionnep‖,n,

(39)

where we have defined the parallel heat flux

q‖,s
.
=

∫
dv‖msw

3
‖fs

= msnsv
3
th,s

∫
dv̂‖

(
v̂‖ −

us
vth,s

)3

ĝs.

(40)

The time derivatives of vth,s appearing in Eqs. (34) and (35) can be re-expressed

using the energy equation (39) and the continuity equation (9):

∂ ln vth,s
∂t

=
Rss’

2
ns′

(
T‖,s′

T‖,s
− 1

)
− 1

vth,s

∂usvth,s
∂z

± Rion

2
ns′

(
T‖,n
T‖,s
− 1

)
− 1

2p‖,s

∂q‖,s
∂z

. (41)

Substituting this expression into the parallel acceleration expression (35) gives

˙̂v‖,s = −
(
δs,i

e

msvth,s

∂φ

∂z
+ vth,sv̂

2
‖
∂ ln vth,s
∂z

)

+ v̂‖

(
(Rss′ + δs,iRion)

ns′

2

(
1− T‖,s′

T‖,s

)
+

1

vth,s

∂usvth,s
∂z

+
1

2p‖,s

∂q‖,s
∂z

)
.

(42)

Finally, we substitute Eqs. (9) and (41) into the kinetic equation (34) to find

∂ĝs
∂t

+
v2th,s
ns

v̂‖
∂fs
∂z

+ ˙̂v‖,s
∂ĝs
∂v̂‖

= ĝsus

(
∂ lnns
∂z

− ∂ ln vth,s
∂z

)
− ĝs

2p‖,s

∂q‖,s
∂z

− (Rss′ + δs,iRion)ns′

(
ĝs − ĝs′

vth,s
vth,s′

)
+ ĝs

(
ns′

2
(Rss′ + δs,iRion)

(
T‖,s′

T‖,s
− 1

))
.

(43)

Subject to the specification of boundary conditions in Sec. 4, Eqs. (9), (35), (39)

and (43), along with the assumed Boltzmann response given by Eq. (4) and the

relation (26) between f and g, constitute a closed system of equations for the evolved

quantities {ĝi, ĝn, ni, nn, p‖,i, p‖,n}.

3.4. Density, parallel flow and parallel pressure evolution

In this subsection, we describe a moment-kinetic model in which the particle density,

parallel flow and parallel pressure are all evolved separately from an appropriately

normalised particle distribution function. To separate the evolution of these low-order

moments from that of the particle distribution function f , we again define the normalised

distribution function

ĝs(z, ŵ‖, t)
.
= fs(z, ŵ‖, t)

vth,s(z, t)

ns(z, t)
, (44)
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where ĝs is now a function of the normalised peculiar velocity

ŵ‖
.
=
v‖ − us
vth,s

. (45)

With these definitions, the lowest three moments of ĝs satisfy

∫
dŵ‖

(
1, ŵ‖, ŵ

2
‖
)
ĝs =

(
1, 0,

1

2

)
. (46)

The kinetic equation for ĝs, obtained by substituting Eq. (44) into Eqs. (1) and (2),

is identical in form to Eq. (43):

∂ĝs
∂t

+
vth,s
ns

(
vth,sŵ‖ + us

) ∂fs
∂z

+ ˙̂w‖,s
∂ĝs
∂ŵ‖

= ĝsus

(
∂ lnns
∂z

− ∂ ln vth,s
∂z

)
− ĝs

2p‖,s

∂q‖,s
∂z

− (Rss′ + δs,iRion)ns′

(
ĝs − ĝs′

vth,s
vth,s′

)
+ ĝs

(
ns′

2
(Rss′ + δs,iRion)

(
T‖,s′

T‖,s
− 1

))
,

(47)

where {s, s′} = {i, n} or {s, s′} = {n, i}, the z and t derivatives are taken at fixed ŵ‖,

the effective parallel acceleration for species s is

˙̂w‖,s =− ŵ2
‖
∂vth,s
∂z

+
1

vth,s

(
1

msns

∂p‖,s
∂z
−Rss’ns′ (us′ − us)∓Rionns′ (un − us)

)

+ ŵ‖

(
1

2p‖,s

∂q‖,s
∂z

+ (Rss’ + δs,iRion)
ns′

2

(
1− T‖,s′

T‖,s

))
,

(48)

with the top and bottom signs in Eq. (48) corresponding to ions and neutrals,

respectively, and we have used
∂

∂v‖
=

1

vth,s

∂

∂ŵ‖
, (49)

∂

∂t

∣∣∣∣
v‖

=
∂

∂t

∣∣∣∣
ŵ‖

+
∂ŵ‖
∂t

∣∣∣∣
v‖

∂

∂ŵ‖
=

∂

∂t

∣∣∣∣
ŵ‖

−
(

1

vth,s

∂us
∂t

+ ŵ‖
∂ ln vth,s
∂t

)
∂

∂ŵ‖
(50)

and

∂

∂z

∣∣∣∣
v‖

=
∂

∂z

∣∣∣∣
ŵ‖

+
∂ŵ‖
∂z

∣∣∣∣
v‖

∂

∂ŵ‖
=

∂

∂z

∣∣∣∣
ŵ‖

−
(

1

vth,s

∂us
∂z

+ ŵ‖
∂ ln vth,s
∂z

)
∂

∂ŵ‖
. (51)

Subject to the specification of boundary conditions in Sec. 4, Eqs. (9), (21), (39),

(47) and (48), along with the assumed Boltzmann response given by Eq. (4) and the

relation (44) between f and g, constitute a closed system of equations for the evolved

quantities {ĝi, ĝn, ni, nn, ui, un, p‖,i, p‖,n}.
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4. Boundary conditions

To ensure that the solutions to the model equations described in Secs. 2 and 3 are unique,

we must specify boundary conditions for the evolved particle distribution function in z

and in the parallel velocity coordinate. The physical boundary condition in v‖ is that

fs(z, v‖ → ±∞, t) → 0. This translates with little difficulty to the normalised pdfs gs
and ĝs, regardless of the choice of parallel velocity coordinate. One may also enforce

that fs is periodic in v‖ at the extremes of the v‖ domain, which will be equivalent to

the zero boundary condition above if the v‖ domain is sufficiently large.

As for the boundary condition in z, there are (at least) two options that are

physically interesting: periodic boundary conditions and so-called ‘wall’ boundary

conditions. The former are applicable for plasma streaming along magnetic field lines

that are closed, either mapping out a line or a toroidal surface. Those field lines that

form a closed line are physically periodic, while those ergodically mapping out a toroidal

surface give rise to dynamics that are periodic in a statistical sense. Wall boundary

conditions are needed when considering ‘open’ field lines that terminate at the vessel

wall. Here we describe the wall boundary conditions that we impose on our model

equations.

Complicated dynamics occur close to the wall, leading to a hierarchy of narrow

layers with different dynamics. Derivation of the equations that describe these ‘sheaths’

is an ongoing research activity in the magnetic confinement fusion community. We avoid

such complications here by considering a plasma domain whose boundaries in z are the

entrances to the sheaths furthest from the wall.

Ions that exit the simulation domain are assumed to continue on to the wall, where

they recombine. As a result, no ions enter the domain from the walls, giving a zero

incoming BC for the ions:

Fi(z = 0, v‖ > 0, v⊥, t) = 0 = Fi(z = Lz, v‖ < 0, v⊥, t), (52)

where F is the un-marginalised particle distribution function, and the boundaries of

our domain (corresponding to the sheath entrances) are taken to be at z = 0 and

z = Lz. Neutrals that leave the domain are assumed to hit the wall and thermalise

at the temperature of the wall, Tw. Ions that recombine at the wall also re-enter as

neutrals. The resulting boundary condition on the neutrals is

Fn(z = 0, v‖ > 0, v⊥, t) = Γ0FKw(v‖, v⊥), Fn(z = Lz, v‖ < 0, v⊥, t) = ΓLzFKw(v‖, v⊥),

(53)

where

FKw(v‖, v⊥)
.
=

3

π

(
mi

2Tw

)2
∣∣v‖
∣∣

√
v2‖ + v2⊥

exp


−

mi

(
v2‖ + v2⊥

)

2Tw


 (54)

is the Knudsen cosine distribution, and

Γ0
.
=
∑

s=i,n

2π

∫ 0

−∞
dv‖

∫ ∞

0

dv⊥v⊥
∣∣v‖
∣∣Fs(z = 0, v‖, v⊥, t) (55)
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and

ΓLz

.
=
∑

s=i,n

2π

∫ ∞

0

dv‖

∫ ∞

0

dv⊥v⊥
∣∣v‖
∣∣Fs(z = Lz, v‖, v⊥, t) (56)

are the combined fluxes of neutrals and ions towards the walls at z = 0 and z = Lz,

respectively.

We next marginalise the above distribution functions by integrating over gyro-angle

and v⊥ to get

fi(z = 0, v‖ > 0, t) = 0 = fi(z = Lz, v‖ < 0, t) (57)

and

fn(z = 0, v‖ > 0, t) = Γ0fKw(v‖), fn(z = Lz, v‖ < 0, t) = ΓLzfKw(v‖), (58)

with

fKw(v‖)
.
= 2π

∫ ∞

0

dv⊥v⊥FKw(v‖, v⊥) = 3
√
π

(
mi

2Tw

)3/2 ∣∣v‖
∣∣ erfc

(√
mi

2Tw

∣∣v‖
∣∣
)

(59)

and erfc the complementary error function. The fluxes toward the wall at the domain

boundaries can be recast in terms of the marginalised distribution function:

Γ0 =
∑

s=i,n

∫ 0

−∞
dv‖
∣∣v‖
∣∣ fs(z = 0, v‖, t) (60)

and

ΓLz =
∑

s=i,n

∫ ∞

0

dv‖
∣∣v‖
∣∣ fs(z = Lz, v‖, t). (61)

It is worth considering the constraint imposed by these boundary conditions on

the evolution of the line-averaged species densities, 〈ns〉. Taking the z average of the

continuity equation (9), we obtain

∂ 〈ns〉
∂t

=
1

Lz
(Γs(z = 0)− Γs(z = Lz))±Rion 〈ninn〉 , (62)

with 〈A〉 = (
∫
dzA)/Lz, and the + and - signs corresponding to ions and to neutrals,

respectively. For the ions

Γi(0) =

∫ 0

−∞
dv‖v‖fi(z = 0, v‖) < 0, (63)

and

Γi(Lz) =

∫ ∞

0

dv‖v‖fi(z = Lz, v‖) > 0, (64)

where we have used the boundary conditions on fi given by expression (57).

For the neutrals

Γn(0) =

∫ 0

−∞
dv‖v‖fn(z = 0, v‖) + Γ0

∫ ∞

0

dv‖v‖fKw(v‖)

=

∫ 0

−∞
dv‖v‖fn(z = 0, v‖) + Γ0,

(65)
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and

Γn(Lz) =

∫ ∞

0

dv‖v‖fn(z = Lz, v‖) + ΓLz

∫ 0

−∞
dv‖v‖fKw(v‖)

=

∫ ∞

0

dv‖v‖fn(z = Lz, v‖)− ΓLz ,

(66)

where we have used the boundary conditions on fn given by expression (58) and the

fact that
∫∞
0
dv‖v‖fKw = −

∫ 0

−∞ dv‖v‖fKw = 1.

Combining the results for the ion and neutral densities and noting that the

ionization contributions to the ion and neutral densities cancel, we obtain a constraint

on the evolution of the total (species-summed), line-averaged density:

∂

∂t

∑

s=i,n

〈ns〉 =
1

Lz

∑

s=i,n

(Γs(z = 0)− Γs(z = Lz))

=
1

Lz

(∑

s=i,n

∫ 0

−∞
v‖fs(z = 0, v‖) + Γ0 −

∑

s=i,n

∫ ∞

0

v‖fs(z = Lz, v‖) + ΓLz

)

= 0.

(67)

This is a consequence of the assumed wall boundary condition, which dictates that any

particles leaving the domain re-enter as neutrals (and thus total density is conserved).

It can be used to test the numerical implementation of the wall boundary condition,

discussed in Sec. 6.

In the following sub-sections, we re-cast these wall boundary conditions in terms

of the normalised distribution functions and modified velocity coordinates described in

Secs. 2 and 3.

4.1. Analytical solution in simplified limit

We can derive an analytical solution for the electrostatic potential for our system

by neglecting charge exchange collisions and by replacing the ionisation source term

appearing in Eq. (1) with a simplified source. In particular, we follow the approach of

Ref. [6] and assume that ionisation occurs at a constant rate and gives birth to ions

with zero parallel velocity. The resulting ion kinetic equation is

∂fi
∂t

+ v‖
∂fi
∂z
− e

mi

∂φ

∂z

∂fi
∂v‖

= RionN
2
e δ(v‖), (68)

with δ(v‖) the Dirac delta distribution. With these assumptions, the ion kinetic equation

decouples from the kinetic equation for the neutrals and makes the problem tractable.

Ions that are formed at a given spatial location z0 are accelerated toward the walls

by the parallel electric field set up by the wall boundary condition. The parallel speed
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of these ions after travelling to a location z that is closer to the wall, v‖(z), is obtained

via conservation of energy:

miv‖(z)2

2
= e (φ(z0)− φ(z)) . (69)

In steady-state, the flux of ions with speeds in the range v‖ to v‖ + dv‖ through the

location z must equal the rate at which these ions are generated between z0 and z0+dz0:

v‖(z)fi(v‖(z))dv‖ = N2
eRiondz0. (70)

Combining Eqs. (69) and (70) and imposing quasineutrality gives

Ne exp

(
eφ(z)

Te

)
=

∫
dv‖fi(z, v‖) =

∫ Lz/2

z

√
mi

2e

N2
eRion√

φ(z0)− φ(z)
dz0

=

∫ φ(Lz/2)

φ(z)

√
mi

2e

N2
eRion√

φ(z0)− φ(z)

dz0
dφ(z0)

dφ(z0),

(71)

which is an implicit equation for φ(z). Setting our gauge so that φ(Lz/2) = 0, and

defining x
.
= −eφ(z0)/Te and y

.
= −eφ(z)/Te, we have

Ne exp (−y) =

∫ y

0

h(x)√
y − xdx, (72)

where

h(x)
.
=
N2
eRion

cs

dz0
dx

. (73)

The density integral appearing in Eq. (72) is of the form of an Abel transform [7], which

can be inverted to yield

h(x) =
Ne

π

d

dx

∫ x

0

dy
exp (−y)√
x− y . (74)

Equating (73) and (74) yields an expression for dz/dx:

dz

dx
=

cs
NeRionπ

d

dx

∫ x

0

dy
exp (−y)√
x− y . (75)

Integrating with respect to x yields an implicit expression for φ(z):

z − Lz
2

= ± cs
πRionNe

∫ x

0

dy
exp (−y)√
x− y

= ± 2cs
πRionNe

D



√
−eφ(z)

Te


 ,

(76)

with D(a) = exp(−a2)
∫ a
0

exp(b2)db the Dawson function, the + sign corresponds to

z > Lz/2 and the − sign corresponds to z < Lz/2.
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4.2. Density evolution

We consider the wall boundary conditions in terms of the modified distribution function

gs given in Eq. (5). The boundary conditions on the ions and neutrals are

gi(z = 0, v‖ > 0, t) = 0 = gi(z = Lz, v‖ < 0, t) (77)

and

gn(z = 0, v‖ > 0, t) =
Γ0

nn
fKw(v‖),

gn(z = Lz, v‖ < 0, t) =
ΓLz

nn
fKw(v‖),

(78)

with the Knudsen cosine distribution given by Eq. (59) and the fluxes toward the wall

at the domain boundaries

Γ0 =
∑

s=i,n

ns

∫ 0

−∞
dv‖
∣∣v‖
∣∣ gs(z = 0, v‖, t) (79)

and

ΓLz =
∑

s=i,n

ns

∫ ∞

0

dv‖
∣∣v‖
∣∣ gs(z = Lz, v‖, t). (80)

4.3. Density and parallel flow evolution

We consider the wall boundary conditions in terms of the normalised distribution

function gs given in Eq. (12) and the peculiar velocity w‖ = v‖ − us. The boundary

conditions on the ions and neutrals are

gi(z = 0, w‖ > −ui, t) = 0 = gi(z = Lz, w‖ < −ui, t) (81)

and

gn(z = 0, w‖ > −un, t) =
Γ0

nn
fKw(w‖ + un),

gn(z = Lz, w‖ < −un, t) =
ΓLz

nn
fKw(w‖ + un),

(82)

with the Knudsen cosine distribution given by (59) and the fluxes toward the wall at

the domain boundaries

Γ0 =
∑

s=i,n

ns

∫ −us
−∞

dw‖
∣∣w‖ + us

∣∣ gs(z = 0, w‖, t) (83)

and

ΓLz =
∑

s=i,n

ns

∫ ∞

−un
dw‖

∣∣w‖ + us
∣∣ gs(z = Lz, w‖, t). (84)

Note that the region in w‖ over which the boundary conditions are imposed depends

on us, which evolves in time. This makes imposition of wall boundary conditions in a

code difficult, if not infeasible.
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4.4. Density and parallel pressure evolution

In this subsection we express the wall boundary conditions in terms of the normalised

distribution function ĝs given by Eq. (26) and the normalised velocity v̂‖ = v‖/vth,s. The

boundary conditions on the ions and neutrals are

ĝi(z = 0, v̂‖ > 0, t) = 0 = ĝi(z = Lz, v̂‖ < 0, t) (85)

and

ĝn(z = 0, v̂‖ > 0, t) =
vth,n
nn

Γ0fKw(v̂‖vth,n),

ĝn(z = Lz, v̂‖ < 0, t) =
vth,n
nn

ΓLzfKw(v̂‖vth,n),
(86)

with the Knudsen cosine distribution given by (59) and the fluxes toward the wall at

the domain boundaries

Γ0 =
∑

s=i,n

nsvth,s

∫ 0

−∞
dv̂‖
∣∣v̂‖
∣∣ ĝs(z = 0, v̂‖, t) (87)

and

ΓLz =
∑

s=i,n

nsvth,s

∫ ∞

0

dv̂‖
∣∣v̂‖
∣∣ ĝs(z = Lz, v̂‖, t). (88)

4.5. Density, parallel flow and parallel pressure evolution

In this subsection we express the wall boundary conditions in terms of the normalised

distribution function ĝs given by Eq. (44) and the normalised velocity ŵ‖ = (v‖ −
us)/vth,s. The boundary conditions on the ions and neutrals are

ĝi(z = 0, ŵ‖ > −us/vth,s, t) = 0 = ĝi(z = Lz, ŵ‖ < −us/vth,s, t) (89)

and

ĝn(z = 0, ŵ‖ > −us/vth,s, t) =
vth,n
nn

Γ0fKw(ŵ‖vth,n + un),

ĝn(z = Lz, ŵ‖ < −us/vth,s, t) =
vth,n
nn

ΓLzfKw(ŵ‖vth,n + un),
(90)

with the Knudsen cosine distribution given by (59) and the fluxes toward the wall at

the domain boundaries

Γ0 =
∑

s=i,n

ns

∫ −us/vth,s
−∞

dŵ‖
∣∣ŵ‖vth,s + us

∣∣ ĝs(z = 0, ŵ‖, t) (91)

and

ΓLz =
∑

s=i,n

ns

∫ ∞

−us/vth,s
dŵ‖

∣∣ŵ‖vth,s + us
∣∣ ĝs(z = Lz, ŵ‖, t). (92)

Note that the region in ŵ‖ over which the boundary conditions are imposed depends

on us and vth,s, which evolve in time. This makes imposition of wall boundary conditions

in a code difficult, if not infeasible.
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normalised variable definition

t̃ t(cs/Lz)

z̃ z/Lz
ṽ‖ v‖/cs
w̃‖ w‖/cs
v̂‖ v‖/vth,s
ñs ns/Ne

ũs us/cs
p̃‖,s p‖,s/(msNec

2
s)

T̃‖,s T‖,s/(msc
2
s)

ṽth,s vth,s/cs
q̃‖,s q‖,s/(msNec

3
s)

φ̃ eφ/Te
R̃in Rin(NeLz/cs)

R̃ion Rion(NeLz/cs)

f̃s fs(
√
πcs/Ne)

Table 1. Definitions for normalised quantities used in the paper. The sound speed

cs =
√

2Te/mi, and Ne and Te are the space- and time-independent density and

temperature, respectively, appearing in the Boltzmann response (4).

5. Normalisation

In this section we define the normalisations used when solving the model equations from

Secs. 2 and 3 numerically. A set of normalisations that apply regardless of the choices

made for the modified distribution function and the parallel velocity coordinate is given

in Table 1. Model-specific normalisations and the normalised equations for each specific

moment kinetic model are provided in the following sub-sections.

Using the definitions given in Table 1 in the standard drift kinetic system of

equations (1)-(4) gives

∂f̃i

∂t̃
+ ṽ‖

∂f̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂f̃i
∂ṽ‖

= −R̃in

(
ñnf̃i − ñif̃n

)
+ R̃ionñif̃n, (93)

∂f̃n

∂t̃
+ ṽ‖

∂f̃n
∂z̃

= −R̃in

(
ñif̃n − ñnf̃i

)
− R̃ionñif̃n, (94)

eφ̃ = ñi =
1√
π

∫ ∞

−∞
dṽ‖f̃i, (95)

and

ñn =
1√
π

∫ ∞

−∞
dṽ‖f̃n. (96)

The normalised forms for the wall boundary conditions given by Eqs. (57)-(61) are

f̃i
(
z̃ = 0, ṽ‖ > 0, t̃

)
= 0 = f̃i

(
z̃ = 1, ṽ‖ < 0, t̃

)
(97)
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and

f̃n
(
z̃ = 0, ṽ‖ > 0, t̃

)
= Γ̃0(t̃)f̃Kw(ṽ‖), f̃n

(
z̃ = 1, ṽ‖ < 0, t̃

)
= Γ̃Lz(t̃)f̃Kw(ṽ‖), (98)

where

f̃Kw(ṽ‖) = c2sfKw(ṽ‖cs) =
3
√
π

T̃
3/2
w

∣∣ṽ‖
∣∣ erfc

( ∣∣ṽ‖
∣∣

√
T̃w

)
, (99)

Γ̃0(t̃) =
∑

s=i,n

∫ 0

−∞
dṽ‖
∣∣ṽ‖
∣∣ f̃s(z̃ = 0, ṽ‖, t̃), (100)

and

Γ̃Lz(t̃) =
∑

s=i,n

∫ ∞

0

dṽ‖
∣∣ṽ‖
∣∣ f̃s(z̃ = 1, ṽ‖, t̃), (101)

with T̃w
.
= Tw/Te.

5.1. Density evolution

We define the normalised distribution function

g̃s
.
= gscs

√
π. (102)

In terms of this normalised distribution function and the normalised quantities defined

in Table 1, Eqs. (9)-(11) become

∂ñs

∂t̃
+
∂ñsũs
∂z̃

= ±R̃ionñiñn (103)

∂g̃i

∂t̃
+
ṽ‖
ñi

∂f̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂g̃i
∂ṽ‖

=
g̃i
ñi

∂ñiũi
∂z̃

+
(
R̃in + R̃ion

)
ñn (g̃n − g̃i) , (104)

and
∂g̃n

∂t̃
+
ṽ‖
ñn

∂f̃n
∂z̃

=
g̃n
ñn

∂ñnũn
∂z̃

− R̃inñi (g̃n − g̃i) . (105)

The normalised forms for the wall boundary conditions (77)-(80) are

g̃i(z̃ = 0, ṽ‖ > 0, t̃) = 0 = g̃i(z̃ = 1, ṽ‖ < 0, t̃), (106)

g̃n(z̃ = 0, ṽ‖ > 0, t̃) =
Γ̃0

ñn
f̃Kw(ṽ‖),

g̃n(z̃ = 1, ṽ‖ < 0, t̃) =
Γ̃Lz

ñn
f̃Kw(ṽ‖),

(107)

with the normalised Knudsen cosine distribution given by Eq. (99) and the normalised

fluxes toward the walls

Γ̃0 =
∑

s=i,n

ñs

∫ 0

−∞
dṽ‖
∣∣ṽ‖
∣∣ g̃s(z̃ = 0, ṽ‖, t̃) (108)

and

Γ̃Lz =
∑

s=i,n

ñs

∫ ∞

0

dṽ‖
∣∣ṽ‖
∣∣ g̃s(z̃ = 1, ṽ‖, t̃). (109)
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5.2. Density and parallel flow evolution

We use the normalised distribution function (102) and define

w̃‖
.
=
w‖
cs
. (110)

Using these normalised quantities and the definitions given in Table 1, Eqs. (9), (21), (24)

and (25) become
∂ñs

∂t̃
+
∂ñsũs
∂z̃

= ±R̃ionñiñn (111)

∂ (ñsũs)

∂t̃
= −∂

(
p̃‖,s + ñsũ

2
s

)

∂z̃
− δs,i

ñs
2

∂φ̃

∂z̃
+ R̃inñsñs′ (ũs′ − ũs)± R̃ionñsñs′ũn (112)

and

∂g̃s

∂t̃
+

(
w̃‖ + ũs

)

ñs

∂f̃s
∂z̃

+ ˜̇w‖,s
∂g̃s
∂w̃‖

= g̃s
∂ñsũs
∂z̃

+
(
R̃in + δs,iR̃ion

)
ñs′ (g̃s′ − g̃s) , (113)

where the top (bottom) sign in Eq. (112) corresponds to ions (neutrals), and

˜̇w‖,s
.
= ẇ‖,s

Lz
c2s

=
1

ñs

∂p̃‖,s
∂z̃
−
(
R̃in + δs,iR̃ion

)
ñs′ (ũs′ − ũs)− w̃‖

∂ũs
∂z̃

. (114)

The normalised forms for the wall boundary conditions (81)-(84) are

g̃i(z̃ = 0, w̃‖ > −ũi, t̃) = 0 = g̃i(z̃ = 1, w̃‖ < −ũi, t̃), (115)

and

g̃n(z̃ = 0, w̃‖ > −ũn, t̃) =
Γ̃0

ñn
f̃Kw(w̃‖ + ũn),

g̃n(z̃ = 1, w̃‖ < −ũn, t̃) =
Γ̃Lz

ñn
f̃Kw(w̃‖ + ũn),

(116)

with the normalised Knudsen cosine distribution f̃Kw given by Eq. (99) and the

normalised fluxes toward the walls

Γ̃0 =
∑

s=i,n

ñs

∫ −ũs
−∞

dw̃‖
∣∣w̃‖ + ũs

∣∣ g̃s(z̃ = 0, w̃‖, t̃) (117)

and

Γ̃Lz =
∑

s=i,n

ñs

∫ ∞

−ũs
dw̃‖

∣∣w̃‖ + ũs
∣∣ g̃s(z̃ = 1, w̃‖, t̃). (118)
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5.3. Density and parallel pressure evolution

We use the already-normalised distribution function ĝs defined in Eq. (26). In terms of

this normalised distribution function and the normalised quantities defined in Table 1,

Eqs. (9), (39), (42) and (43) become

∂ñs

∂t̃
+
∂ñsũs
∂z̃

= ±R̃ionñiñn, (119)

∂p̃‖,s
∂t̃

+ ũs
∂p̃‖,s
∂z̃

= −∂q̃‖,s
∂z̃
− 3p̃‖,s

∂ũs
∂z̃
− R̃ss’

(
ñs′ p̃‖,s − ñsp̃‖,s′

)
± R̃ionñip̃‖,n, (120)

∂ĝs

∂t̃
+
ṽ2th,s
ñs

v̂‖
∂f̃s
∂z̃

+ ˜̂̇v‖,s
∂ĝs
∂v̂‖

= ĝsũs

(
∂ ln ñs
∂z̃

− ∂ ln ṽth,s
∂z̃

)
− ĝs

2p̃‖,s

∂q̃‖,s
∂z̃

−
(
R̃ss’ + δs,iR̃ion

)
ñs′

(
ĝs − ĝs′

ṽth,s
ṽth,s′

)
+ ĝs

(
ñs′

2

(
R̃ss’ + δs,iR̃ion

)( T̃‖,s′
T̃‖,s
− 1

))
,

(121)

and

˜̂̇v‖,s = −
(

δs,i
2ṽth,s

∂φ̃

∂z̃
+ ṽth,sv̂

2
‖
∂ ln ṽth,s
∂z̃

)

+ v̂‖

(
ñs′

2

(
R̃ss’ + δs,iR̃ion

)(
1− T̃‖,s′

T̃‖,s

)
+

1

ṽth,s

∂ũsṽth,s
∂z̃

+
1

2p̃‖,s

∂q̃‖,s
∂z̃

)
.

(122)

The normalised forms for the wall boundary conditions (85)-(88) are

ĝi(z̃ = 0, v̂‖ > 0, t̃) = 0 = ĝi(z̃ = 1, v̂‖ < 0, t̃), (123)

and

ĝn(z̃ = 0, v̂‖ > 0, t̃) =
ṽth,n
ñn

Γ̃0f̃Kw(v̂‖ṽth,n),

ĝn(z̃ = 1, v̂‖ < 0, t̃) =
ṽth,n
ñn

Γ̃Lz f̃Kw(v̂‖ṽth,n),

(124)

with the normalised Knudsen cosine distribution f̃Kw given by Eq. (99) and the

normalised fluxes toward the walls

Γ̃0 =
∑

s=i,n

ñsṽth,s

∫ 0

−∞
dv̂‖
∣∣v̂‖ṽth,s

∣∣ ĝs(z̃ = 0, v̂‖, t̃) (125)

and

Γ̃Lz =
∑

s=i,n

ñsṽth,s

∫ ∞

0

dv̂‖
∣∣v̂‖ṽth,s

∣∣ ĝs(z̃ = 1, v̂‖t̃). (126)
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5.4. Density, parallel flow and parallel pressure evolution

We use the normalised distribution function (44) and the normalised peculiar velocity

ŵ‖ = w‖/vth,s. In terms of these normalised quantities and those defined in Table 1,

Eqs. (9), (21), (39), (47) and (48) become Eqs. (103), (112), (120),

∂ĝs

∂t̃
+
ṽth,s
ñs

(
ṽth,sŵ‖ + ũs

) ∂f̃s
∂z̃

+ ˜̂̇w‖,s
∂ĝs
∂ŵ‖

= ĝsũs

(
∂ ln ñs
∂z̃

− ∂ ln ṽth,s
∂z̃

)
− ĝs

2p̃‖,s

∂q̃‖,s
∂z̃

−
(
R̃ss’ + δs,iRion

)
ñs′

(
ĝs −

ṽth,s
ṽth,s′

ĝs′

)
+ ĝs

(
ñs′

2

(
R̃ss’ + δs,iR̃ion

)( T̃‖,s′
T̃‖,s
− 1

))
,

(127)

and

˜̂̇w‖,s = −w2
‖
∂ṽth,s
∂z̃

+
1

ṽth,s

(
1

ñs

∂p̃‖,s
∂z̃
−
(
R̃ss’ + δsiR̃ion

)
ñs′ (ũs′ − ũs)

)

+
w‖

2p̃‖,s

(
∂q̃‖,s
∂z

+
(
R̃ss’ + δsiRion

) (
ñs′ p̃‖,s − ñsp̃‖,s′

))
,

(128)

The normalised forms for the wall boundary conditions (89)-(92) are

ĝi(z̃ = 0, ŵ‖ > −ũs/ṽth,s, t̃) = 0 = ĝi(z̃ = 1, ŵ‖ < −ũs/ṽth,s, t̃) (129)

and

ĝn(z̃ = 0, ŵ‖ > −ũs/ṽth,s, t) =
ṽth,n
ñn

Γ̃0(t̃)f̃Kw(ŵ‖ṽth,n + ũn),

ĝn(z̃ = 1, ŵ‖ < −ũs/ṽth,s, t) =
ṽth,n
ñn

Γ̃Lz(t̃)f̃Kw(ŵ‖ṽth,n + ũn),

(130)

with the normalised Knudsen cosine distribution f̃Kw given by Eq. (99) and the

normalised fluxes toward the walls

Γ̃0(t̃) =
Γ0

Necs
=
∑

s=i,n

ñs

∫ −ũs/ṽth,s
−∞

dŵ‖
∣∣ŵ‖ṽth,s + ũs

∣∣ ĝs(z̃ = 0, ŵ‖, t̃), (131)

and

Γ̃Lz(t̃) =
ΓLz

Necs
=
∑

s=i,n

ñs

∫ ∞

−ũs/ṽth,s
dŵ‖

∣∣ŵ‖ṽth,s + ũs
∣∣ ĝs(z̃ = 1, ŵ‖, t̃). (132)

6. Numerical implementation

The algorithms described in this Section have been implemented in the code, written in

the Julia programming language, currently available on GitHub at https://github.

com/mabarnes/moment_kinetics.

https://github.com/mabarnes/moment_kinetics
https://github.com/mabarnes/moment_kinetics
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6.1. Time advance

We evolve the normalised systems of equations described in Sec. 5 using a time-marching

scheme (as opposed to an eigensolver) due to its efficiency and due to the nonlinear

nature of the system of partial differential equations under consideration. In particular,

we employ a member of the family of Strong Stability Preserving (SSP) Runge-Kutta

(RK) schemes; see, e.g., [8, 9, 10]. Current SSPRK options implemented in the code

are SSPRK1 (forward Euler), SSPRK2 (Heun’s method) SSPRK3 (Shu-Osher method)

and four-stage SSPRK3. The user can also specify the use of ‘flip-flop’ Lie operator

splitting. Operator splitting limits the time advance scheme to second order accuracy

in step size, but could be useful for separately treating different pieces of physics. Here

we describe the current default option, which is the four-stage SSPRK3 method without

operator splitting.

For convenience of notation, we express the normalised drift kinetic and moment

kinetic equations for the ions and neutrals in the vector form

∂f

∂t
= G[f ], (133)

with f the solution vector containing the evolved quantities; e.g., f =

(ĝi, ĝn, ñi, ñn, ũi, ũn, p̃‖,i, p̃‖,n)T if all of the low-order moments are evolved separately

from the pdf. The operator G accounts for all effects that lead to the evolution of f ,

e.g., parallel streaming, parallel acceleration, charge exchange and ionisation collisions,

as well as all terms in the continuity, force balance and energy equations if they are sep-

arately evolved. The four-stage SSPRK3 method for advancing this system of equations

is 3rd order accurate in time step size ∆t, with a Courant number of two. It is given by

f (1) =
1

2
fn +

1

2
(fn + ∆tG [fn]) ,

f (2) =
1

2
f (1) +

1

2

(
f (1) + ∆tG

[
f (1)
])
,

f (3) =
2

3
fn +

1

6
f (2) +

1

6

(
f (2) + ∆tG

[
f (2)
])
,

fn+1 =
1

2
f (3) +

1

2

(
f (3) + ∆tG

[
f (3)
])
,

(134)

where the superscript n denotes the time level.

We have tested our implementation of SSP RK2 and 4-stage SSP RK3 by calculating

the rms error in the distribution function after it is advected in one dimension with

constant advection speed for ten transits of the z̃ domain:

εrms
.
=

√√√√ 1

Nz

Nz∑

j=1

|fi(zj, t = 10)− fi(zj, t = 0)|2. (135)

Example data are given for a case in which the standard drift kinetic equations from

Sec. 5 are solved with ṽ = 1. The results when paired with a finite difference

discretisation (third order upwind) are given in Fig. 1. For Chebyshev pseudospectral

discretisation on a single element with 4-stage SSPRK3, see Fig. 2.
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Figure 1. RMS error as a function of time step size ∆t and varying values for Nz

for both SSP RK2 (solid lines and circles) and for 4-stage SSP RK3 (dashed lines and

squares) with a third order, upwinded finite difference discretisation. Due to the CFL

restriction that ties temporal resolution to spatial resolution, the range in ∆t over

which time domain errors dominate is limited for RK2 and is effectively non-existent

for RK3.

6.2. Spatial discretisation

There are two discretisation schemes implemented in the code: finite differences and

Chebyshev (pseudo)spectral elements. The user can choose at run-time which scheme

to use for each of the z and v‖ coordinates.

6.2.1. Finite difference discretisation. For the finite difference discretisation, the

corresponding coordinate grid is uniform on the domain [−L/2, L/2], with L the

coordinate box length. The default method employed for derivatives is 3rd order upwind

differences, though 1st and 2nd order schemes are also available as options. For an

overview of upwind differences and a discussion of the merits of the different upwind

schemes, see, e.g. [11]. The associated integration weights used for field-line averages

in z and/or for the v‖ integration required for obtaining fields/moments are obtained

using the composite Simpson’s rule (sometimes referred to as composite Simpson’s 1/3
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Figure 2. RMS error as a function of time step size ∆t for 4-stage SSP RK3 with a

Chebyshev pseudospectral discretisation.

rule):
∫ L

0

dx f(x) ≈ h

3

(N−1)/2∑

j=1

(f(x2j−1) + 4f(x2j) + f(x2j+1)) , (136)

where N is the number of grid points in the coordinate x, and h = L/(N − 1) is the

uniform grid spacing. The composite rule (136) is only applicable for N odd, so it is

supplemented at the boundary by Simpson’s 3/8 rule when N is even.

6.2.2. Chebyshev spectral elements. When using Chebyshev spectral elements, the

corresponding coordinate grid is the Gauss-Chebyshev-Lobatto grid on each element.

For a description of Chebyshev-Gauss quadrature, see, e.g. [12]. Inclusion of

the endpoints within each element facilitates enforcement of continuity at element

boundaries, and the use of Chebyshev polynomials as a basis enables the use of Fast

Fourier Transforms. In our code, these transforms are done using the widely-used

FFTW library [13]. The associated integration weights used for field-line averages in z

and/or for the v‖ integration required for obtaining fields/moments are obtained using

Clenshaw-Curtis quadrature rules [14]. Clenshaw-Curtis quadrature is convenient, as it

allows for the use of endpoints in the integration domain (which is dictated by the use
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of a Gauss-Chebyshev-Lobatto grid) while still exactly integrating polynomials up to

degree N − 1, with N the number of points within the element.

A 1D advection test demonstrating the spectral accuracy of the Chebyshev scheme

on a single element is given in Fig. 3, where the rms error is given by Eq. (135). The

maximum stable time step subject to the CFL restriction is plotted as a function of the

number of z grid points on a single element in Fig. 4 and as a function of the number

of elements Nelem with Nz = 9 fixed in Fig. 5. Slight deviations from the expected

scalings are likely due to the numerical dissipation that is introduced by the use of the

derivative from the upwind element at the overlapping point at element boundaries and

at the boundary of the periodic domain.
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0.0001
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m
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Figure 3. RMS error as a function of the number of grid points Nz. The time advance

scheme used is 4-stage SSP RK3.

6.3. Conservation properties

Each of the system of equations detailed in Secs. 3 and 5 have associated quantities

that should be conserved: In the absence of ionisation collisions, particle number should

be conserved, and certain moments of the evolved pdf should evaluate to constants;

e.g., if the density, parallel flow and parallel pressure are evolved separately from the

normalised pdf ĝs given by Eq. (26) (as detailed in Sec. 3.4), then the system has the
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Figure 4. Maximum stable time step subject to the CFL restriction as a function of

the number of Gauss-Chebyshev-Lobatto grid points. The max stable time step scales

a bit more weakly than 1/N2
z , as expected.

conserved quantities
∫
dŵ‖(1, ŵ‖, ŵ2

‖)ĝs = (1, 0, 1/2). We would like to ensure that such

conservation properties are preserved by the numerical scheme.

The currently-favoured approach in the code for satisfying exactly the desired

conservation properties is to correct the numerical solutions for ñs (if it is appropriate

for particle number to be conserved) and for g̃s or ĝs at the end of each time step. For

the particle density, one can set

ñm+1
s = n̂m+1

s + ñms

(
1−

∫
dz̃ n̂m+1

s∫
dz̃ ñms

)
, (137)

where n̂m+1 is the updated solution (at time level m + 1) to the continuity equation

before applying any conserving correction. This guarantees that
∫
dz̃ (ñm+1

s − ñms ) = 0.

The additional error in the density introduced by this correction is

ñm
(

1−
∫
dz̃ n̂m+1

∫
dz̃ ñm

)
= ñm

(
1−

∫
dz̃
(
ñm+1
exact + εm

)
∫
dz̃ ñm

)

= ñm
∫
dz̃ εm∫
dz̃ ñm

= O(εm),

(138)
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Figure 5. Maximum stable time step subject to the CFL restriction as a function of

the number of elements with the number of grid points per element fixed at 9. The

minimum grid spacing scales inversely with the number of elements, leading to a max

stable time step that is inversely proportional to the number of elements Nelem.

where εm is the error in ñm+1 due to numerical discretisation, ñm+1
exact is the solution for

n̂m+1 in the limit εm = 0, and species subscripts have been suppressed for convenience

of notation.

A similar technique can be applied to conserve quantities such as
∫
dŵ‖ĝ = 1,∫

dŵ‖ŵ‖ĝ = 0 and
∫
dŵ‖ŵ2

‖ĝ = 1/2. As this case, where the density, parallel flow

and parallel pressure are all evolved separately, encapsulates all of the issues one might

encounter when enforcing exact conservation, we present our conserving treatment for

it here. For such a case, we set

ĝm+1 = gm+1 + ĝm
(

1−
∫
dŵ‖g

m+1

)
− ∂ĝm

∂ŵ‖

∫
dŵ‖ŵ‖g

m+1

∫
dŵ‖ŵ‖

(
∂ĝm/∂ŵ‖

)

− ∂ŵ‖ĝm

∂ŵ‖

∫
dŵ‖

(
ŵ2
‖ − 1/2

)
gm+1

∫
dŵ‖ŵ2

‖
(
∂
(
ŵ‖ĝm

)
/∂ŵ‖

) ,
(139)

where gm+1 is the updated solution to the drift kinetic equation before applying any

conserving correction. The additional error in ĝ associated with this correction is O(δm),
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where δm is the error in ĝm+1 associated with discretisation. The correction ensures that∫
dŵ‖ĝm+1 = 1,

∫
dŵ‖ŵ‖ĝm+1 = 0 and

∫
dŵ‖ŵ2

‖ĝ
m+1 = 1/2, provided the corresponding

properties are satisfied for ĝm.

It is thus critical to carefully choose the initial conditions in the code so that these

properties are initially satisfied to machine precision. To do this we first set initial

conditions on the density, parallel flow and parallel pressure profiles, and then construct

the initial, normalised distribution function, g0. This initial distribution function is then

corrected in a manner analogous to gm+1 above:

ĝ0 =
g0∫
dŵ‖g

0+

(
1

2
−
∫
dŵ‖ŵ2

‖g
0

∫
dŵ‖g

0

)(
ŵ2
‖g

0

∫
dŵ‖ŵ2

‖g
0 −

g0∫
dŵ‖g

0

)

/(∫
dŵ‖ŵ

2
‖

(
ŵ2
‖g

0

∫
dŵ‖ŵ2

‖g
0 −

g0∫
dŵ‖g

0

)) (140)

This approach is simple, does not change the order of accuracy of the discretisation

scheme and allows for the use of numerical dissipation to improve numerical stability

properties. Furthermore, in contrast to the discretisation errors that would naturally

arise when relying on a conservative differencing scheme, the error arising from this

correction is easy to monitor, as it is explicitly calculable. Results showing the efficacy

of these corrections are given in Sec. 7

6.4. Mixed velocity grids due to collisions

When employing the parallel velocity coordinates w̃‖ (110), v̂‖ (27) or ŵ‖ (45), the ion

and neutral pdfs will in general be evaluated on different v‖ grids. This is because the

mapping from each of these velocity coordinates to v‖ depends on ṽth,s and/or ũs, both

of which are species (and time) dependent. When including charge exchange and/or

ionisation collisions, one must evaluate the neutral pdf on the ion velocity grid and vice

versa. To achieve this when using one of the aforementioned velocity coordinates, one

must interpolate to obtain it. When using the Chebyshev discretisation, a Chebysev

spectral method is used to perform the interpolation; when using finite differences, a

cubic Hermite spline is used. Note that this interpolation is only necessary when evolving

the parallel flow and/or parallel pressure separately from the distribution function.

6.5. Wall boundary conditions

Note that the boundary condition (58) for the neutrals at z = 0 for v‖ > 0 depends on the

neutral distribution function at z = 0 for v‖ < 0 through Γ0. This distribution function

requires specification of the neutral boundary condition at z = Lz for v‖ < 0, which

itself depends on the distribution function at z = Lz for v‖ > 0. Were one to employ

an implicit time advance algorithm, a response matrix or iterative approach would be

required to address this inter-dependence. For the explicit time advance employed in

the code, this inter-dependence is straightforward to accommodate.
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The procedure employed is to first solve for fs(z, v‖, tm+1) at all (z, v‖) locations

except for (z = 0, v‖ > 0) and (z = Lz, v‖ < 0). As the time advance is explicit, this

can be achieved given {fs(z, v‖, tm)}s=i,n. The solutions for fs(z = 0, v‖ < 0, tm+1) and

fs(z = Lz, v‖ > 0, tm+1) are then used to compute Γ0(tm+1) and ΓLz(tm+1). These fluxes

can then be used in Eq. (58) to compute the boundary values fn(z = 0, v‖ > 0, tm+1)

and fn(z = Lz, v‖ < 0, tm+1). This procedure is the same for all variants of the drift

kinetic and moment kinetics models.

For the models in Sec. 3 where the parallel flow is advanced via force balance,

the parallel velocity coordinate is shifted relative to the true parallel velocity v‖ by the

parallel flow velocity us. As noted in Sec. 4, this introduces a numerical difficulty: The

wall boundary conditions depend on which side of the v‖ = 0 boundary one is on, but

this boundary shifts around in time when using the peculiar velocity as a coordinate.

Consequently, a given w‖ value may correspond to v‖ > 0 at time level m and to v‖ < 0

at time level m + 1. If taking the time derivative of the pdf at fixed w‖, one will

necessarily be mixing regions of phase space on either side of the v‖ = 0 boundary via

time-stepping. This makes enforcement of, e.g., the zero-incoming boundary condition

for ions (81) challenging if not infeasible. In the absence of a solution to this problem,

the use of the peculiar velocity as a coordinate for the ions or neutrals should be avoided

for the open-field line region of the plasma.

It is worth noting that in order to ensure the conservation of the field-line-averaged,

species-summed density (as shown in Sec. 4), care must be taken to ensure that the

properties
∫∞
0
dv‖v‖fKw = −

∫ 0

−∞ dv‖v‖fKw = 1 are exactly satisfied by the numerics.

This is achieved in our case by first obtaining the numerical approximation to these

integrals and then defining a modified fKw that is normalised by this result.

7. Numerical results

In this section we present data demonstrating that our numerical implementation of the

model equations given in Sec. 5 is able to reproduce analytical benchmarks, to preserve

the desired conservation properties and to produce physically sensible results.

7.1. Linear Landau damping of a sound wave

As a first test of the code, we consider the linear Landau damping of a sound wave

for a closed-field-line system (periodic boundary condition in z) with charge exchange

collisions between ions and neutrals, but no ionisation. We initialise the distribution

function for species s to be of the form

fs =
ns√
π

(
ms

2
〈
T‖,s
〉
)1/2

exp

(
−

msv
2
‖

2
〈
T‖,s
〉
)
, (141)

with ns = 〈ns〉+ δns and Ts =
〈
T‖,s
〉

+ δT‖,s, with the angled brackets denoting a field

line average. The piece of the temperature that varies along z, δT‖,s, is initially zero, and



Numerical study of 1+1D drift kinetic models for parallel dynamics 28

δns is chosen to be small compared to 〈ns〉: max(δns(z, t = 0)/ 〈ns〉 (t = 0)) = 0.001.

The system of equations (1)-(4) can thus be linearised to a good approximation. This

facilitates comparisons with the linear analytical theory for this system, presented in

Ref. [5].

For all cases shown here, 〈ni〉 = 〈nn〉 = Ne/2 and
〈
T‖,i
〉

(t = 0) =
〈
T‖,n

〉
(t = 0).

Both the electron-ion temperature ratio and the charge exchange collision frequency

are varied, and damping rates and frequencies are extracted by considering the time

evolution of the spatially-varying component of the electrostatic potential, δφ. In

particular, a least-squares fit for δφ(t)/δφ(t0) is done for each simulation to a function

of the form exp(γ(t − t0)) cos(ωt − ϕ)/ cos(ωt0 − ϕ) to obtain the damping rate −γ,

frequency ω and phase ϕ. The results for solving the standard drift kinetic system of

equations (93)-(96) are given in Fig. 6. There is excellent agreement across a wide range

of temperature ratios and charge exchange collision frequencies, both for the damping of

finite frequency modes (corresponding to the solid lines) and to a zero frequency mode

that appears at larger collisionalities (dashed-dotted lines).
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Figure 6. Normalized growth rate and real frequency as a function of the ion-electron

temperature ratio.

The minor discrepancies between the analytical and numerical damping rates that

are apparent for a handful of the cases are due to the simultaneous presence of both

modes with similar damping rates. This necessitates in some cases resolving the damping

of both modes over many orders of magnitude before the least damped mode dominates

the numerical solution – a challenging task given the ever-increasing filamentation of the

velocity space due to phase mixing. This should be possible to eliminate by carefully

initialising the simulation so that only the least damped mode is present, though we

have not yet attempted this. An example of a case in which both modes are present, as

well as a case in which they are not, is given in Fig. 7.

We present results in Fig. 8 for the same case with T‖,s(t = 0) = Te, but with all of

the low-order moments (density, parallel flow and parallel pressure) evolved separately

from the pdf (see Secs. 3.4 and 5.4 for details of the model equations). There is again



Numerical study of 1+1D drift kinetic models for parallel dynamics 29

Figure 7. Time evolutions of the absolute value of the spatially-varying electrostatic

potential δφ (blue) and the result of a least-squares fit (orange) to obtain the damping

rate, frequency and phase. The left plot corresponds to Te/T‖,i = 2 and R̃in = 0, and

the right plot corresponds to Te/T‖,i = 1 and R̃in = 4 (≈ 0.7 in terms of the normalised

frequency used in Fig. 6).

good agreement across a wide range of charge exchange collision frequencies. We note

that the results obtained with separate evolution of only the density (Secs. 3.1 and 5.1)

and of only the density and parallel flow (Secs. 3.2 and 5.2) are almost identical to the

ones presented here in which all three of the lowest-order moments are evolved separately.

Testing of the case in which density and parallel pressure are evolved separately is

ongoing. The results reported here were obtained using the conserving corrections given

by Eqs. 137 and 139.
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Figure 8. Normalized damping rate and real frequency as a function of the charge

exchange collision frequency for cases with
〈
T‖,s

〉
= Te. The ‘kinetic’ model refers to

the standard drift kinetic system of equations, while the ‘moment-based’ model is one

in which density, parallel flow and parallel pressure are evolved separately from the

modified pdf.

In Figure 9 we show the difference in conservation properties between cases for

which the conservative corrections of Eqs. (137) and 139 are employed and those for
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which no conserving correction is applied. With the conservative implementation, all of

the requisite moments of the modified distribution function are conserved to machine

precision, regardless of numerical resolution.
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Figure 9. Time traces of the deviation from exact conservation of the moments∫
dŵ‖ŵ

m
‖ ĝ for low-resolution (Nz = 9 on one element, Nv = 9 on five elements)

simulations with normalised Rin ≈ 0.3. Solid and dotted lines correspond to

simulations with and without conserving corrections, respectively.

7.2. Plasma on open field lines: analytical comparison

We next compare our simulation results to the analytical solution presented in Sec. 4.1.

As argued in Sec. 6.5, the moment-kinetic models in which the parallel flow are evolved

are not conducive to simulations of plasma on open field lines. Consequently, we restrict

our attention to the drift kinetic model here. A demonstration of the other moment

kinetic approaches (in which only the density or both the density and parallel pressure

are separately evolved) for open field line regions is underway.

The ion equation being solved in the code for the standard drift kinetic model is

∂f̃i

∂t̃
+ ṽ‖

∂f̃i
∂z̃
− 1

2

∂φ̃

∂z̃

∂f̃i
∂ṽ‖

= R̃ion
cs
vδ

exp

(
−ṽ2‖

c2s
v2δ

)
, (142)

where we have approximated δ(v‖) ≈ (1/
√
πvδ) exp(−v2‖/v2δ ) with the proviso that

vδ � cs. In terms of normalised quantities, the solution (76) is

z̃ =
1

2
± 2

πR̃ion

D

(√
−φ̃
)
. (143)

For our benchmark simulation, we use a Chebyshev pseudo-spectral method in both

z and v‖. The z grid consists of two z elements, each containing nine grid points, and

the v‖ grid consists of ten elements, each containing seventeen grid points. The wall
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Figure 10. The steady-state electrostatic potential profile obtained by solving

Eq. (142) (blue line) and by using the analytical solution of Eq. (143) (red line).

temperature Tw is taken to be equal to Te, the source width parameter is vδ = 0.5cs,

R̃ion = 0.688 and the ions are initialised to a Maxwellian velocity distribution with initial

temperature Te and an initial density with Gaussian distribution in z. The resulting

steady-state solution for φ̃(z̃), along with a comparison to the analytical solution (143)

is given in Fig. 10.

Figure 11. Time trace of the species-summed, line-averaged density, normalised by

its initial value.

7.3. Plasma on open field lines: physics study

We finally consider the drift kinetic system of equations given in Sec. 5. We take the

normalised collision frequency factors to be R̃ion = R̃in = 2 and otherwise use the same
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numerical parameters and initial conditions as we did for the analytical benchmark,

except that we use eight z elements rather than two. A cross-section of the numerical

results are presented in Figures 11-13. In Fig. 11 we consider the evolution of the species-

summed, line-averaged density. As shown in Sec. 4.1, this density should be conserved,

and this is indeed the case in the simulation to machine precision. The steady-state

electrostatic potential and particle distribution functions for ions and neutrals are given

in Figs. 12 and 13. As might be expected, the loss of electrons to the walls gives rise to

an electric field that pulls ions out of the simulation domain. These ions are replaced

by neutrals traveling back into the simulation domain, leading to the regions of high

neutral density near the walls (with neutral velocities away from the walls) visible in

Fig. 13. The phase space structure in the ion distribution function is likely a result

of the ionisation of neutrals in the high-density regions near the walls, followed by an

acceleration of these ions towards the nearest wall. This reduces their initial speed away

from the walls and eventually changes their direction of motion and accelerates them

into the wall near which they were generated. Conversely, ions generated sufficiently far

from the nearest wall can cross the symmetry point in z and are accelerated towards

the wall furthest from where they were generated.

As an aside, we note that the kinetic Bohm criterion, which for the case of

Boltzmann electrons can be written [6]
∫
dv‖

c2s
v2‖
fi(v‖) ≤ 2ni, (144)

is satisfied for this simulation.

Figure 12. Electrostatic potential profile in steady state.

8. Conclusions and future plans

There are a few conclusions that can be drawn based on our results. First, the standard

drift kinetic system of equations described in Secs. 2, 4 and 5 is generally well-behaved
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Figure 13. Phase space portraits of the steady-state, normalised ion (left) and neutral

(right) particle distribution functions, f̃i and f̃n.

both for periodic and wall boundary conditions in z. Care should be taken where possible

to ensure that the desired conservation properties are preserved by the numerical scheme,

and we have outlined ways in which this can be achieved. Second, the moment kinetic

model variants in which the peculiar velocity is used as a coordinate give rise to numerical

difficulties when enforcing wall boundary conditions. In the absence of solutions to these

difficulties, use of these particular moment kinetic models in not recommended for the

plasma in open field line regions.

The other moment kinetic model variants – in which only the density or both the

density and parallel pressure are evolved for the ions and neutrals – should work for both

open and closed field line regions. We have verified this to be the case for the model

with only density evolution, but our work on the case with density and parallel pressure

evolution is ongoing. In all cases with the moment kinetic models, we found it important

to apply the conserving corrections detailed in 6.3. In addition to ensuring conservation

to machine precision, we found that application of these corrections enhanced numerical

stability.

The advantages of evolving only the density separately are unclear: such a model

cannot work as a standalone fluid model, even in the collisional limit, and it does not

possess the property that the velocity is normalised to a local thermal speed. The model

in which the parallel pressure is also evolved does possess this latter property, which

may make it worth further exploration in both the 1D and 2D settings. Consequently,

our current thinking is that the best model for ions and neutrals is either the standard

drift kinetic model or the moment kinetic variant in which both density and parallel

pressure are evolved.

The immediate plans going forward should be to extend this work to a two-

spatial-dimension system consisting of a helical magnetic field and to implement a fluid

model for electron dynamics. The latter will allow for a more realistic solution for the

electrostatic potential than that provided by the Boltzmann response of Eq. (4).
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