
Excalibur-Neptune report
2047356-TN-11-1

Task 3 Considerations for 1D1V models
Report covering tasks 3.1, 3.2 and 3.3

Ben Dudson, Peter Hill, Ed Higgins, David Dickinson, and Steven
Wright

University of York

David Moxey

KCL

March 31, 2022



Contents

1 Executive summary 2

2 Introduction 2

3 Test cases 5

3.1 Uncoupled species : Simple 1D advection . . . . . . . . . . . . . 5

3.1.1 Single velocity advection . . . . . . . . . . . . . . . . . . . 5

3.1.2 Multiple velocity advection . . . . . . . . . . . . . . . . . 6

3.1.3 Multiple velocity advection - phase mixing . . . . . . . . . 7

3.2 Uncoupled species : Imposed potential . . . . . . . . . . . . . . . 7

3.2.1 Uniform electric field, uniform density . . . . . . . . . . . 8

3.2.2 Uniform electric field, varying density . . . . . . . . . . . 8

3.2.3 Spatially uniform electric field with temporal variation . . 9

3.2.4 Spatially varying electric field . . . . . . . . . . . . . . . . 9

3.3 Self-consistent electric field . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Coupled species : Stationary ions - Electron plasma wave
- Landau damping . . . . . . . . . . . . . . . . . . . . . . 10

3.3.2 Coupled species : Mobile ions - Sound wave . . . . . . . . 11

4 Phase space 11

4.1 Finite difference implementation . . . . . . . . . . . . . . . . . . 14

4.2 Finite volume implementation . . . . . . . . . . . . . . . . . . . . 16

4.3 Brief comment on performance of python implementations . . . . 18

4.4 Community codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Time integration 20

1



6 Summary 23

7 References 25

A Example GS2 input file : Periodic slab test case 30

1 Executive summary

This report documents some of the work around tasks 83-3.1, 83-3.2 and 83-3.3
looking at the Vlasov-Ampere system in a periodic 1D+1V domain. A num-
ber of test cases are defined and some of the considerations around phase-space
representations and time integration are discussed. Whilst simple python im-
plemenations of this system have been produced, it is likely that future work
should seek to move towards the use of existing realistic production codes, fur-
ther building on the lessons learned in their development.

2 Introduction

In this work we are considering the Vlasov-Ampere system in one dimension.
This is a kinetic problem and we refer to the domain as 1D1V. The goal of this
work is to explore some of the considerations that should be made in designing
a code to model such a system and to provide some reference implementations
as a basis for future study. The document is structured as follows; suitable test
cases of increasing complexity are outlined in section 3, considerations around
the representation of phase-space and numerical approaches are discussed in
section 4, a brief discussion of different time integration approaches is given
in section 5 and we finish with a summary and look to the future in section 6.
Before we progress it is helpful to set out the system and discuss normalisations.

The Vlasov-Ampere system we study (system 2-4 of reference [1]) evolves the
Vlasov equation for ions and electrons and Ampere’s equation for the electric
field. In one dimension we may write the Vlasov equation for species s as

∂fs
∂t

+ vs
∂fs
∂x

+ qs
ms

E
∂fs
∂v

= 0 (1)

2



and Ampere’s equations as

ε0
∂E

∂t
+ J − J = 0 (2)

where the overline indicates a spatially average quantity and the current denisty,
J , is given by

J =
∑
s

qsnsus (3)

with
nsus =

∫ ∞
−∞

vfsdv (4)

is the first fluid moment of the distribution function (i.e. bulk flow density).

Due to the short temporal and spatial scales typically associated with electron
dynamics we use these as the source of our relevant normalisations. We nor-
malise charge, mass, density and temperature to the corresponding electron
values, qe, me, ne,0 and Te,0 respectively. We normalise spatial scales to the
Debye length, λD,

λD =

√
ε0Te
neq2

e

(5)

and velocity scales to the electron thermal velocity1, vth,e

vth,e =
√
Te
me

(6)

. This leads to a natural temporal scale length of 1/ωpe, with

ωpe =

√
neq2

e

ε0me
(7)

The electric field is normalised to EN where

EN =
√

2neTe
ε0

(8)

We can note that this is equivalent to normalising the energy density of the
electric field, U = ε0E

2/2, to the electron thermal energy density (i.e. the
electron pressure, pe = neTe).

1Note there is no
√

2 appearing here.

3



This leaves the distribution function and related current density requiring nor-
malisation. Whilst one may choose to simply normalise the distribution func-
tion to a scalar (e.g. ne/vth,e), it may be convenient to normalise to a velocity
dependent function. Mapping fs → f̂sfN , with fN the distribution function
normalisation and hats representing normalised quantities, we can note that

∂fs
∂vs
→ 1

vth,e

∂f̂sfN
∂v̂s

(9)

Allowing for velocity dependence in fN this becomes

fN
vth,e

[
∂f̂s
∂v̂s

+ f̂s
fN

∂fN
∂v̂s

]
= fN
vth,e

[
∂f̂s
∂v̂s

+ f̂s
∂ log fN
∂v̂s

]
(10)

with the latter form preferred due to avoiding the explicit division by fN , which
may become small. It should be possible to analyically precompute the constant
∂ log fN
∂vth,e

for common choices of normalising function. We retain this form of
the derivative here, noting that choosing a scalar fN will naturally result in
∂ log fN
∂vth,e

→ 0.

The fluid flow velocity can be normalised similarly

nsus = n̂sûsnevth,e =
∫ ∞
−∞

dvvfs =
∫ ∞
−∞

dv̂v̂f̂sfNv
2
th,e (11)

Here we see
n̂sûs = vth,e

ne

∫ ∞
−∞

dv̂v̂f̂sfN (12)

Introducing f̂N = fNvth,e/ne this reduces to

n̂sûs =
∫ ∞
−∞

dv̂v̂f̂sf̂N (13)

and we can define Ĵ =
∑

s q̂sn̂sûs.

Under these normalisations the Vlasov equation becomes

∂f̂s

∂t̂
+ v̂s

∂f̂s
∂x̂

+ q̂s
m̂s

Ê

[
∂f̂s
∂v̂s

+ f̂s
∂ log f̂N
∂v̂s

]
= 0 (14)

4



and Ampere’s equation is

√
2∂Ê
∂t̂

+ Ĵ − Ĵ = 0 (15)

Within this work we choose to study our normalised system, defined by equa-
tions 14, 15 and 13, in a periodic one dimensional domain with zero boundaries
at v → ±∞ and up to two plasma species. One may relax these constraints
readily without changing the form of the equations.

3 Test cases

The Vlasov-Ampere system considered here evolves the distribution function
for ions and electrons along with the consistent electric field. Whilst relatively
simple in appearance, this system can capture a number of interesting and com-
plex physics behaviours. Here, we outline some useful test cases for exploring
the behaviour of specific implementations of this system.

3.1 Uncoupled species : Simple 1D advection

We note that for systems in which the electric field is zero (either physically or
artificially imposed), the ions and electrons are uncoupled and the individual
Vlasov equations reduce to advection in one dimension. Here we propose several
tests in this limit.

3.1.1 Single velocity advection

Advection of initial conditions at a single, fixed speed, v in a periodic box of
length L = 1 for t = NL/v with N ∈ [1, 2, 5, 10] (for example). Here we expect
to find the initial condition is rigidly advected back to the starting location.
One can therefore measure the error by comparing the final result with the
initial conditions. This should be tested for both smooth and non-smooth initial
conditions. Specific examples are a sin wave, f(x) = sin 2πx/L, a Gaussian,
f(x) = exp−(x− L/2)2, and a top-hat, f(x) = H(0.4L)[1−H(0.6L)], with H

5



the Heaviside step function. An example for N = 1 is shown in figure 1 for the
Finite Volume solver discussed in section 4.2. A small extension to this test is
to change from periodic to Dirichlet boundary conditions. Rather than testing
the function once it returns to the starting point one will need to calculate the
expected location after a given time and then compare the numerical result
against the initial condition shifted by the expected amount.

(a) (b)

(c)

Figure 1: Comparison of the results from a finite-volume 1D solver for periodic
advection of sin (a), Gaussian (b) and top-hat (c) initial conditions for different
flux limiters.

3.1.2 Multiple velocity advection

Advection of initial conditions for a grid of velocities. Each velocity is indepen-
dent of all others in this system. As such, this should be equivalent to running
the first test for a range of speeds. This test case enables exploration of 1D
advection in the 1D1V grid setup and also introduces the impact of having a
range of velocities on the time integration, for example.

6



3.1.3 Multiple velocity advection - phase mixing

Repeating the test of section 3.1.2 with initial conditions representing a Maxwellian
multiplied by a sinusoidal variation one expects the distribution function to
simply advect, remaining undamped. However, the moments of the distribution
function are expected to damp out due to phase-mixing. For example, it can be
shown by taking the zeroth moment of the Vlasov equation, that the density is
expected to look like

n(t) = n(0) exp
[
−
(
k‖vtht

)2
/2
]

(16)

This phase mixing is apparent in plots of the distribution function as structures
becoming increasingly sheared. This test case tests the ability to resolve these
structures for a given implementation as well as allowing tests of the velocity
space integration. An example of the density dependence on time from such a
system simulated by GS2 [2] is shown in figure 2 for various velocity resolutions.
One can see that the numerical solutions track the analytic result for increasing
amounts of time as the velocity resolution is increased. Here the velocity reso-
lution only impacts on the calculation of the density and does not enter the rest
of the simulation in this setup in which the electric field has been removed2.
The input file for the medium resolution simulation is provided in section A.
The output of this test will be sensitive to numerical dissipation.

3.2 Uncoupled species : Imposed potential

The next set of test cases aim to test the advection is to explore the advection
in the presence of an imposed potential or electric field. This allows one to test
the coupled advection in x and v whilst avoiding complications introduced by
the inclusion of a self-consistently calculated electric field. This keeps the two
plasma species uncoupled such that we can study either in isolation.

2In other words, each velocity point is independent in the evolution of the distribution
function.

7



Figure 2: The density as a function of time from a periodic slab simulated by
the gyrokinetic code GS2 for varying velocity resolutions, alongside the analytic
solution n(0) exp (−t2/2).

3.2.1 Uniform electric field, uniform density

The simplest test case is introduce an initial distribution function which is uni-
form in the parallel direction and has arbitrary structure in velocity. Introducing
a uniform electric field into this system we expect to see rigid advection in the
±v direction depending on the relative sign of the field and charge. This pro-
vides a simple sanity check of the implementation, but also allows the impact
of the velocity space boundary conditions to be explored.

3.2.2 Uniform electric field, varying density

A small extension to the test of section 3.2.1 is to modify the initial distribution
to include smooth spatial variation. This should initially provide similar results
to the earlier test described in section 3.1.2, except with shift in the velocity

8



which occurs at a constant rate. This should accelerate the rate at which phase
mixing occurs.

3.2.3 Spatially uniform electric field with temporal variation

The test of section 3.2.1 can be further modified to make the imposed electric
field time dependent. This will cause sinusoidal motion in the velocity direction
and, for appropriate settings, can take structure close to one boundary and then
away from it again. This can be a good test of the numerical stability near to
the boundary.

3.2.4 Spatially varying electric field

Adding a spatially varying, constant in time, electric field to the system modifies
the contours of constant total energy (∼ v2/2 +φ) such that they no longer run
parallel to the spatial direction. This can lead to the introduction of potential
wells, seen as contours of constant total energy which are closed without crossing
the parallel boundary. Particles can then become trapped in these wells and they
are no longer free to sample the entire parallel space. Instead they follow closed
trajectories in phase space which take them from positive velocity, to negative
and back again. This is generally seen as rotating structures in phase space. The
nature of this rotation depends on the structure of the imposed potential. Here
we propose two main cases to test. Firstly an imposed potential of the form
cos(x) which satisfies our periodic boundary conditions and is likely to play
a role in realistic simulations3. Secondly we propose a potential of the form
(x − L/2)2. This is motivated to make the contours of total energy concentric
circles. As a result, structures within the last closed contour (where the kinetic
energy just matches the maximum potential energy) should rotate as a solid
body. Examples of these two cases are given in reference [3] and sample results
from a finite volume solver are shown in figure 3. One further test case would
be to introduce a non-smooth electric field, such as a top-hat function. This
will help test the ability to handle sharp features.

3This is the fundamental mode of the Fourier basis and a Fourier representation is likely
to do a good job of representing all solutions in our simple periodic system.

9



(a) (b)

(c) (d)

Figure 3: The distribution function as a function of x (x-axis) and v (y-axis) for
two different times in simulations with imposed potentials of the form cos 2πx
(a/b) and (x− L/2)2 (c/d).

3.3 Self-consistent electric field

We now turn our attention to simulations with an electric field calculated self-
consistently from Ampere’s equation. This case now allows electrons and ions
to be coupled together and we can start to observe physical behaviour. We
therefore propose simple test cases based on capturing physics phenomena.

3.3.1 Coupled species : Stationary ions - Electron plasma wave -
Landau damping

We begin by considering cases in which the ions are considered stationary due
to their relatively large mass. This is a good approximation for high frequency
behaviour (i.e. ω ∼ ωpe) and short scale lengths (i.e. L ∼ λD). Noting our

10



choice to normalise temporal scales to ωpe and length scales to λD we expect
stationary ions to be a good approximation whilst we consider O(1) normalised
times and lengths. As ions are stationary they do not contribute to the current
density, J , and one most simply ensure that their contribution is included in the
calculation of the initial electric field to ensure self-consistent initial conditions.

One of the most basic plasma behaviour is the electron plasma oscillation. Here,
a small perturbation to the electron density results in a perturbed electric field
out of phase with the density perturbation. This acts to rectify the density
perturbation, accelerating electrons back to the uniform equilibrium. The elec-
trons overshoot, however, and the system reverses. This results in an oscillation
with a characteristic frequency given by ωpe. In a simple two-fluid picture this
oscillation should continue unabated. In a kinetic system it’s possible for wave-
particle interactions to damp the wave through a process known as Landau
damping. Taking the wavenumber of the perturbation small compared to the
Debye length should minimise the damping and allow one to observe the plasma
oscillation, whilst taking k ∼ λD will result in damping, for which there are an-
alytic approximations[4]. This helps to test the performance of the phase-space
treatment. It may be helpful to apply a parallel filter such that only one Fourier
harmonic is permitted in the system.

3.3.2 Coupled species : Mobile ions - Sound wave

Finally we consider lower frequency oscillations such that ions can dominate the
dynamics. In particular the plasma sound wave, in which electrons follow the
ions to maintain quasineutrality, is a suitable test case. This has a similar setup
to the electron plasma wave system, except the problem scale is different.

4 Phase space

Now that suitable test cases have been set out we can turn our attention to the
numerical representation and solution of the system. There are many aspects
which must be considered when deciding which approach to take and the re-
sulting choice will vary depending on the motivation at hand. Here we briefly
discuss some of the different competing factors before turning our attention to

11



the different numerical approaches.

Generally, time to solution is a primary metric motivating design decisions when
developing new code. This is often a balance between the time to design, im-
plement and test the code against the time it takes for the resulting code to
run to completion. For any code which will be used by a large community it
is generally worth time to carefully design and test the code, as the perfor-
mance and robustness improvements gained from this will benefit many users
over many simulations. The design of such a code will further be influenced by
how well the problems to be solved can be constrained - in other words is there
one clear system to be solved in all cases, or can the system of equations be
varied somewhat. Finally, one must also consider the extensibility of the code
- will the capability of the code be frozen or do the developers envisage this
evolving significantly in time. Whilst these considerations may not immediately
appear to directly influence the choice of phase-space treatment, these aspects
can in fact be closely coupled. For example, whilst a Fourier treatment of the
periodic parallel direction may appear appealing within system 2-4, building a
code around this choice would prohibit a future change to non-periodic bound-
aries and would also have implications for the potential parallelisation of the
code.

From a performance perspective, we wish for a treatment of phase-space which
allows for efficient parallel scaling (e.g. neighbour limited communication) and
high arithmetic intensity with loop kernels which can make efficient use of accel-
erators. At the same time, the approach should be memory efficient Our choice
must also be able to robustly treat relevant physical behaviours, such as the
appearance of shocks.

We begin by comparing broad approaches to the solution of partial differential
equations (PDE); finite difference (FD), finite volume (FV) and finite element
method (FEM). For all such methods one must consider how one uses an approx-
imate solution to represent the true solution and how this approximate solution
satisfies the PDE. Let us consider the simple advection problem

∂f

∂t
+∇ · (uf) = 0 (17)

In the FD approach we span the domain with a grid and can approximate
derivatives using discrete difference of values associated on this grid. We as-

12



sume the solution is locally smooth, approximated by local polynomials, and
that our approximate solution satisfies the PDE on the grid points but not be-
tween them. Such schemes are relatively intuitive and it is typically simple to
implement compact stencils, limiting the direct coupling across the grid. Unfor-
tunately such methods are not well suited to capturing sharp transitions, can
struggle with complex boundaries and can be difficult to adapt in response to
the evolution of the system. Finite volume methods move from the point based
approach of FD to an element based approach, in which we split the domain
into “cells” and represent the solution as the average across the cell. This al-
lows greater flexibility in adapting the cells to the geometry of the system. In
these methods the time derivative of the cell averaged value is dependent on the
fluxes, uf , evaluated at the interfaces with neighbouring cells. This allows for
better conservation properties than FD schemes, but adds the complication of
evaluating the fluxes on the interface, where the cell averages are discontinuous.
There are several possible approaches to this. One is to assume the solution
takes the cell average at the centre of the cell and to then extrapolate from this
point to the interface using an approximation of the derivative at this point.
This provides different estimates of the flux either side of the interface and one
must solve a Riemann problem to determine a unique value here4. Such meth-
ods are typically equivalent to FD in practice but provide a more convenient
formulation. Alternatively one may seek a continuous interpolating polynomial,
known as reconstruction. Consider seeking a quadratic approximation within
the cell. To uniquely define a quadratic one requires three pieces of informa-
tion. In a FD approach, one may take the value of the solution on the grid
point of interest and either side of it. In FV rather than choosing the value of
the function at three locations we choose to use the function average over three
regions, specicially this cell and the cell either side. This provides a quadratic
approximation valid within the cell of interest, giving a second order method
for evaluating the function on the interface. The extrapolation/interpolation
used in FV methods to find interface values, at second order, are prone to in-
troducing additional extrema into the solution when the solution is not smooth.
To avoid this FV methods are typically used in conjunction with flux limiters,
which effectively apply further constraints to the calculation of the interface
values in order to avoid new extrema and preserve positivity. Whilst it is pos-
sible to extend the FV approach to higher orders, such as through higher order
reconstruction like the PPM method [5], at the expensive of coupling to more
cells, this becomes increasingly challenging when going beyond one dimension.

13



Finite element methods seek to improve on this further. Rather than consider-
ing a cell to be a bounded region centred on a grid point, with a single value
across this range, in a FEM method the cells (or elements) are bounded by grid
points and we choose to represent the local solution in terms of a local basis.
The ability to adapt the order of the basis and size of the elements is an ap-
pealing benefit of this classical FEM scheme. However, different elements share
one grid point, coupling together all elements and resulting in a global implicit
problem to be solved. There is also the complexity in choosing an appropriate
basis function for the problem at hand. A final extension to this is the Discon-
tinuous Galerkin approach to FEM (DG-FEM). Here we decouple the values
on the nodes, such that each element may hold a different value here as in the
FV approach. This then requires a Riemann like solve to construct a unique
global solution, following similar methods as in FV. Such approaches are often
referred to as spectral-hp methods, to reflect the fact that it uses high order
polynomials and it is possible to adapt both the size of the elements and the
order of the local basis as required. Overall DG-FEM appears to offer many of
the attractive advantages that we seek, and this approach is likely to be used
within future Neptune codes. For more information on different approaches and
details of the DG-FEM approach see reference [6].

Whilst the DG-FEM approach is a long term goal, here we are interested in
implementations that allow for the exploration of the test cases outlined in
section 3 and are less concerned with the performance characteristics of the
resulting implementation. We therefore discuss some of the choices to be made
in FD and FV schemes for this system. Implementations of these approaches
have been produced in python to allow exploration of some of these aspects. We
also, however, highlight some examples of “real” community codes implementing
different approaches in section 4.4 which could be used in the next stage of
investigations.

4.1 Finite difference implementation

Here we consider some of the choices to be made in the construction of a FD
approach to the 1D1V system. Firstly we consider the velocity space treatment.

4In simple problems this can be as simple as taking the value from down stream of the
flow, this is a form of upwinding.

14



This impacts on two aspects; the advection in velocity by the electric field and
the velocity space integrals used in the calculation of the flow density and the
charge density for us in the calculation of the evolving and initial electric field
respectively. The simplest approach is to select a uniform grid spanning the
region v ∈ [−vl, vl]. This results in a very simple system which can make use
of standard uniform finite differencing approaches. Considering the integration,
an efficient choice of velocity space grid is determined by Gauss quadrature
rules. In particular, our integration is over v ∈ [−∞,∞] and a Gauss-Hermite
quadrature is appealing. This quadrature can be used for integrals of the form

I =
∫ ∞
−∞

exp
[
−v2]f(v)dv (18)

We wish to evaluate
I =

∫ ∞
−∞

vfs(v)dv (19)

If one evolves the full distribution function fs then it is necessary to rescale this
by exp v2 to use Gauss-Hermite quadrature. This has the potential to greatly
amplify small amplitude errors near the velocity boundaries. To avoid this recall
our earlier choice to map fs → f̂sfN with fN a potentially velocity dependent
normalisation. By choosing fN ∝ exp−v2 one sees that

I =
∫ ∞
−∞

vfs(v)dv =
∫ ∞
−∞

exp
[
−v2]vf̂s(v)dv (20)

and one can use a Gauss-Hermite quadrature with argument vf̂s. Such grids al-
low for highly accurate integrals but one notes that this results in a non-uniform
grid spacing and removes the freedom to pack points aribtrarily. One possible
approach to improve on this is to consider switching the velocity coordinate to
energy and sign of parallel velocity. The energy domain can then be split into
two regions. The lower, closed, region can be handled with a Legendre approach,
whilst the upper region can utilites a Laguerre approach. Such an approach is
used by GS2 [2] and is detailed in reference [7]. Whilst such schemes give a
bit more flexibility we fundamentally give up control over our grid placement in
exchange for accurate integration. This can pose problems if one wishes to pack
points in a certain region. Furthermore, increasing the number of grid points in
order to improve the resolution in one region impacts all other points and can
cause the allowable time step to drop rapidly, due to a combination of larger
maximum velocities on the grid and finer grid spacing. When considering the

15



test cases such as those in section 3.2 where a potential is imposed, there is no
need to perform velocity integration.

Turning to the spatial direction, one can note that for a periodic system a natu-
ral approach to the periodic direction is in fact the use of a Fourier basis. Such
an approach should be spectrally accurate and can be highly efficient when run
in serial. This is appropriate for the small scale systems considered here, un-
fortunately such “global” spectral approaches do not parallelise well unless one
can remain in spectral space throughout and the wavenumbers are independent
(i.e. a linear problem). Instead, a finite difference method should offer improved
scaling efficiency due to a local communication pattern (implemented through
halo exchange). Furthermore, this is more readily adapted to a non-uniform
grid which may become more useful if the periodic boundary conditions are
replaced with more realistic options.

A python implementation of the normalised Vlasov-Ampere system defined by
equations 14, 15 and 13, has been constructed as a part of this work. This
implements uniform finite difference treatments for both directions as well as
offering the option to use quadrature points in v or a Fourier treatment in x.

4.2 Finite volume implementation

As discussed previously, the FV approach offers several advantages over FD and
here we discuss some of the choices made in seeking a python implementation of
a FV treatment of the Vlasov-Ampere system. Firstly, one may note that whilst
the system involves simultaneous advection in two directions, the advection rate
in each direction is a constant. In other words the velocity is independent of
position and the electric field is independent of velocity. This allows one to
consider this as two separate 1D advection problems. The FV approach to 1D
advection of f in x at speed u is

∂f̄i
∂t

+ 1
δxi

[
Fxi+1/2 − Fxi−1/2

]
= 0 (21)

where f̄i is the average value stored in cell with index i, F is the flux uf and
δxi = xi+1/2 − xi−1/2 is the size of the cell. One may then choose to either
discretise the time derivative to produce a time advance scheme, or adopt the

16



method of lines (MoL) and use a generic ODE integrator to evolve f̄i. Here we
prefer to take the MoL approach such that we may adopt library implementa-
tions for ODE integration, allowing us to explore different time integrators with
ease. We note that some approaches to FV schemes, such as MUSCL [8], require
one to discretise the time derivative directly to allow one to obtain information
at the time mid-point, rather than use MoL. Whilst such approaches can offer
tempting benefits, it can become harder to maintain the run time flexibility that
may be desired in a code designed to tackle a wide range of problems.

All that remains, therefore, is to determine how to calculate the flux, or equiv-
alently f , at the cell interfaces. Here we choose to use second order upwinded
extrapolation with flux limiters. In practice this means that we follow the fol-
lowing steps

1. Assume the function takes the cell average value at the cell centre.

2. Calculate the one-sided finite difference approximation of the derivative at
the cell centre, with the direction determined by the sign of the velocity.
For example, if v > 0 we calculate dfi/dx ∼ (fi − fi−1)/dx.

3. Extrapolate from the cell centre to both interfaces using fi±1/2 ≈ fi ±
0.5dxdfi/dx = fi± 0.5(fi− fi−1) (for v > 0). This gives us a second order
estimate of the interface value for the current cell.

4. A first order estimate can be obtained as fi±1/2 = fi.

5. Combine the low and high order interface values with weight determined
by a flux limiter, φ. In other words fi+1/2 = fi+1/2,low+φ(ri)(fi+1/2,high−
fi+1/2,low). Here ri is the ratio of the left and right sided derivatives.

6. Repeat for all cells.

7. The flux estimate may be different on either side of each interface. Here
we choose a unique value by selecting the value downstream of the flow.

The overall approach is not overly complicated to implement but one can see
that there is significantly more logic involved than in a FD approach. This can
manifest as more branches within loops over cells. This can have a significant
impact on performance through preventing vectorisation and costs due to branch

17



misprediction. Furthermore, one must choose an appropriate flux limiter. There
are many available options and generally one seeks a total variation diminishing
limiter in order to avoid the introduction of new extrema. Unfortunately no
one limiter is the optimal choice for all systems and one will generally need to
experiment for a given system. We also note that one may choose φ(r) = 0 or
φ(r) = 1 to always select the low or high order method. Doing so one can often
observe that the time integrator has to do more work when using a true limiter,
rather than either fixed order approach. Figure 4 demonstrates the convergence
of the FV advection solver for the test case set out in section 3.1.1 for a range
of flux limiters. One can note that the limited approaches typically converge
with rate in between the low (first) and high (second) order schemes for smooth
advecting functions. In the case with the top hat the RMS convergence order
is drastically reduced and the flux limiters before better than the fixed order
schemes. Unsurprisingly, this error is dominated by the region around the sharp
gradients. If instead one considers the local error away from these points one
find extremely rapid convergence in the limited cases.

It is relatively straightforward to replace the extrapolation method with a recon-
struction based approach whilst keep the remainder of the algorithm unchanged.
This can allow for the study of higher order representations such as the PPM
method [5] and we note a simple fortran implementation allowing the compar-
ison of constant, linear and parabolic treatments is available at [9]. Further
discussion of such methods for a similar system is given in reference [10], more
detail on FV schemes can be found in reference [11] and [12]. Other python
examples can be found as a part of the Pyro code [13], for example.

4.3 Brief comment on performance of python implemen-
tations

The use of python is commonplace when writing prototype codes due to the fast
implementation cycle arising from the vast array of support packages and clear
language. We note, however, the python is not typically considered especially
performant. When working with numeric problems in python it is generally
advised that one uses numpy arrays and avoids elementwise operations. Many
numpy operations are implemented in a low level backend and as such should of-
fer efficient behaviour. In implementing and testing the FD and FV codes intro-

18



(a) (b)

(c) (d)

Figure 4: The RMS error as a function of grid size for the FV 1D advection
solver with sin (a), Gaussian (b) and top hat (c) initial conditions. The local
error at the centre of the top hat is shown in (d).

duced here it was noted that performance was rather low. Using profiling it was
identified that a large fraction of the run time was spent in various simple numpy
routines, such as roll. It numpy version 1.17 a new interface was introduced to
allow external libraries to offer numpy like functionality in a transparent way
[14]. Unfortunately, this appears to have introduced substantial overhead in all
numpy operations. This can be seen in profiling by a prominent appearnce of the
method numpy.core. multiarray umath.implement array function. It was
found that setting the environment variable NUMPY EXPERIMENTAL ARRAY FUNCTION
to 0 disables this feature and saved around 60% of run time in some test cases.

19



4.4 Community codes

Whilst we have discussed some of the design decisions behind the python FD
and FV implementations, it is important to acknowledge the large array of
existing production codes which exist in the community. Here we briefly refer
to codes with which one may explore the different numerical approaches in a
more realistic setting. Future work should look to incorporate some of these
into the set of reference implementations.

There are many gyrokinetic finite difference codes which one may make use of.
The GS2 code [2] can readily treat the 1D1V system explored here and an exam-
ple for one of the test cases is shown in section 3.1.3. The stella code [15] is an
actively developed flux tube gyrokinetic code. Whilst this shares some heritage
with GS2, it is being used to explore different numerical approaches. In partic-
ular it uses a third order strong stability preserving RK time integrator rather
than the custom implicit scheme of GS2. Furthermore, a non-interpolating semi-
Lagrangian (NISL) scheme [16] is currently being developed for stella, offering
the removal of smoothing associated with traditional semi-Lagrangian schemes
and improving associated CFL limits. There are fewer FV production gyroki-
netic codes, but the ESVM code [17] provides a useful reference implementation
of the Vlasov-Maxwell system in addition to those mentioned in section 4.2.
Finally it is important to highlight the Gkeyll code [18, 19]. This is a discontin-
uous Galerkin gyrokinetic code designed for application in the tokamak edge.
This shares many of the use cases of the intended Neptune code. As such, it
may be useful to use this existing implementation to further explore relevant
aspects of the numerical approach. It may be useful for the Neptune team to
discuss and explore collaboration with the Gkeyll team.

5 Time integration

Having constructed a discrete representation of phase-space, one needs to in-
tegrate the system in time in order to explore the dynamics. There are many
choices of time integrator which could be used with each of the phase-space
schemes. Within the python FD and FV implementations we make use of the
solve ivp method of scipy [20] which provides a consistent interface with which

20



one can employ different time integrators. For the FV scheme we found that the
three different RK schemes (RK23, RK45 and DOP853) provided comparable
behaviour with the lower order schemes being slightly faster but typically ex-
hibiting larger error for the same tolerances. The flexibility to change the time
integrator without large changes to the code is incredibly helpful for testing
out different schemes. This is particularly important when considering codes
for which different problems may be tackled. For example, in systems where a
steady state is sought a low order backwards Euler method can be a good choice;
the dissipation from the implicit scheme helping to damp out small rapid fluc-
tuations and the low order resulting in a stable method with large time step.
However, such an integrator is less likely to be the optimal choice for a dynamic
turbulent system. With the Neptune code having a range of possible applica-
tions it is appropriate to consider how one may design the code such as to enable
easy run time selection of different integrators, similar to solve ivp. The PETSc
library [21] provides one such interface, allowing the user full run time control
over the integrator and the corresponding setup. It may be of interest however
to explore novel integrators not yet available through PETSc. The BOUT++
code [22] addresses this problem with a level of abstraction such that there is
a generic solver interface, for which PETSc is one of the available options. A
similar approach to this may be useful in the Neptune code. We note that it
is possible to utilise PETSc directly from python and it is possible to use cus-
tom integrators within the solve ivp framework. Putting these together, it may
be helpful to construct a wrapper to PETSc which can be used with solve ivp.
This would enable a study of the different time solvers available through PETSc
within the simple python reference implementations.

Strong stability preserving Runge-Kutta (SSP-RK) schemes [12, 23] are a popu-
lar choice of explicit time integrator. These are constructed such as to maintain
conservation properties of the underlying system. For example, in the ND gen-
eralisations of the FV schemes discussed earlier, one can guarantee conservation
provided care is taken in the time discretisation used. This is often based
around two first order forward-Euler half steps. This limits such approaches to
first order accuracy, potentially negating some of the benefits of higher order
represenations. The SSP-RK schemes are constructed from weighted combina-
tions of forward Euler steps with weights selected to ensure conservation, good
accuracy and optimal time steps. These schemes are therefore higher order, with
a four stage third order scheme being particularly popular due to the relatively

21



large time step it affords.

The Vlasov-Ampere system contains a wide range of scales. In particular, the
large ion to electron mass ratio can result in the timescales associated with
electron dynamics being more than an order of magnitude shorter than the ion
scales. In systems in which the electrons are required for consistency but their
fast dynamics do not impact the bulk behaviour this can result in a restrictive
time step when using explicit methods. More generally when there are irrele-
vant fast timescales implicit integrators may offer substantially larger time steps
without degrading the ability to capture the relevant behaviour. Such schemes
generally involve the solution of a nonlinear problem

M · xn+1 = xn (22)

The matrix M will typically be sparse, but of course its inverse will be dense.
For anything other than small problems it is often impractical to directly solve
this problemand instead iterative approaches are commonly used. These are
often implemented as a nested iterative structure, with each nonlinear solver
iteration using a, potentially preconditioned, linear solver. These linear solvers
are often based on iterative Krylov subspace methods. PETSc provides a vast
array of such nonlinear and linear solvers. CVODE of SUNDIALS [24] is another
commonly used nonlinear solver. Like the SSP-RK schemes, CVODE can ensure
positivity is preserved through the use of constraints. There are many variants
of these approaches and it can be possible to avoid storing the matrix M at
all, in so called matrix-free methods. The performance of such solvers is often
heavily dependent on the number of iterations required in the linear solve stage.
This can be strongly influenced by the preconditioning of this system. It is
possible to employ generic preconditioners, such as those provided by HYPRE
[25], or physics based preconditioners (e.g. solving the bounce/transit averaged
problem). Some discussion of preconditioner approaches is given in [26, 27, 28,
29]. The optimal choice is often highly problem dependent and vastly different
performance can be achieved depending on how such preconditioners are set up.

Typically time integrators adapt the time step taken in order to keep the es-
timated error on the step below some specified tolerance. This can introduce
challenges for the efficient scaling of such methods – if a global commuincation
is needed at each trial time step in order to agree an error / time step then
one might expect poor performance at large scale. Iterative schemes may offer

22



a way to side step this by choosing to iterate a sufficiently large number of
times, the scheme may be able to assume that the tolerance is satisfied with-
out communication. This may work well for well behaved systems, but not all
approaches are guaranteed to converge at a fixed rate. One might anticipate
that implicit schemes, able to take fewer larger time steps, will be less sensitive
to this than explicit methods taking many small time steps. However, there
will typically be communication involved in evaluating the right hand side of
the system. One may be able to construct schemes where error estimates are
propagated alongside these other communications such that the information can
propagate across the communicators within a certain number of iterations. This
may allow an approach where the time step is adjusted every N steps (possi-
bly with the rejection of already attempted steps). In addition to adapting the
time step it may also be helpful to adapt the order of the scheme. The domain
of stability for a particular method is typically dependent on the order of the
scheme5. An example of an adapative- step adaptive-order Adams-Bashforth
solver is provided in BOUT++ [30].

An alternative approach is that of local time stepping [31]. Here different time
steps can be used for different regions of the domain. This may be particu-
larly helpful in conjuction with non-uniform/adapative phase-space approaches
where a traditional time integrator may be limited everywhere by the finest res-
olution in the domain. Finally, we note that parallel-in-time approaches, such
as ParaReal [32] and MGRIT [33], offer the appealing ability to parallelise over
the temporal domain as well as the spatial domain and this may be able to make
effective use of exascale resources. We note the ExCALIBUR activity in this
area [34] which may provide useful input to Neptune.

6 Summary

In this report we have discussed the 1D1V system 2-4 of [1]. We begin by
discussing the normalisation approach identifying the first area where the treat-
ment of the phase-space may impact on the form of the system solved. Following
this we summarise a number of increasingly challenging test cases, demonstrat-
ing sample results for some of these using both existing production codes and

5Multi-stage methods tend to have an increasing stable domain as the order increases,
whilst multi-step methods see the opposite trend.

23



a simple python based finite volume code. Following this a general discussion
of different numerical approaches was given introducing some of the differences
between finite difference, finite volume and finite element methods. Some of
the options around the treatment of phase space were discussed in the context
of simple finite difference and finite volume. Examples of community codes
representing these different approaches was also given and it is suggested that
future work may wish to develop reference cases building on some of these ex-
isting codes, and particularly Gkeyll. We finished with a brief discussion of
some of the different approaches to time integration and some of the associ-
ated challenges with going to exa-scale. Overall with the intended flexibility of
the Neptune code it appears advisable to develop structures which allow easy
testing of different approaches, utilising existing libraries whilst allowing novel
methods to be trialled.

24



7 References

[1] Wayne Arter and Benjamin Dudson. Equations for Ex-
CALIBUR/NEPTUNE Proxyapps. https://github.com/
ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/
CD-EXCALIBUR-FMS0021-1.20-M1.2.1.pdf.

[2] Michael Barnes, David Dickinson, William Dorland, Peter Alec Hill,
Joseph Thomas Parker, Colin Malcolm Roach, Stephen Biggs-Fox, Nicolas
Christen, Ryusuke Numata, Jason Parisi, George Wilkie, Lucian Anton,
Justin Ball, Jessica Baumgaertel, Greg Colyer, Michael Hardman, Joachim
Hein, Edmund Highcock, Gregory Howes, Adrian Jackson, Michael T.
Kotschenreuther, Jungpyo Lee, Huw Leggate, Noah Mandell, Adwiteey
Mauriya, Tomo Tatsuno, and Ferdinand Van Wyk. Gs2 v8.1.0, De-
cember 2021. Supported by CCP Plasma (https://gow.epsrc.ukri.or
g/NGBOViewGrant.aspx?GrantRef=EP/M022463/1) and
HEC Plasma (https://gow.epsrc.ukri.org/NGBOViewGra
nt.aspx?GrantRef=EP/R029148/1).

[3] Ammar Hakim. A DG scheme for Vlasov equation with fixed potential.
http://ammar-hakim.org/sj/je/je14/je14-vlasov-fixed-pot.html.

[4] Richard Fitzpatrick. Landau Damping. https://farside.ph.utexas.
edu/teaching/plasma/lectures1/node85.html.

[5] Phillip Colella and Paul R. Woodward. The Piecewise Parabolic Method
(PPM) for gas-dynamical simulations. Journal of Computational Physics,
54(1):174–201, 1984, doi:10.1016/0021-9991(84)90143-8.

[6] Jan S. Hesthaven and Tim Warburton. Nodal Discontinuous Galerkin
Methods, volume 54 of Texts in Applied Mathematics. Springer New York,
2008.

[7] Ryusuke Numata, Gregory G. Howes, Tomoya Tatsuno, Michael
Barnes, and William Dorland. Astrogk: Astrophysical gyrokinetics
code. Journal of Computational Physics, 229(24):9347–9372, 2010,
doi:https://doi.org/10.1016/j.jcp.2010.09.006.

[8] Bram van Leer. Towards the ultimate conservative difference scheme. V.
A second-order sequel to Godunov’s method. Journal of Computational
Physics, 32(1):101–136, jul 1979, doi:10.1016/0021-9991(79)90145-1.

25

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.20-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.20-M1.2.1.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/ukaea_reports/CD-EXCALIBUR-FMS0021-1.20-M1.2.1.pdf
http://ammar-hakim.org/sj/je/je14/je14-vlasov-fixed-pot.html
https://farside.ph.utexas.edu/teaching/plasma/lectures1/node85.html
https://farside.ph.utexas.edu/teaching/plasma/lectures1/node85.html


[9] Michael Zingale. Hydro 1D. https://github.com/zingale/hydro1d.

[10] T.D. Arber and R.G.L. Vann. A Critical Comparison of Eulerian-Grid-
Based Vlasov Solvers. Journal of Computational Physics, 180(1):339–357,
jul 2002, doi:10.1006/jcph.2002.7098.

[11] Michael Zingale. Introduction to Computational Astrophysical Hy-
drodynamics. http://bender.astro.sunysb.edu/hydro_by_example/
CompHydroTutorial.pdf.

[12] Dale R. Durran. Numerical Methods for Fluid Dynamics, volume 32 of
Texts in Applied Mathematics. Springer New York, New York, NY, 2010.

[13] Alice Harpole, Michael Zingale, Ian Hawke, and Taher Chegini. pyro : a
framework for hydrodynamics explorations and prototyping. The Journal
of Open Source Software, 4(34):1265, 2019, doi:10.21105/joss.01265.

[14] Stephan Hoyer and Matthew Rocklin and Marten van Kerkwijk and
Hameer Abbasi and Eric Wieser. NEP 18 — A dispatch mechanism
for NumPy’s high level array functions. https://numpy.org/neps/
nep-0018-array-function-protocol.html.

[15] Michael Barnes, Denis St-Onge, Alexander von Boetticher, Robert Davies,
José Manuel Garćıa Regaña, David Dickinson, William Dorland, Peter Alec
Hill, Joseph Thomas Parker, Colin Malcolm Roach, Matt Landreman,
Hanne Thienpondt, Ryusuke Numata, Jason Parisi, Michael Hardman,
Michael T. Kotschenreuther, and Tomo Tatsuno. stella.

[16] Harold Ritchie. Eliminating the interpolation associated with the semi-
lagrangian scheme. Monthly Weather Review, 114(1):135 – 146, 1986,
doi:10.1175/1520-0493(1986)114¡0135:ETIAWT¿2.0.CO;2.

[17] Michaël J. Touati. Esvm: an open-source finite volume electrostatic
vlasov-maxwell code. Journal of Open Source Software, 6(67):3618, 2021,
doi:10.21105/joss.03618.

[18] Gkeyll Team. Gkeyll. https://github.com/ammarhakim/gkyl.

[19] Ammar H. Hakim, Noah R. Mandell, T. N. Bernard, M. Francisquez, G. W.
Hammett, and E. L. Shi. Continuum electromagnetic gyrokinetic simula-
tions of turbulence in the tokamak scrape-off layer and laboratory devices.
Physics of Plasmas, 27(4):042304, 2020, doi:10.1063/1.5141157.

26

https://github.com/zingale/hydro1d
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
https://numpy.org/neps/nep-0018-array-function-protocol.html
https://numpy.org/neps/nep-0018-array-function-protocol.html
https://github.com/ammarhakim/gkyl


[20] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, War-
ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perk-
told, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods, 17:261–272, 2020,
doi:10.1038/s41592-019-0686-2.

[21] Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed
Brown, Peter Brune, Kris Buschelman, Emil M. Constantinescu, Lisandro
Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Václav Hapla,
Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G.
Knepley, Fande Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes,
Richard Tran Mills, Lawrence Mitchell, Todd Munson, Jose E. Roman,
Karl Rupp, Patrick Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini,
Hong Zhang, Hong Zhang, and Junchao Zhang. PETSc Web page. https:
//petsc.org/, 2021.

[22] Benjamin Daniel Dudson, Peter Alec Hill, David Dickinson, Joseph Parker,
Adam Dempsey, Andrew Allen, Arka Bokshi, Brendan Shanahan, Brett
Friedman, Chenhao Ma, David Bold, Dmitry Meyerson, Eric Grinaker,
George Breyiannis, Hasan Muhammed, Haruki Seto, Hong Zhang, Ilon
Joseph, Jarrod Leddy, Jed Brown, Jens Madsen, John Omotani, Joshua
Sauppe, Kevin Savage, Licheng Wang, Luke Easy, Marta Estarellas, Matt
Thomas, Maxim Umansky, Michael Løiten, Minwoo Kim, M Leconte,
Nicholas Walkden, Olivier Izacard, Pengwei Xi, Peter Naylor, Fabio Riva,
Sanat Tiwari, Sean Farley, Simon Myers, Tianyang Xia, Tongnyeol Rhee,
Xiang Liu, Xueqiao Xu, Zhanhui Wang, Sajidah Ahmed, and Toby James.
BOUT++, 3 2022.

[23] Chi-Wang Shu and Stanley Osher. Efficient implementation of es-
sentially non-oscillatory shock-capturing schemes. Journal of Compu-
tational Physics, 77(2):439–471, 1988, doi:https://doi.org/10.1016/0021-
9991(88)90177-5.

27

https://petsc.org/
https://petsc.org/


[24] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu
Serban, Dan E Shumaker, and Carol S Woodward. SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers. ACM Transactions
on Mathematical Software (TOMS), 31(3):363–396, 2005.

[25] Chow, E and Cleary, A and Falgout, R. Design of the HYPRE precondi-
tioner library. 9 1998.

[26] S Thorne. Priority equations and Test Cases. https://github.com/
ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2047353/TN-01.
pdf.

[27] V Alexandrov, A Lebedev, E Sahin, S Thorne. Linear systems
of equations and preconditioners relating to the NEPTUNE Pro-
gramme. https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/
main/reports/2047353/TN-02.pdf.

[28] M Abalenkovs, V Alexandrov, A Lebedve, E Sahin, S Thorne.
Implicit factorisation preconditioners for NEPTUNE programme.
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/
reports/2047353/TN-03.pdf.

[29] M Abalenkovs, V Alexandrov, A Lebedve, E Sahin, S Thorne. Im-
plicit factorisation preconditioners for non-symmetric problems.
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/
reports/2047353/TN-04.pdf.

[30] David Dickinson. Adaptive Adams-Bashforth solver in BOUT++.
https://github.com/boutproject/BOUT-dev/tree/next/src/solver/
impls/adams_bashforth.

[31] Siegfried Müller and Youssef Stiriba. Fully adaptive multiscale schemes for
conservation laws employing locally varying time stepping. J. Sci. Comput.,
30(3):493–531, mar 2007, doi:10.1007/s10915-006-9102-z.

[32] Jacques-Louis Lions, Yvon Maday, and Gabriel Turinici. Resolu-
tion d’edp par un schema en temps parareel. Comptes Rendus de
l’Academie des Sciences - Series I - Mathematics, 332(7):661–668, 2001,
doi:https://doi.org/10.1016/S0764-4442(00)01793-6.

28

https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2047353/TN-01.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2047353/TN-01.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2047353/TN-01.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2047353/TN-02.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2047353/TN-02.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2047353/TN-03.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2047353/TN-03.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2047353/TN-04.pdf
https://github.com/ExCALIBUR-NEPTUNE/Documents/blob/main/reports/2047353/TN-04.pdf
https://github.com/boutproject/BOUT-dev/tree/next/src/solver/impls/adams_bashforth
https://github.com/boutproject/BOUT-dev/tree/next/src/solver/impls/adams_bashforth


[33] S Friedhoff, R D Falgout, T V Kolev, S MacLachlan, and J B Schroder. A
multigrid-in-time algorithm for solving evolution equations in parallel. 12
2012.

[34] Exposing parallelism: Parallel in Time. https://excalibur.ac.uk/
projects/exposing-parallelism-parallel-in-time/.

29

https://excalibur.ac.uk/projects/exposing-parallelism-parallel-in-time/
https://excalibur.ac.uk/projects/exposing-parallelism-parallel-in-time/


A Example GS2 input file : Periodic slab test
case

&collisions_knobs
collision_model = 'none'
/

&dist_fn_knobs
boundary_option = 'self-periodic'
opt_source = T
/

&dist_fn_species_knobs_1
bakdif = 0.00000000000E+00
fexpr = 0.50000000000E+00
/

&gs2_diagnostics_knobs
nwrite = 10
omegatol = -1.0
write_moments = T
write_ascii = F
/

&init_g_knobs
ginit_option = 'single_parallel_mode'
ikpar_init = 1
chop_side = F
phiinit = 1.0
/

&knobs
delt = 0.003
nstep = 5000
fphi = 1.0
/

30



&kt_grids_knobs
grid_option = 'single'
/
&kt_grids_single_parameters
aky = 1.0e-3
theta0 = 0.00000000000E+00
/
&le_grids_knobs
nesub = 12
nesuper = 4
npassing = 16
/

&source_knobs
source_option = "homogeneous"
/
&species_knobs
nspec = 1
/

&species_parameters_1
bess_fac = 0.10000000000!E-03
fprim = 0.0
mass = 0.10000000000E+01
tprim = 0.0
type = "ion"
z = 0.10000000000E+01

/
&theta_grid_knobs
equilibrium_option = "s-alpha"

/

&theta_grid_parameters
eps = 0.0
epsl = 0.0
kp = 1.0
nperiod = 1
ntheta = 32

31



qinp = 0.0
shat = 0.0

/
&theta_grid_salpha_knobs
model_option = "no-curvature"

/

32


	Executive summary
	Introduction
	Test cases
	Uncoupled species : Simple 1D advection
	Single velocity advection
	Multiple velocity advection
	Multiple velocity advection - phase mixing

	Uncoupled species : Imposed potential
	Uniform electric field, uniform density
	Uniform electric field, varying density
	Spatially uniform electric field with temporal variation
	Spatially varying electric field

	Self-consistent electric field
	Coupled species : Stationary ions - Electron plasma wave - Landau damping
	Coupled species : Mobile ions - Sound wave


	Phase space
	Finite difference implementation
	Finite volume implementation
	Brief comment on performance of python implementations
	Community codes

	Time integration
	Summary
	References
	Example GS2 input file : Periodic slab test case

