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1. Introduction

In reports 2047357-TN-07-02 and 2047357-TN-09-01, we presented 2D drift kinetic
models with wall boundary conditions and periodic boundary conditions, respectively.
The difference between the two models is significant: with periodic boundary conditions,
we needed to add another equation to determine a piece of the potential that only depends
on the radial coordinate. In this report, we discuss how one would connect both models
if one considers a situation in which he boundary conditions switch from being periodic
to being wall boundary conditions at some radial position r = rs. The position r = rs is
an effective ‘separatrix’.

In this report, we first remind the reader of the content in reports 2047357-TN-07-
02 and 2047357-TN-09-01, and we then explain how these models connect at r = rs.
Remarkably, the connection between these two types of boundary conditions requires a
full gyrokinetic treatment around the separatrix. Such a treatment is out of scope of
the ExCALIBUR contract, focused on drift kinetics, so we propose solving the equations
with a ‘separatrix’ in a simple limit in which the treatment can be approximated with a
drift kinetic model.

2. Magnetic field, geometry and orderings

We use the cylindrical coordinates {r, z, ζ} (see report 2047357-TN-07-02 for the direc-
tion of increase of ζ). We consider a magnetized plasma with one ion species with charge
e and mass mi, electrons with charge −e and mass me, and one species of neutrals with
mass

mn = mi. (2.1)

The plasma is magnetized by the helical magnetic field

B(r, ζ) := Bz(r)ẑ +Bζ(r)ζ̂(ζ), (2.2)

where ẑ and ζ̂ are the unit vectors in the direction of ∇z and ∇ζ. Note that the compo-
nents Bz and Bζ only depend on the radial position r.

We assume that the plasma only varies in r and z. We assume that the electric field
produced by the plasma is electrostatic, E = −(∂φ/∂r)r̂− (∂φ/∂z)ẑ, where r̂ is the unit
vector in the direction ∇r. The potential φ(r, z, t) depends on the coordinates r and z
and on time t.

We impose periodic or wall boundary conditions at z = 0 and z = Lz. In the radial
direction, we consider the interval between r = r0 and r = r0 + Lr. The length Lr is
determined by a balance between the fast parallel velocity of the particles along magnetic
field lines and their slow drift across them. The characteristic length between the two
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walls along a magnetic field line is of order

L‖ ∼
B

Bz
Lz. (2.3)

Thus, the typical time that it takes for an ion to move from wall to wall is L‖/vti ∼
(B/Bz)(Lz/vti), where vti :=

√
2Ti/mi is the ion thermal speed and Ti is the ion tem-

perature. For a potential φ of the order of Ti/e, where e is the proton charge, the radial
E×B drift is

vEr := −Bζ
B2

∂φ

∂z
∼ ρi
Lz
vti, (2.4)

where ρi := vti/Ωi is the characteristic ion gyroradius and Ωi := eB/mi is the ion
gyrofrequency. Thus, the time it takes for an ion to cross the domain in the radial
direction is Lr/vEr ∼ LrLz/ρivti. By making this time of the same order as L‖/vti, we
solve for Lr to find

Lr ∼
B

Bz
ρi (2.5)

To simplify the problem to a tractable drift kinetic form, we assume that ρi is much
smaller than Lr. This implies that

ρi
Lr
∼ Bz

B
' Bz
Bζ
� 1, (2.6)

that is, we will limit our model to magnetic fields that are mostly azimuthal and have a
very small vertical component. This is an approximation that is consistent with magnetic
field geometry in conventional tokamaks and also in the edge of many shots in spherical
tokamaks.

We also assume that r0 ∼ Lz � Lr. Since r0 is the characteristic length of variation of
the magnetic field B, the magnetic field barely changes across the domain [r0, r0 + Lr].
Thus, within our ordering, we assume B to be uniform in the domain of interest.

We assume the time derivatives to be of the same order as the parallel and perpendic-
ular time scales that we have discussed above,

∂

∂t
∼ ρi
Lr

vti
Lz
. (2.7)

Our orderings above are based on the assumption φ ∼ Ti/e. In the region of space with
wall boundary conditions, the wall boundary conditions ensure that φ remains of this
order. With periodic boundary conditions, the size of φ is controlled by the momentum
input. The force per unit volume on the plasma due to external sources, neutral-plasma
collisions or ionization must satisfy

|Fi,ext⊥|, |Fe,ext⊥|, |Fin⊥|, |Fen⊥|, |Fi,ion⊥|, |Fe,ion⊥| .
(
ρi
Lr

)2
pi
Lz
, (2.8)

where pi is the ion pressure. This estimate for the force per unit volume comes from
making the force of the order of the perpendicular inertia, ∂(nimiui⊥)/∂t, where the
perpendicular ion velocity ui⊥ is taken to be of order (ρi/Lr)vti (note that this means
that the perpendicular flow is much smaller than the parallel one, which we assume to be
of the order of vti). Equation (2.8) might seem stringent, but the friction between ions
and neutrals and electron and neutrals (due to elastic collisions or ionization) is small in
the closed field line region of the tokamak because the neutral density is small, i.e. we
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can assume that

nnRin ∼ nnRen
√
me

mi
∼ nnRion .

(
ρi
Lr

)2
vti
Lz
, (2.9)

where nnRin, nnRen and nnRion are the ion-neutral, electron-neutral and ionization
collision frequencies.

3. Summary of reports 2047357-TN-07-02 and 2047357-TN-09-01

The models in reports 2047357-TN-07-02 and 2047357-TN-09-01 are comprised of:
• three fluid equations (conservation of particles, parallel momentum and energy) for

ions that have to be solved in conjunction with an ion kinetic equation to determine
the ion density ni = ne, the ion parallel velocity ui‖, the ion temperature Ti and the
normalized ion distribution function Fi;
• five fluid equations (conservation of particles, the three components of momentum

and energy) for neutrals that have to be solved in conjunction with a neutral kinetic
equation to determine the neutral density nn, the three components of the neutral velocity
un, the neutral temperature Tn and the normalized neutral distribution function Fn;
• two fluid equations (conservation of parallel current,

Bz
B

∂

∂z

[
ni
(
ui‖ − ue‖

)]
= 0, (3.1)

and conservation of energy) for electrons that have to be solved in conjunction with
an electron kinetic equation to determine the electron parallel velocity ue‖, the electron
temperature Te and the electron normalized distribution function Fe; and
• the electron parallel momentum equation,

0 = −Bz
B

∂pe‖

∂z
+
eneBz
B

∂φ

∂z
+ Fei‖ + nemennRen(un‖ − ue‖), (3.2)

for the potential φ. Here, Fei‖ is the collisional friction force between electrons and ions.
In report 2047357-TN-07-02, we proposed a method to solve equations (3.1) and (3.2)

in conjunction with wall boundary conditions. Equation (3.1) can be integrated in z
to obtain ue‖(r, z, t) − ue‖(r, 0, t) (recall that ni and ui‖ are time-advanced using ion
equations). With this result, equation (3.2) can be integrated in z to obtain the difference
φ(r, z, t)−φ(r, 0, t) as a function of the unknown ue‖(r, 0, t) (recall that pe‖ is determined
by the electron energy equation and the electron kinetic equation, and that Fei‖ depends
on ue‖). With wall boundary conditions, we could solve for both ue‖(r, 0, t) and φ(r, 0, t).

In report 2047357-TN-09-01, we explained how to use equations (3.1) and (3.2) with pe-
riodic boundary conditions. As in the case with wall boundary conditions, equations (3.1)
and (3.2) give ue‖(r, z, t)−ue‖(r, 0, t) and φ(r, z, t)−φ(r, 0, t) as functions of the unknown
ue‖(r, 0, t). Dividing equation (3.2) by ne, integrating in z and using the periodic bound-
ary conditions for φ, we find the condition

0 =

∫ Lz

0

[
− Bz
neB

∂pe‖

∂z
+
Fei‖

ne
+mennRen(un‖ − ue‖)

]
dz. (3.3)

This condition is satisfied by choosing the correct value of ue‖(r, 0, t). To obtain a similar
condition for φ(r, 0, t), we kept higher order terms in ρi/Lr in the current conservation
equation to find

∂

∂r

(∫ Lz

0

J⊥ · r̂ dz

)
= 0, (3.4)



4 Felix I. Parra, Michael Barnes and Michael Hardman

where the average radial current is∫ Lz

0

J⊥ · r̂ dz =− ∂

∂t

∫ Lz

0

[
nimi

B2

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)]
dz

+
1

B

∂

∂r

[∫ Lz

0

nimi

B2

∂φ

∂z

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)
dz

]

−
∫ Lz

0

niminnRin
B2

(
∂φ

∂r
+

1

eni

∂pi⊥
∂r

)
dz

+

∫ Lz

0

niminn(Rin +Rion)unz
B

dz +

∫ Lz

0

Fext · ẑ
B

dz. (3.5)

Equation (3.4) is the equation for φ(r, 0, t).

4. Model with ‘separatrix’

We consider a case with mixed periodic and wall boundary condition. For r ∈ [r0, rs[
we apply periodic boundary conditions, whereas for r ∈ [rs, r0+Lr] we use wall boundary
conditions.

The problem at r = rs is that, in general, there will be discontinuities in φ and ue‖
because of the different treatment of these two fields on both side of r = rs. These
discontinuities give raise to discontinuities in the ion density, temperature and flow,
and indicate that there is a boundary layer of width ρi � Lr around the ‘separatrix’,
and another boundary layer inside this layer of order (B/Bz)ρe � ρi. Here ρe is the
electron gyroradius. Within the ρi-wide layer, the potential and the ion density ni, the
ion and electron temperatures Ti and Te, the ion and electron parallel velocities ui‖ and
ue‖, and the ion normalized distribution function Fi are continuous, but the normalized
electron distribution function Fe will in general be discontinuous at r = rs. The electron
distribution function Fe is continuous only within the layer of width (B/Bz)ρe. We would
need to solve these layers in details to be able to connect the two sides of the ‘separatrix’
rs.

Thankfully, these layers give straightforward results in the collisionless electron limit
presented in section 5.4.2 of report 2047357-TN-05-02. In the 2D model, this limit cor-
responds to collisions with collision frequencies νss′ such that

B

Bz

νss′Lz
vts

� 1. (4.1)

The advantage of this limit is that the collisional friction forces between electrons, ions
and neutrals in the electron momentum equation (3.2) are small by

√
me/mi � 1.

Thus, even though ue‖ is discontinuous across the ‘separatrix’ rs, the potential φ is not
affected by this discontinuity to lowest order. Indeed, without collisional friction forces,
equation (3.2) simplifies to

0 ' −Bz
B

∂pe‖

∂z
+
eneBz
B

∂φ

∂z
, (4.2)

and pe‖ can be made to be continuous across rs, as we proceed to argue.
Despite the fact that the electron-ion and electron-neutral collisional friction is neg-

ligible in the electron momentum equation, collisions remain important in the electron
kinetic equation. As explained section 5.4.2 of report 2047357-TN-05-02, due to colli-
sions, the electron distribution function is close to a Maxwell-Boltzmann distribution
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whose density and temperature are determined by quasineutrality and the electron en-
ergy equation. If pe‖ is continuous across rs and hence φ is continuous, the boundary layer
has almost no effect on ions, and the ion distribution function is continuous across rs.
Since the ion density determines the density of the Maxwell-Boltzmann electron distribu-
tion function via quasineutrality, it is self-consistent to assume continuity of this density.
The electron temperature requires more thought. Due to the assumption

√
me/mi � 1,

our electron energy equation does not contain any radial transport of electron energy in
the limit (4.1). Thus, it is possible to have a discontinuity (or several) in the electron tem-
perature Te, irrespective of the presence of the ‘separatrix’. Whether such discontinuities
exist depends on our choice of source of energy. The source can represent turbulence, for
example, and turbulent diffusion would smear out discontinuities in the temperature, so
we are allowed to assume that the source ensures continuity of Te.

Then, if we use the simplified electron momentum equation (4.2) and we use an electron
energy source that ensures that Te is continuous, we can solve the problem with the
‘separatrix’ by imposing
• continuity in the ion and neutral density ni and nn, in the ion, neutral and electron

temperature Ti, Tn and Te, and in the ion and neutral average velocities ui‖ and un;
• continuity in the ion and neutral normalized distribution functions Fi and Fn;
• continuity in φ.

The electron parallel flow ue‖ and the electron normalized distribution function Fe will
be discontinuous in general.

To be able to include the friction forces in the electron momentum equation, we need
to solve the layer of width ρi, and this is in general a complex gyrokinetic problem
that requires a treatment similar to the one developed by Geraldini et al. (2017). The
treatment of this layer is outside of the scope of the contract.

5. Discussion

We have proposed a 2D drift kinetic model for a helical magnetic field with a ‘separa-
trix’. This model is only valid in the limit where collisions satisfy the ordering (4.1). This
limit is valid for most tokamaks near the separatrix, but it is not appropriate for the far
scrape-off layer, near the wall. The problem of how to connect to that far scrape-off layer
in a rigorous manner thus remains open.
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