
Report 2047356-TN-12 (D1.3): Elliptic solvers within
Nektar++

David Moxey, King’s College London
Ben Dudson, Peter Hill, Ed Higgins, David Dickinson, & Steven Wright,

University of York

March 30, 2022

Contents

1 Executive summary 1

2 Introduction 2

3 Formulation 3

4 Implementation strategies & operator evaluation 4
4.1 Global matrix approach . 4
4.2 Local matrices . 4
4.3 Static condensation . 5
4.4 Matrix-free operations . 6
4.5 Solvers in Nektar++ . 7

5 Preconditioning 8
5.1 Diagonal . 8
5.2 Linear space . 9
5.3 Block . 9
5.4 Low energy preconditioner . 9

6 Performance 11
6.1 Large-scale parallel testing . 11
6.2 Fluid dynamics simulations . 11

7 Ongoing developments in preconditioning 12

8 Conclusions 15

1 Executive summary

This report focuses on the performance of the elliptic solver within Nektar++ and its scaling in
the limit of large processor counts. Building on the report 2047356-TN-02-2, which introduces
a number of sample test cases for the elliptic solver, we test both the correctness and the func-
tionality of the elliptic solver. This solver has been used within the anisotropic diffusion solver

1

provided under project 2048465, and whose proxyapp code can be found in the NEPTUNE
GitHub repository. We discuss the formulation of an elliptic solver within a high-order finite
element setting, the mapping of these formulation onto performant software and the precondi-
tioning strategies that may be employed to solve such systems. Implementation can be found
in:

• The solution of electrostatic potential for the Hasegawa-Wakatani proxyapp: https:

//github.com/ExCALIBUR-NEPTUNE/nektar-driftwave

• The solution of the Laplacian term as part of the anisotropic heat proxyapp: https:

//github.com/ExCALIBUR-NEPTUNE/nektar-diffusion

• The main Nektar++ code base: https://gitlab.nektar.info/nektar/nektar

2 Introduction

In this report, we briefly summarise the discretisation, performance and implementation of
elliptic solvers within the Nektar++ framework. These examples will mostly focus on ‘slab’-
type evaluations suggested in report 2047356-TN-02-2 as evaluation cases for elliptic problems,
and/or problems found in the computational fluid dynamics that Nektar++ is typically used
within. However they may equally well be generalised to other problems, such as the solution
for electrostatic potential within plasma-based problems. As such, we will consider elliptic
problems of the type

∇ · (D∇u) = f (1)

where D is a d× d tensor and d is the spatial dimension.

In the setting of a high-order finite element discretisation, there are a number of problem-specific
challenges to overcome when considering a high-performance computing implementation of an
elliptic solver:

• In parallel execution the sparse matrix representing the discretised operator is not usually
explicitly constructed. This is because at higher-orders, a more computationally-efficient
implementation strategy is typically to evaluate the operator on a per-element basis, and
combine this with an assembly operation to mimic the action of the global operator on a
given mesh. Indeed, the evaluation of the operator can be done either by constructing local
elemental matrices explicitly, or evaluation of their action via local matrix-free operations
(which is the focus of call 2048465).

• Because of this, the preconditioning of such problems becomes challenging. Although it is
well-known that multigrid-type preconditioning works very effectively on elliptic problems
when coupled with linear C0 discretisations, their use in high-order simulations is not very
effective.

To this end, in this report we outline the approaches being considered within Nektar++ to
address these challenges: in particular, the methods that are already currently available, but
also those presently in development. The report is therefore structured as follows. In section 3,
we consider the formulation of such an elliptic problem in a finite element setting. Section 4
briefly discusses the operator evaluation techniques that can be used in this setting. Then in
section 5 we discuss some of the preconditioning options that may be used in this environment,
followed by examination of test cases in section 6. Section 7 outlines current work being
undertaken on the development of multigrid preconditioning strategies for Nektar++. Finally,
section 8 presents conclusions and other development directions.

2

https://github.com/ExCALIBUR-NEPTUNE/nektar-driftwave
https://github.com/ExCALIBUR-NEPTUNE/nektar-driftwave
https://github.com/ExCALIBUR-NEPTUNE/nektar-diffusion
https://github.com/ExCALIBUR-NEPTUNE/nektar-diffusion
https://gitlab.nektar.info/nektar/nektar

3 Formulation

This section gives a very brief overview of the formulation of an elliptic equation in the
spectral/hp element method. Further details can be found in e.g. Karniadakis & Sherwin [1].
Consider the elliptic equation

∇ · (D∇u) + λu = −f (2)

where D is a d×d tensor on a domain Ω ⊂ Rd. The starting point for any finite element solution
is to express the equation in weak form by multiplying by a test function v from a suitable
trial space V , considering functions u in a test space U , integrating the resulting equality and
applying integration by parts to yield

(D∇u,∇v)Ω − 〈D∇u · ~n, v〉∂Ω + λ(u, v)Ω = (f, v) (3)

where the inner products (·, ·) and 〈·, ·〉 are defined as

(u, v) =

∫
Ω

uv dx, 〈u, v〉 =

∫
∂Ω

uv ds (4)

and ~n is the outwards facing normal from the boundary ∂Ω. In the Galerkin approach, we select
U = V , and then select a finite-dimensional subspace of U given a mesh of N nonoverlapping
elements Ωe such that Ω =

⋃N
e Ωe. In a continuous C0 high-order setting this space is the

piecewise-polynomial space

Dk(Ω) = {vh ∈ C0(Ω) | vh|Ωe ∈ Pk(Ωe)} (5)

where Pk denotes a space of polynomial order less than or equal to k.

The standard spectral/hp approach to discretise (2) starts with an expansion of u and v in
terms of global basis functions Φn ∈ Dk, which are consequently represented as elemental basis
functions φen:

uδ(x) =

Ndof−1∑
n=0

ûnΦn(x) =
N∑
e=1

k∑
n=1

ûenφ
e
n(x) (6)

where φen(x) is the n-th local expansion mode within the element Ωe and ûen is the n-th local
expansion coefficient within the element Ωe. Approximating u and v in this manner (and
assuming homogeneous Neumann boundary conditions for simplicity), we adopt a Galerkin
discretisation of equation (2) where we find an approximate solution uδ ∈ Dk(Ω) such that∫

Ω

(D∇uδ∇vδ + λuδvδ) dx =

∫
Ω

vδfdx ∀vδ ∈ Dk(Ω). (7)

This can be formulated in matrix terms as

Hû = f (8)

where H = L +λM represents the Helmholtz matrix, L is the Laplacian matrix, λ is a positive
constant and M the mass matrix. û are the unknown global coefficients and f the inner product
of the expansion basis with the forcing function. The solution of the discrete elliptic problem
is therefore equivalent to the solution of the matrix problem.

3

4 Implementation strategies & operator evaluation

In this section we briefly outline the implementation strategies that may be employed in the
solution of the elliptic matrix equation (8), with an emphasis on parallel execution. In this
setting, we expect that the mesh is partitioned as a preprocessing step into R subdomains
(weighted appropriately by the number of degrees of freedom, so as to load-balance the prob-
lem). Furthermore, the solution of the matrix equation is given through an appropriate Krylov
solver such as the conjugate gradient method. The dominant cost in this process is therefore
the computation of the action of H, at the n-th iteration of such methods, i.e. Hûn. The
subsections below outline the general approaches that may be taken in a high-order setting.

4.1 Global matrix approach

Mathematically the easiest approach is to assemble the global system H. To do this, we first
ignore the mesh as a whole and construct instead a local elemental matrix He by considering
the left hand integral of equation (7) on a single element Ωe. Then, with knowledge of the
mesh topology and the C0 connectivity between neighbouring elements (and therefore their
basis functions), we form an assembly matrix A which maps the vector of global coefficients û
to a vector of local coefficients ûl. In this manner, we may express the global matrix as

H = A>
(

N⊕
e=1

He

)
A. (9)

In a parallel environment, the sub-matrix of H is constructed for each rank, and then the
action of the gather-scatter operations applied by A> and A are implemented via the external
third-party library gslib [2]1.

From a practical perspective, the construction of H as a global sparse matrix is typically not
recommended at any polynomial order k > 1, since the matrix itself admits a rich structure
based on the locally-dense high-order element matrices which is disregarded in this setting.
Attaining sufficient arithmetic intensity in operator evaluation is also highly challenging due to
the large amount of indirection incurred via the use of standard sparse matrix data structures
(e.g. compressed row/column format).

4.2 Local matrices

Instead, we may elect to consider that the operation is separated into three steps to obtain
v = Hu:

1. obtain the vector of local coefficients from the scatter operation ûl = Aû;

2. compute the matrix-vector product

v̂l =

(
N⊕
e=1

He

)
ul (10)

3. gather the local coefficients as v̂ = A>v̂l.

Mathematically this process is identicial in nature to eq. (9). However step 2 comes with
the distinct advantage that the matrix-vector product is block diagonal: therefore we may
precompute element matrices He as small dense matrices, which consequently greatly increases

1https://github.com/Nek5000/gslib

4

https://github.com/Nek5000/gslib

the arithmetic intensity of the method (even owing for the gather/scatter operations), despite
the complexity remaining unchanged.

This approach has been the standard approach employed within many high-order codes. How-
ever, for large k in three-dimensions, even the local matrices start to increase greatly in size.
We therefore should consider strategies for reducing the dimensionality or complexity of the
problem in some manner. This is the consideration in the following two sections.

4.3 Static condensation

The spectral/hp expansion basis is obtained by considering interior modes, which have support
only in the interior of the element, separately from boundary modes which are non-zero on the
boundary of the element. We align the boundary modes across the interface of the elements
to obtain a continuous global solution. For a three-dimensional problem, the boundary modes
can be further decomposed into vertex, edge and face modes, defined as follows:

• vertex modes have support on a single vertex and the three adjacent edges and faces as
well as the interior of the element;

• edge modes have support on a single edge and two adjacent faces as well as the interior
of the element;

• face modes have support on a single face and the interior of the element.

It is worth emphasising that only certain choices of basis functions support such decomposi-
tions. In the modified basis of Karniadakis & Sherwin, such a structure is readily admitted
for all elemental shape types. The classical Lagrange interpolant basis also admits the same
structure for quadrilateral and hexahedral elements. However, other orthogonal bases such as
the Legendre basis for triangular elements do not support this structure (which also complicates
the imposition of C0 conditions between elements).

When the discretisation is continuous, this strong coupling between vertices, edges and faces
leads to a matrix of high condition number κ. Our aim is to reduce this condition number by
applying specialised preconditioners. However, we can also leverage this structure to reduce
the dimension of the parallel problem solved across the entire grid via static condensation.
Utilising the above mentioned decomposition, we can write the matrix equation as[

Hbb Hbi

Hib Hii

] [
ûb
ûi

]
=

[
f̂b
f̂i

]
(11)

where the subscripts b and i denote the boundary and interior degrees of freedom respectively.
This system then can be statically condensed allowing us to solve for the boundary and interior
degrees of freedom in a decoupled manner. The statically condensed matrix is given by[

Hbb −HbiH
−1
ii Hib 0

Hib Hii

] [
ûb
ûi

]
=

[
f̂b −HbiH

−1
ii f̂i

f̂i

]
. (12)

This is highly advantageous since by definition of our interior expansion this vanishes on the
boundary, and so Hii is block diagonal and thus can be trivially inverted as a preprocessing
step. The above sub-structuring has reduced our problem to solving the boundary problem

S1û = f̂1 (13)

where S1 = Hbb − HbiH
−1
ii Hib and f̂1 = f̂b − HbiH

−1
ii f̂i. Although this new system typically

has better convergence properties (i.e lower κ), the system is still ill-conditioned, leading to

5

a convergence rate of iterative-type solvers such as the conjugate gradient method that is
prohibitively slow. For this reason we need to precondition S1. To do this we solve an equivalent
system of the form:

M−1
(
S1û− f̂1

)
= 0 (14)

where the preconditioning matrix M is such that κ (M−1S1) is less than κ (S1) and speeds up
the convergence rate. Within the conjugate gradient routine the same preconditioner M is
applied to the residual vector r̂k+1 of the conjugate gradient routine every iteration

ẑk+1 = M−1r̂k+1. (15)

We discuss specific preconditioning strategies in section 5.

4.4 Matrix-free operations

A final option is to omit the construction of local matrices entirely and instead evaluate
their action via their summation forms instead. This is called the matrix-free approach and
helps to further increase arithmetic intensity since matrix construction and storage is no longer
required [3].

To demonstrate this approach, consider a straightforward quadrilateral element and further
assume that D is the identity for simplicity. On this element type we use an expansion basis
of the form {φpq(ξ1, ξ2); p = 1, . . . , P ; q = 1, . . . , P}. The approximated function is then given
by the summation

u(ξ) =
P∑
p=1

P∑
q=1

ûpqφpq(ξ1, ξ2) (16)

and the two-dimensional discrete Helmholtz operator now reads

He
δ [m][n] = λ

∑
i

∑
j

wiwjφpq(ξ1i, ξ2j)φrs(ξ1i, ξ2j)|J e
ij|

+
∑
i

∑
j

wiwj(J
e
ij)
−T∇φpq(ξ1i, ξ2j) · (J e

ij)
−1∇φrs(ξ1i, ξ2j)|J e

ij|.
(17)

where the indices i and j again span over the quadrature points, and the indices m and n are
obtained as linear combinations of the indices i, j, p, q, r, and s that depend on the type of
element used on the approximation. For specific details of this calculation the interested reader
could consult Section 4.1.5 of the textbook [1].

The discrete Helmholtz operator can be further split into the mass operator M e
δ and the

Laplacian operator Le
δ yielding

He
δ = λM e

δ + Le
δ. (18)

The mass operator can be rewritten in matrix form as

M e
δ = BTWB, (19)

where the dense basis matrix B contains terms of the form φpq(ξ1i, ξ2j), and the components
of the diagonal matrix W are the weights wiwj|J e

ij|.

Noting that the derivative of the basis functions with respect to the local coordinates for two-
dimensional expansions is

∇φ(ξ1i, ξ2j) =

∂φ

∂ξ1i

∂φ

∂ξ2j

 , (20)

6

the inverse of the Jacobian matrix (Je)−1 is

(J e)−1 =

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ1

∂x2

∂ξ2

∂x2

 , (21)

and the Laplacian operator can be expanded as

Le
δ =

∑
i

∑
j

wiwj[(
∂ξ1

∂x1

∂φpq
∂ξ1

+
∂ξ2

∂x1

∂φpq
∂ξ2

)(
∂ξ1

∂x1

∂φrs
∂ξ1

+
∂ξ2

∂x1

∂φrs
∂ξ2

)

+

(
∂ξ1

∂x2

∂φpq
∂ξ1

+
∂ξ2

∂x2

∂φpq
∂ξ2

)(
∂ξ1

∂x2

∂φrs
∂ξ1

+
∂ξ2

∂x2

∂φrs
∂ξ2

)]
ij

|J e
ij| .

(22)

We can now rewrite the Laplacian operator in matrix form as

Le
δ = UTWU + V TWV , (23)

with U and V being

U =

(
Λ

(
∂ξ1

∂x1

)
Dξ1 + Λ

(
∂ξ2

∂x1

)
Dξ2

)
B (24)

V =

(
Λ

(
∂ξ1

∂x2

)
Dξ1 + Λ

(
∂ξ2

∂x2

)
Dξ2

)
B . (25)

Here Λ(f) is is a diagonal matrix containing terms of the form f(ξ1i, ξ2j), and Dξi is a block-

diagonal differentiation matrix with entries dhp(ξ1)

dξ1

∣∣∣
ξ1i

where hp(ξ) is the one-dimensional La-

grange polynomial.

In this form, we have written the Helmholtz matrix mostly in terms of element-independent
matrices: the Dξ and quadrature locations and weights are entirely defined on the standard
element. The only elemental-specific information required is therefore the geometric factors
and their associated Jacobian. When combined further with sum-factorisation to reduce the
cost of the summation from a complexity of O(P 2d) to O(P d+1), matrix-free evaluation gives
performant and vectorisation-ameanable approach to operator evaluation (as shown in [3]).

4.5 Solvers in Nektar++

Nektar++ exposes some of these approaches within the GlobalSysSoln classes, which imple-
ment these strategies:

• Full solves operate on the full operator;

• StaticCond solves operate on the statically-condensed solver;

• MultiLevelStaticCond solves apply the static condensation approach repeatedly to fur-
ther reduce the system size.

The precise evaluation strategy depends on the actual solver being used to solve the resulting
systems:

7

• Direct solves use LAPACK to solve the matrix system, and can be used in serial only;

• Iterative solves use a conjugate gradient (symmetric) or GMRES method (non-symmetric)
to solve the system, either in serial or parallel;

• Xxt uses the XX> direct parallel solver [4] to solve the system;

• PETSc uses the PETSc linear algebra package for the system.

The combination of these strategies results in a concrete implementation. For example:

• DirectFull solves the full matrix system with LAPACK.

• IterativeFull does the same, but using CG/GMRES. In this case the matrix evaluation
would be done via a matrix-free approach.

• IterativeStaticCond solves the statically-condensed system using an iterative approach.
This is the default method in parallel.

• DirectMultiLevelStaticCond solves the multi-level statically condensed system using a
direct solver. This is the default method in serial execution.

5 Preconditioning

Within the Nektar++ framework a number of preconditioners are available to speed up the
convergence rate of the conjugate gradient routine. The table below summarises each method,
the dimensions of elements which are supported, and also the discretisation type support which
can either be continuous (CG) or discontinuous (hybridizable DG).

Name Dimensions Discretisations

Null All All
Diagonal All All
FullLinearSpace 2/3D CG
LowEnergyBlock 3D CG (static cond.)
Block 2/3D All

FullLinearSpaceWithDiagonal All CG
FullLinearSpaceWithLowEnergyBlock 2/3D CG (static cond.)
FullLinearSpaceWithBlock 2/3D CG

The default is the Diagonal preconditioner. The above preconditioners are specified through
the Preconditioner option of the SOLVERINFO section in the session file. For example, to
enable FullLinearSpace one can use:

<I PROPERTY="Preconditioner" VALUE="FullLinearSpace" />

Alternatively one can have more control over different preconditioners for each solution field
by using the GlobalSysSoln section of the XML file (for more details, consult the user guide).
The following sections specify the details for each method.

5.1 Diagonal

Diagonal (or Jacobi) preconditioning is amongst the simplest preconditioning strategies. In
this scheme one takes the global matrix H = (hij) and computes the diagonal terms hii. The
preconditioner is then formed as a diagonal matrix M−1 = (h−1

ii).

8

5.2 Linear space

The linear space (or coarse space) of the matrix system is that containing degrees of freedom
corresponding only to the vertex modes in the high-order system. Preconditioning of this space
is achieved by forming the matrix corresponding to the coarse space and inverting it, so that

M−1 = (S−1
1)vv. (26)

Since the mesh associated with higher order methods is relatively coarse compared with tradi-
tional finite element discretisations, the linear space can usually be directly inverted without
memory issues. However such a methodology can be prohibitive on large parallel systems, due
to a bottleneck in communication.

In Nektar++ the inversion of the linear space present is handled using the XXT library [4].
XXT is a parallel direct solver for problems of the form Ax̂ = b̂ based around a sparse
factorisation of the inverse of A. To precondition utilising this methodology the linear sub-
space is gathered from the expansion and the preconditioned residual within the CG routine is
determined by solving

(S1)vvẑ = r̂. (27)

The preconditioned residual ẑ is then scattered back to the respective location in the global
degrees of freedom.

5.3 Block

Block preconditioning of the C0 continuous system is defined by

M−1 =

 (S−1
1)vv 0 0
0 (S−1

1)eb 0
0 0 (S−1

1)ef

 (28)

where diag[(S1)vv] is the diagonal of the vertex modes, (S1)eb and (S1)fb are block diagonal
matrices corresponding to coupling of an edge (or face) with itself i.e ignoring the coupling to
other edges and faces. This preconditioner is best suited for two dimensional problems.

5.4 Low energy preconditioner

Low energy basis preconditioning follows the methodology proposed by Sherwin & Casarin. In
this method a new basis is numerically constructed from the original basis which allows the
Schur complement matrix to be preconditioned using a block preconditioner. The method is
outlined briefly in the following.

Elementally the local approximation uδ can be expressed as different expansions lying in the
same discrete space V δ

uδ(x) =

dim(V δ)∑
i

û1iφ1i(x) =

dim(V δ)∑
i

û2iφ2j(x). (29)

Since both expansions lie in the same space it is possible to express one basis in terms of the
other via a transformation, i.e.

φ2 = Cφ1 =⇒ û1 = CT û2. (30)

Applying this to the Helmholtz operator it is possible to show that

H2 = CH1C
T . (31)

9

For sub-structured matrices (S) the transformation matrix (C) becomes

C =

[
R 0
0 I

]
. (32)

Hence the transformation in terms of the Schur complement matrices is:

S2 = RS1R
T . (33)

Typically the choice of expansion basis φ1 can lead to a Helmholtz matrix that has undesirable
properties i.e poor condition number. By choosing a suitable transformation matrix C it is pos-
sible to construct a new basis, numerically, that is amenable to block diagonal preconditioning,
given by

S1 =

 Svv Sve Svf
STve See Sef
STvf STef Sff

 =

[
Svv Sv,ef
STv,ef Sef,ef

]
. (34)

Applying the transformation S2 = RS1R
T leads to the following matrix

S2 =

[
Svv + RvS

T
v,ef + Sv,efR

T
v + RvSef,efR

T
v [Sv,ef + RvSef,ef]A

T

A[STv,ef + Sef,efR
T
v] ASef,efA

T

]
(35)

where ASef,efA
T is given by

ASef,efA
T =

[
See + RefS

T
ef + SefR

T
ef + RefSffR

T
ef Sef + RefSff

STef + SffR
T
ef Sff

]
. (36)

To orthogonalise the vertex-edge and vertex-face modes, it can be seen from the above that

RT
ef = −S−1

ff STef (37)

and for the edge-face modes
RT
v = −S−1

ef,efS
T
v,ef . (38)

Here it is important to consider the form of the expansion basis since the presence of S−1
ff will

lead to a new basis which has support on all other faces; this is problematic when creating
a C0 continuous global basis. To circumvent this problem when forming the new basis, the
decoupling is only performed between a specific edge and the two adjacent faces in a symmetric
standard region. Since the decoupling is performed in a rotationally symmetric standard region
the basis does not take into account the Jacobian mapping between the local element and global
coordinates, hence the final expansion will not be completely orthogonal.

The low energy basis creates a Schur complement matrix that although it is not completely
orthogonal can be spectrally approximated by its block diagonal contribution. The final form
of the preconditioner is:

M−1 =

 diag[(S2)vv] 0 0
0 (S2)eb 0
0 0 (S2)fb

−1

(39)

where diag[(S2)vv] is the diagonal of the vertex modes, (S2)eb and (S2)fb are block diagonal
matrices corresponding to coupling of an edge (or face) with itself i.e. ignoring the coupling to
other edges and faces.

10

0 20000 40000 60000 80000 100000 120000 140000
Nproc

0

2

4

6

8

10

12

14

16

Sp
ee

du
p

Mira, BG/Q
Ideal

Figure 1: Strong scaling of the preconditioned conjugate gradient solver, run on a mesh of
a Formula 1 front wing section (pictured right), consisting of 3.3M tetrahedral and prismatic
elements. Speedup is calculated relative to runs on 8192 processors.

6 Performance

In this section we briefly outline performance of the elliptic solver from the perspective of parallel
efficiency for the IterativeStaticCond solver. We note that other NEPTUNE deliverables
(particularly those from project 2048465) focus on the outline performance properties of matrix-
free operators. Nektar++ has been used on a wide variety of HPC platforms. We report on
two of the largest simulations to date:

• A diffusion problem over a complex geometry of a Formula 1 car on the Mira supercom-
puter, which shows general speedup of the elliptic solver under simple preconditioning
strategies.

• A more realistic fluid dynamics simulation of an Elemental RP1 car on the supercomputer
ARCHER2.

6.1 Large-scale parallel testing

As part of validation of the solver at large scales, simulations were performed on both the
BG/Q at ANL and the Cray XK7 at ORNL for preliminary testing of Nektar++ on extremely
large core counts. In Fig. 1, we present the results of strong scaling simulations up to 131K
processors on the BG/Q, where we measure relative speedup when compared to a simulation on
8192 processors. The starting point for these tests is a complex topology of a Formula 1 front
wing section, which is 6th order accurate in space. We then measure the mean execution time
for a single iteration of the conjugate gradient solver, which represents the most processor- and
communication-intensive part of the solver. At 131K processors, there are only 25 elements per
process. This of course is not a representative example of a full complex fluid dynamics solver,
since the setup is deliberately simple: a diffusion equation with simple Jacobi preconditioning.
However it demonstrates that the core solve itself is readily scalable to high core counts.

6.2 Fluid dynamics simulations

Results are shown in Figure 2 for a strong scaling test using early access to the ARCHER2
facility, using between 2k and 50k cores. The test case under investigation is a fifth-order
incompressible fluid dynamics simulation of a track car configuration at Reynolds number of

11

0

10

20

30

Figure 2: Strong scaling of the Elemental RP1 track car simulation on the ARCHER2 facility.

approximately 1 million, on a mesh of mixed tetrahedral/prismatic elements, so that at 50k
cores we observe around 70 elements per computing core. This therefore represents a mesh
of around double the density of the test case above. Preconditioning in this case uses the
low-energy block preconditioner for all simulation variables.

At lower core counts, relatively high memory usage per node for this more realistic case means
that superlinear scaling is observed. However beyond around 20,000 cores, memory per node
drops sufficiently so that cache usage provides more effective performance, thereby bringing
scaling into a more linear regime. We note that these results were obtained very shortly after
early access was made available for the 4-cabinet system in November 2021, and so may differ
from results available now. However it also highlights the general performance capability of the
code for a more realistic problem.

7 Ongoing developments in preconditioning

In the test cases discussed above, one potential limitation to scalability is the preconditioning
strategies being used, particularly when considering Poisson problems of the form

∇2p = −f (40)

in solving for pressure p or, in the case of plasma-related applications, electrostatic potential φ.
It is well-known that multigrid methods are preferred method for solving the resulting symmet-
ric linear systems with optimal and mesh-independent convergence. However, when used with
unstructured meshes, the use of geometric multigrid (GMG) is not straightforward, requiring
the use of algebraic multigrid (AMG) instead. Unlike GMG, where the coarse-grid operators
are typically obtained via geometric coarsening and rediscretizations, AMG does not use the
geometric information but instead builds the coarse grid operators algebraically. Algebraic
coarsening results in a loss of sparsity, leading to poor performance and scalability, especially
for large-scale problems. This is usually addressed by employing sparsity control techniques,
such as dropping values below a specified threshold at coarser levels. Such measures can address
the sparsity issues, albeit with some loss of convergence rates. Additionally, they introduce an
additional parameter that needs to be tuned, making the overall solver or preconditioner less

12

h, p = 4

coarsen

h, p = 2

coarsen

h, p = 1

coarsen

2h, p = 1

Figure 3: Illustration of the coarsening strategy of GIAMG for quadrilateral elements with
nodal basis of polynomial order p = 4. First, We p-coarsen from p = 4 to p = 2, and then again
p-coarsen from p = 2 to p = 1. The total number of elements—and therefore the mesh—does
not change during p-coarsening. Once we reach linear elements, we perform h-coarsening to
obtain a coarser mesh and smaller system.

robust. This issue is exacerbated for high-order operators that are denser to begin with, and
get even denser on coarser grids, leading to poor scalability.

In some sense the linear space preconditioner outlined in section 5 can be viewed as a form
of multigrid, where in a single-level V-cycle the restriction operator is the extraction of linear
modes and no smoothing is performed. However the reliance on XX> imposes natural scala-
bility restrictions so that beyond 104 cores, and the lack of smoothing does not guarantee many
of the convergence properties that a multigrid method should theoretically provide.

In work currently being developed2, to circumvent this problem we are considering a geometri-
cally informed algebraic multigrid approach (GIAMG), in which we perform two phases:

• p-coarsening: in which the problem is coarsened by reducing the polynomial order of the
basis functions and degrees of freedom within each element, resulting in a local coarsening;
followed by

• algebraic h-coarsening: also known as algebraic multigrid (AMG), in which the mesh is
coarsened based on the specific matrix connectivity properties.

This is visualised in figure 3. We note that for the grids obtained using p-coarsening, we
effectively increase the sparsity as we go to coarser levels. This enables us to offset the loss
of sparsity encountered when generating coarser levels using AMG. This plays a major part
in ensuring that the overall scalability remains good. In addition, if the high-order system
is generated using a modal basis, then the restriction operation is simply an injection, i.e., a
lower order mode is injected to the coarser level. This indicates the prolongation and restriction
operators will only have zero- or single-valued entries. As a result, it is extremely efficient to
perform p-coarsening for such high-order systems. Note when using modal basis, the sparsity
of coarser level matrices is further reduced due to the injection during interpolation, compared
to using a nodal basis.

To test this approach, we consider the sample pin-type breeder blanket configuration used for
reactor cooling, shown in figure 4. We focus on an under-resolved DNS at Re = 104 with a
coarse mesh consisting of around 150000 tetrahedral and prismatic elements. The coarse nature
of these simulations, together with large changes in velocity across a small region at the end of
the pin, together with high aspect ratio elements at the walls, makes the systems particularly
challenging to precondition at high order.

We plot the convergence results using GIAMG for p from 1 to 5 as shown in Figure 4. For this

2A geometrically informed algebraic multigrid preconditioned iterative approach for solving high-order finite
element systems. S. Xu, M. Rasouli, R. M. Kirby, D. Moxey and H. Sundar, under review in Numerical Linear
Algebra with Applications.

13

Figure 4: Geometry and mesh of the computational domain.

assemble the systems are the solutions after solving the governing equations for some time steps
and reaching a physically-meaningful state. We only solve for one time step in our experiments
since the matrices are not changing with time. Considering that very high order of basis function
is typically not favored in practice for such a complex engineering application, we choose a rea-
sonably high order of p = 5 as our maximum basis order in this example. The finest level matrix
size and number of nonzeros are 6, 604, 956⇥6, 604, 956 and 1, 129, 952, 608, respectively. All the
experiments (except the scaling experiment) are performed using 3 nodes with 40 cores on each
node, resulting in a total 120 MPI tasks using University of Utah CHPC computing resources.

3.2.1. Convergence results

We plot the convergence results using GIAMG for p from 1 to 5 as shown in Figure 5. For this
more complex operator, we set the convergence criterion to be the relative residual less than 10�6.
In this case, we only reduce the basis order by 1 at each level during p-coarsening followed by 6
additional levels of coarsening using smoothed aggregation. We perform 2 Chebyshev iterations in
pre- and postsmoothing. The sizes and numbers of nonzeros of the coarsest level matrices in these
cases are slightly di↵erent, varying from 303⇥303 to 315⇥315, and 32338 to 34191, respectively,
which are all reasonably small at the coarsest level for the superLU solver. We can see the number
of iterations does not significantly increase as we increase p order. The convergence of p = 3 case
looks slightly inferior to other cases. However, it still behaves within a reasonable range, and the
convergence pattern is similar to that in other cases.

3.2.2. Detailed analysis at p = 5

We present a detailed analysis at p = 5 to comprehensively evaluate the performance of our
GIAMG solver. All the timing presented in this section is the average across all processes. 6 levels
of SA coarsening are used (as in the previous section) in all experiments except for the comparison
with other multigrid packages, which is detailed in §3.2.2.5. The same machine is employed (as in

15

0 20 40 60 80 100

10�6

10�4

10�2

100

Number of iterations

R
el

at
iv

e
re

si
du

al

p=1
p=2
p=3
p=4
p=5

Figure 5: Convergence results for p from 1 to 5 for the Navier–Stokes operator.

the previous section to allow inter-order comparisons) except for the strong scaling experiments,
which are presented in §3.2.2.4.

3.2.2.1 Breakdown profiling

We report breakdown profiling at p = 5 in Figure 6. We report the timings for di↵erent key
parts of the v-cycle and the PCG solver. First, within the v-cycle, the pre- and postsmoothing (2
smoothing iterations) dominate the total v-cycle time, with the smoothing at the first (finest) level
being the most expensive of the total smoothing time. It is important to note that this will not be
true if we do not employ p-coarsening, as the coarser levels will be denser and more expensive to
evaluate. Intergrid transfer (residual restriction and error prolongation) only costs a small amount
of time. Note, the superLU direct solver costs a negligible amount of time (indicating a small
enough coarsest level system), and therefore it is not shown in Figure 6. In addition, the v-cycle
preconditioning dominates the total time of PCG solver, which is mostly due to the matrix-vector
multiplication in the pre- and postsmoothing in v-cycle , and it makes the GIAMG much more
expensive than a regular DCG solver for one PCG iteration. However, on the other hand, GIAMG
has a much faster convergence. This motivates us to compare the total solve time of GIAMG
with a regular DCG solver. We compare the GIAMG solver with the well-optimized DCG solver
implemented in Nektar++ for the solve time as shown in Figure 7. First of all, from Figure 6 (right)
and Figure 7 (right), the time of matrix-vector multiplication looks similar in the two methods,
which indicates it is a reasonable comparison between Nektar++ and our GIAMG solver for the
solve time even though they are two di↵erent implementations. Considering the dominant cost
of v-cycle, our GIAMG is about 7 times as great as DCG in terms of the solve time in one PCG
iteration. However, since DCG solver is about (3509 iterations) 40 times as great as our GIAMG
solver in terms of the number of iterations for convergence, we are still about 6 times as fast as the

16

Figure 4: Geometry and convergence properties for the sample case.

0 20 40 60 80 100 120

10�6

10�4

10�2

100

Number of iterations

R
el

at
iv

e
re

si
du

al

Coarsen by 2
Coarsen by 1

Coarsen by 1 Coarsen by 2
0

0.1

0.2

0.3

0.4

Ti
m

e
(s

)

First smooth Smooth

Residual v-cycle

Figure 9: Comparison of di↵erent p-coarsening strategies at p = 5 for the Navier–Stokes operator. (Left): convergence
results. (Right) profiling.

16 32 64 128
0.04

0.06

0.09

0.14

Number of nodes

Ti
m

e
(s

)

v-cycle

Figure 10: Strong scaling of v-cycle of GIAMG up to 128 nodes for the Navier–Stokes operator.

the AMG solvers seem to have a comparable convergence rate. The comparison of overall solve
time is shown in Figure 11 (right). Again, our GIAMG solver performs the best among all the
multigrid methods.

4. Conclusions and future work

In this paper, we proposed a geometrically informed algebraic multigrid (GIAMG) method
for solving high-order finite element systems. We presented experiments for two 3D operators –
Helmholtz and incompressible Navier–Stokes. For the Helmheltz operator, we showed the conver-
gence results from p = 3 up to p = 10. The convergence rate does not significantly change as the p

order is increasing. We also compared the convergence and solve time with some well-recognized
AMG packages and a standard diagonally preconditioned PCG solver implemented in Nektar++.
Our GIAMG performed the best among all the solvers. For the incompressible Navier–Stokes op-

20

Figure 5: Strong scaling of the GIAMG approach.

more complex operator, we set the convergence criterion to be the relative residual less than
10−6. In this case, we only reduce the basis order by 1 at each level during p-coarsening followed
by 6 additional levels of coarsening using smoothed aggregation. We perform 2 Chebyshev
iterations in pre- and postsmoothing. The sizes and numbers of nonzeros of the coarsest level
matrices in these cases are slightly different, varying from 303× 303 to 315× 315, and 32338 to
34191, respectively, which are all reasonably small at the coarsest level for the superLU solver.
We can see the number of iterations does not significantly increase as we increase p order. The
convergence of p = 3 case looks slightly inferior to other cases. However, it still behaves within
a reasonable range, and the convergence pattern is similar to that in other cases.

When compared against the standard Jacobi-type preconditioning which is extremely cheap
and communication-free to evaluate, the GIAMG approach is clearly more expensive per con-
jugate gradient iteration. However, the GIAMG significantly reduces the number of iterations
required to converge from roughly 3500 iterations for Jacobi-preconditioned solves to around
80-90 iterations. Scaling of the V-cycle from between 16 to 128 nodes (with 56 cores per node,
so 7168 MPI ranks at the larger end) is shown in Figure 5, which demonstrates the potential
for this method for larger-scale problems.

It should be noted that this approach is not yet widely available with Nektar++ but we are
working to integrate this over the coming months to improve elliptic solver performance in a
wide range of problems. There are also challenges to be overcome in terms of greater perfor-
mance of the solver in parallel execution, the reduction of setup times in construction of the
matrix systems, as well as other potential improvements such as the use of matrix-free methods
within the V-cycle.

14

8 Conclusions

This report has briefly outlined the approaches being undertaken within Nektar++ and NEP-
TUNE for the solution of elliptic problems. The core performance of the solver itself demon-
strates high performance for both on-node and parallel execution. Some of the challenges
facing further development have been outlined, with a particular emphasis on the development
of multigrid methods. The further development of these techniques, and particularly their use
on different architectures such as GPUs, is also a key focus of the development team which we
discuss in other NEPTUNE deliverables.

References

[1] George Karniadakis and Spencer Sherwin. Spectral/Hp Element Methods for Computational
Fluid Dynamics. Oxford University Press, 2013.

[2] Jing Gong, Stefano Markidis, Erwin Laure, Matthew Otten, Paul Fischer, and Misun Min.
Nekbone performance on GPUs with OpenACC and CUDA Fortran implementations. The
Journal of Supercomputing, 72(11):4160–4180, 2016.

[3] David Moxey, Roman Amici, and Mike Kirby. Efficient Matrix-Free High-Order Finite Ele-
ment Evaluation for Simplicial Elements. SIAM J. Sci. Comput., 42(3):C97–C123, January
2020.

[4] Nicolas Offermans, Adam Peplinski, Oana Marin, Elia Merzari, and Philipp Schlatter. Per-
formance of Preconditioners for Large-Scale Simulations Using Nek5000. In Spectral and
High Order Methods for Partial Differential Equations ICOSAHOM 2018, pages 263–272.
Springer, Cham, 2020.

15

	Executive summary
	Introduction
	Formulation
	Implementation strategies & operator evaluation
	Global matrix approach
	Local matrices
	Static condensation
	Matrix-free operations
	Solvers in Nektar++

	Preconditioning
	Diagonal
	Linear space
	Block
	Low energy preconditioner

	Performance
	Large-scale parallel testing
	Fluid dynamics simulations

	Ongoing developments in preconditioning
	Conclusions

