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1. Introduction

The aim of this report is to describe an initial investigation into the challenges associated

with developing 2D edge plasma models with kinetic ion and neutral species. We

focus on two fundamental aspects of the problem: we consider the implementation of

model ion-neutral collision operators, and the implementation of simple wall boundary

conditions. There are other challenges to developing numerical simulations in the

plasma edge, for example, a comprehensive model must also deal with the magnetic

flux coordinate singularity at the separatrix between the core plasma and the scrape

off layer, as well as the inherently global nature of the problem in both the radial and

poloidal directions. For a full review of the physics challenges, please see [1].

Previous reports in this series have examined the 1D problem of neutrals and ions

interacting on a single magnetic field line, neglecting cross-field physics [2, 3, 4, 5]. Both

the ‘standard’ Eulerian drift-kinetic approach and the novel ‘moment kinetics’ approach

proposed in [6, 7, 8, 9] were implemented and tested [3, 4, 5]. It was demonstrated that

the ‘moment kinetics’ approach is a viable scheme for solving the system numerically,

although some problems were encountered with wall boundary conditions [5]. Analytical

tests of the implemented code were developed and automated, and an initial physics

study was carried out looking at the difference between the ion and neutral distribution

functions in steady state in the case with wall boundary conditions.

The major differences between the 2D and 1D models are the following. Cross-

field drifts now enter into the ion drift kinetic equation, and the difference between

charged particle and neutral particle trajectories manifest themselves in qualitatively

different velocity space structure for the two different types of particle species. Whilst
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neutral particles are only accelerated by interparticle collisions, charged particles are also

constrained to perform helical cyclotron orbits around magnetic field lines by the Lorentz

force. This means that whilst neutral particles must be described with three velocity

coordinates, we can describe the motion of charged particles with just two velocity

coordinates, by averaging over the rapid cyclotron motion. This fact has consequences

for the implementation of any kinetic model.

For simplicity in the initial development of the implementation of the 2D model,

in this report we restrict our attention to the ‘standard’ drift-kinetic approach. We

take as our starting point the 2D model with wall boundary conditions proposed in [7].

We present the 2D model in the next section. In section 3, we discuss the differing

velocity-space grids of charged and neutral particles, and the consequent challenges for

the simulation. In sections 4 and 5 we consider the wall boundary conditions for ions

and neutrals, and electrons, respectively. In section 6, we write down the normalised

system of equations that are implemented in the 2D code. In section 7, we briefly

describe the numerical algorithms underpinning the implementation of the model. In

section 8, we describe tests that verify the implementation of the 2D model using the

method of manufactured solutions. Finally, in section 9, we provide suggestions for

future development.

2. Drift-kinetic ions coupling to kinetic neutrals

Here we provide a brief overview of the 2D kinetic model that was derived in detail in

[7]. The system that we consider consists of a single ion species of charge e and mass

mi, a single neutral species of mass mn = mi, and an electron species that is modelled

as having a Boltzmann response. The magnetic field is taken to be helical, with the

form

B = Bzẑ+Bζ ζ̂, (1)

where (r, z, ζ) are cylindrical coordinates, and Bz and Bζ are constant in z, r, and ζ.

See figure 1. Helical field lines approximate the geometry of the open-field-line scrape-

off layer region of plasma that is confined in an axisymmetric toroidal magnetic field.

With this interpretation we can identify z as the vertical coordinate along the axis of

symmetry, r as the major radial coordinate and ζ as the toroidal angle. We include

a simple model charge exchange collision operator acting between ions and neutrals,

and a simple model ionisation collision operator involving ions, electrons and neutrals.

We do not account for charged-species collisions that couple ions to ions, or electrons

to ions. To be consistent with the lack of radial variation in the magnetic field, we

impose periodic boundary conditions in r, but we accommodate either wall boundary

conditions or periodic boundary conditions in z. We assume that the plasma equilibrium

is independent of ζ.

The model kinetic equations are as follows. We have a drift-kinetic equation for
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Figure 1: The form of the magnetic field and the left-handed coordinates (r, z, ζ) in

terms of the right-handed cartesian (x, y, z). Taken from [7]. To make a connection to

the geometry of the scrape-off layer – the open field lines surrounding the toroidal flux

surfaces of the core plasma – we should think of r as the major radial coordinate, z as

the vertical axial coordinate, and ζ as the toroidal angle.
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where Fs is the particle distribution function for species s, ns is the particle number

density for species s, v∥ = v · b and v⊥ = |v − v∥b| are the components of the particle

velocity v that are parallel and perpendicular to the magnetic field direction b = B/B,

respectively, with B =
√

B2
z +B2

ζ . The operator ⟨·⟩ =
∫ π

−π
dϑ/2π is the gyroaverage, ϑ

is the gyro-angle, t is the time, bz = Bz/B, ϕ is the electrostatic potential, Rin and Rion

are the charge exchange and ionization collision frequency factors, respectively, and Si

is a source function that may be used to inject particles, momentum, and heat, or to

facilitate a test via the method of manufactured solutions. In addition to equation (2)

we must solve the 2D-3V kinetic equation for neutrals:

∂Fn

∂t
+ vz

∂Fn

∂z
+ vr

∂Fn

∂r
= −Rin (niFn − nnFi)−RionneFn + Sn, (3)

where Sn is the neutral source function. We use velocity coordinates aligned with ẑ,

r̂, and ζ̂ to describe the advection of the neutral species; here, we use the coordinates

vz = v · ẑ, vr = v · r̂, and vζ = v · ζ̂.
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The ion density ni is computed by integrating over the ion distribution function:

ni(z, r, t) = 2π

∫ ∞

−∞
dv∥

∫ ∞

0

dv⊥v⊥Fi(z, r, v⊥, v∥, t). (4)

The same is true for the neutral density nn:

nn(z, r, t) =

∫ ∞

−∞
dvζ

∫ ∞

−∞
dvr

∫ ∞

−∞
dvzFn(z, r, vζ , vr, vz, t). (5)

The electrostatic potential is computed by enforcing quasineutrality ni = ne and using

a Boltzmann response for electrons, i.e.,

ni = ne = Ne exp

(
eϕ

Te

)
, (6)

where the constant Ne is either taken to be a reference density, or calculated through a

simple electron sheath model. We obtain the electric fields by differentiation of ϕ:

Ez = −∂ϕ

∂z
, and Er = −∂ϕ

∂r
. (7)

3. Evaluating the collision operator terms

There are two major differences between the 2D and 1D models. The first is that

the E × B drift now appears, causing spatial advection across field lines radially. The

second difference is that the charged particles and neutral particles have very different

velocity space dynamics. A large component of this project is the investigation of how

to efficiently couple neutrals to charged particles in a kinetic code. Charged particles

and neutral particles couple in two distinct ways: through the wall boundary condition,

and through inter-particle collisions. In this section, we discuss a problem related to the

fast implementation of the collision operators.

Charged particles in strong magnetic fields undergo a helical motion: particles are

free to travel along the magnetic field line; but the v×B component of the Lorentz force

causes particles to execute a rapid cyclotron (gyro-) motion in the plane perpendicular

to B, with a gyration radius ρi much smaller than either the radial or axial length

scales Lr and Lz, respectively. Therefore, it is natural to use the field-aligned velocity

coordinates (v∥, v⊥, ϑ), with which we can write

v = v∥b+ v⊥(cosϑ r̂− sinϑ b× r̂). (8)

This yields a great simplification in the description of the charged particle species

because in strong magnetic fields

dv∥
dt

∼ dv⊥
dt

∼ cs
Lz

≪ dϑ

dt
∼ Ωi, (9)

where the sound speed is cs =
√

2Te/mi and the cyclotron frequency is Ωi = eB/mi.

Because we are not typically interested in motions on frequencies comparable to Ωi, we

can conveniently average over the ϑ motion, resulting in the drift-kinetic equation (2).
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None of these simplifications apply to the neutral species, which experience no

forces due to the electromagnetic fields. In the absence of collisions, neutral particles

execute rectilinear motion, freely crossing magnetic field lines. It is therefore natural to

consider a neutral velocity space grid that is aligned with the spatial coordinates, i.e.,

v = vzẑ+ vrr̂+ vζ ζ̂ (10)

Such a grid may be useful if the kinetic neutral code must interface with legacy software

that uses a particular spatially aligned coordinate system.

There are, however, major disadvantages to using different velocity space

coordinates for the charged particle and neutral particle species. The simple reason

for this is that there is a nontrivial transformation between (vz, vr, vζ) and (v∥, v⊥, ϑ).

Combined with the collision operator terms in equations (2) and (3), this nontrivial

transformation requires a 3D interpolation of distribution function data at every time

integration step. Interpolation between 3D grids is necessarily slow and likely to be

a source of error unless an advanced interpolation scheme is used (such as a spectral

interpolation or cubic spline).

We now write the velocity coordinate transformation for later use. Using equations

(8) and (10), one can show that

vz(v∥, v⊥, ϑ) = v∥bz − v⊥ sinϑbζ

vr(v∥, v⊥, ϑ) = v⊥ cosϑ

vζ(v∥, v⊥, ϑ) = v∥bζ + v⊥ sinϑbz

, (11)

and

v∥(vz, vr, vζ) = vzbz + vζbζ

v⊥(vz, vr, vζ) =
√

v2r + (vζbz − vzbζ)2
. (12)

To evaluate the cross-species collision operator terms in equation (2), we require the

neutral distribution function Fn(vz, vr, vζ) at every (z, r) to be gyroaveraged and given

on the (v∥, v⊥) grid. This is achieved by writing

⟨Fn⟩ (v∥, v⊥) =
∫ π

−π

Fn(vz(v∥, v⊥, ϑ), vr(v∥, v⊥, ϑ), vζ(v∥, v⊥, ϑ))
dϑ

2π
. (13)

Similarly, to evaluate the charge exchange collision operator terms in equation (3)

we require the charged particle distribution function Fi(v∥, v⊥) at every (z, r) to be

interpolated, i.e.,

Fi(vz, vr, vζ) = Fi(v∥(vz, vr, vζ), v⊥(vz, vr, vζ)). (14)

We carry out the necessary interpolation using a readily available Julia package:

Interpolations.jl [10]. For simplicity and speed of evaluation we use a linear

interpolation suitable for non-uniformly spaced data.
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A simple strategy to avoid the cost of interpolation would be to choose to use the

same velocity space grid for both charged and neutral particles. In the standard drift-

kinetic approach where the moments are not evolved separately, this strategy would

only introduce the need to evaluate vz, vr, and vζ via the transform (11). We have not

attempted to implement this approach numerically due to time constraints, although

we highlight this approach as a possible future optimization of the model.

4. Boundary conditions on ions and neutral particles

We must specify boundary conditions on the evolved particle distribution function in the

coordinates where differential operators appear: z, r and v∥. No boundary conditions

are required on v⊥, vz, vr, or vζ , as no advection occurs in these coordinates, and no

Fokker-Planck collision operator currently appears in the model. The physical boundary

condition in v∥ is that

Fi(z, r, v∥ → ±∞, v⊥, t) → 0. (15)

This condition may easily be imposed by either forcing zero incoming particles in the v∥
advection, or by enforcing that Fi is periodic in v∥ at the ends of the v∥ domain. This

is equivalent to the zero boundary condition if the v∥ domain is sufficiently large.

For the boundaries in r, one can imagine several physically interesting scenarios:

a periodic boundary condition, in which case the model represents something like a

local ‘flux tube’; a Dirichlet boundary condition as in a ‘global’ model; and a limited

configuration with conditions that model direct contact to the vacuum vessel. In this

report we only consider the first possibility.

Finally, we consider two types of boundary condition in z; periodic boundary

conditions, and ‘wall’ boundary conditions that model the presence of the ‘sheaths’

at the ends of open field lines on the vacuum vessel or divertor plates. The periodic

boundary condition is implemented just as a testing exercise: we do not implement

the vorticity equation that is necessary to calculate the potential in closed-field-line

geometry [8]. Only the wall boundary condition option is physically consistent. To

impose the wall boundary condition, we assume that the entrance to the sheath occurs

at the ends of the domain in z. We also assume that ions that exit the simulation

domain continue on to the wall, where they recombine. No ions enter the domain from

the walls, giving a zero incoming boundary condition for the ions:

Fi(z = −Lz/2, v∥ > Er/Bz, v⊥, t) = 0

Fi(z = Lz/2, v∥ < Er/Bz, v⊥, t) = 0.
(16)

Note that in the case that Er = 0 then the condition (16) reduces to the equivalent 1D

condition. The boundaries of the domain (corresponding to the sheath entrances) are

taken to be at z = −Lz/2 and z = Lz/2. Neutrals that leave the domain are assumed

to hit the wall and thermalise at the temperature of the wall, Tw. Ions that recombine

at the wall also re-enter as neutrals. The resulting boundary condition on the neutrals
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is

Fn(z = −Lz/2, vz > 0, vr, vζ , t) =
(
Γi,−Lz/2 + Γn,−Lz/2

)
FKw

(
vz,
√

v2r + v2ζ

)
,

Fn(z = Lz/2, vz < 0, vr, vζ , t) =
(
Γi,Lz/2 + Γn,Lz/2

)
FKw

(
vz,
√
v2r + v2ζ

)
,

(17)

where

FKw(vz, vt)
.
=

3

π

(
mi

2Tw

)2 |vz|√
v2z + v2t

exp

(
−mi (v

2
z + v2t )

2Tw

)
(18)

is the Knudsen cosine distribution [11], and

Γi,−Lz/2
.
= 2π

∫ Er/B

−∞
dv∥

∫ ∞

0

dv⊥v⊥

∣∣∣∣bzv∥ − Er

B

∣∣∣∣Fi(z = −Lz/2, r, v∥, v⊥, t) (19)

Γn,−Lz/2
.
=

∫ 0

−∞
dvz

∫ ∞

−∞
dvr

∫ ∞

−∞
dvζ |vz|Fn(z = −Lz/2, r, vz, vr, vζ , t) (20)

and

Γi,Lz/2
.
= 2π

∫ ∞

Er/B

dv∥

∫ ∞

0

dv⊥v⊥

∣∣∣∣bzv∥ − Er

B

∣∣∣∣Fi(z = Lz/2, v∥, v⊥, t) (21)

Γn,Lz/2
.
=

∫ ∞

0

dvz

∫ ∞

−∞
dvr

∫ ∞

−∞
dvζ |vz|Fn(z = Lz/2, vz, vr, vζ , t) (22)

are the combined fluxes of neutrals and ions towards the walls at z = −Lz/2 and

z = Lz/2, respectively. In the 1D model implementation [5], where Er = 0, we note

that the wall boundary condition is imposed on the marginalised distributions functions

fi = 2π
∫
dv⊥v⊥Fi and fn =

∫
dvζdvrFn. Whilst the 1D and 2D implementations are

able to share almost all subroutines related to the imposition of the wall boundary

condition, we note that this slight difference between the 1D and 2D implementations

means that the marginalised distribution of neutral particles fn must be proportional

to the marginalised Knudsen distribution fKw = 2π
∫
dv⊥v⊥FKw at the wall. Please see

sections 2 and 2.1 of [5] for further details.

5. A simple electron sheath model

In addition to the boundary conditions for the kinetic species described in the last

section, we have implemented a simple electron sheath model that is compatible with a

Boltzmann response in the bulk plasma [12]. This sheath model allows us to impose a

wall potential ϕW , in place of a fixed-in-time constant density Ne in equation (6).

The model is obtained as follows. First, we demand that there is zero net current

to the wall plate at the boundaries in z, i.e., the current parallel to the magnetic field

line vanishes:

J∥ = J∥,i + J∥,e = 0 at z = ±Lz/2 (23)
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where J∥,e and J∥,i are the electron and ion contributions to the current, respectively.

Second, we assume that the electron distribution function is a Maxwellian close to the

entrance of the sheath, i.e.,

Fe ≈
ne

π3/2

(
me

2Te

)3/2

exp

(
−
me(v

2
∥ + v2⊥)

2Te

)
. (24)

We assume that the deviation in Fe from the Maxwellian is due to the high velocity tail

of electrons that are absorbed by the wall. The electron distribution function changes

with z in the sheath according to the illustration in figure 2. In particular, we note that

In the Bulk Plasma In the sheath

At the wall

Figure 2: An illustration of the assumed form of the electron distribution function Fe

as a function of v∥ near the wall at z = −Lz/2. There is a high velocity tail of electrons

that reach the wall despite the repelling wall potential, as as a result, are lost to the

distribution. The cut off velocity vcut drops to zero at the wall itself, yielding the half-

Maxwellian that is used to compute J∥,e for (25). This argument is developed in full in

[12].

any electrons that have reached the wall are unable to return. Third, we assume that

J∥,e, Te and Ne are constant across the sheath, and that the Boltzmann response (6)

continues to hold. Hence, by integrating the distribution function of electrons (24) at

the wall at z = −Lz/2, we obtain a relationship between J∥,e and Ne, Te and ϕW :

J∥,e = ene

√
Te

2πme

= eNe exp

(
eϕW

Te

)√
Te

2πme

(25)

Finally, we rearrange equation (25) for Ne, with the result

Ne = −
√

4πme

mi

exp

(
−eϕW

Te

)
J∥,i
ecs

. (26)

Equation (26) determines the constant Ne to be used in equation (6).
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norm. variable definition

t̃ t(cref/Lref)

z̃ z/Lref

r̃ r/Lref

ṽ∥ v∥/cref

ṽ⊥ v⊥/cref

ṽz vz/cref

ṽr vr/cref

ṽζ vζ/cref

Ñe Ne/nref

ñs ns/nref

ϕ̃ eϕ/Tref

Ẽr eLrefEr/Tref

Ẽz eLrefEz/Tref

R̃in Rin(nrefLref/cref)

R̃ion Rion(nrefLref/cref)

F̃s Fs(c
3
refπ

3/2/nref)

S̃s Ss(c
3
refπ

3/2Lref/nrefcref)

ρ∗ cref/LrefΩref

bz Bz/B

ref. quantity definition

Lref ref. length (m)

Tref ref. temperature (KeV)

nref ref. density (m−3)

cref
√

2Tref/mi (ms−1)

mi ion mass (kg)

Bref ref. B (T)

Ωref eBref/mi (s−1)

Table 1: Definitions for normalised and reference quantities used in the report.

6. Normalisation of the system of model equations

We now define the normalisations used when solving numerically the model equations

(2)-(7). We define normalised and reference quantities in Table 1. In terms of the

normalised variables, the model system equations takes the following form. Equation

(2) takes the form

∂F̃i

∂t̃
+
(
bzṽ∥ −

ρ∗
2
Ẽr

) ∂F̃i

∂z̃
+

ρ∗
2
Ẽz

∂F̃i

∂r̃
+

bzẼz

2

∂F̃i

∂ṽ∥
=

− R̃in

(
ñnF̃i − ñi

〈
F̃n

〉)
+ R̃ionñe

〈
F̃n

〉
+ S̃i,

(27)

where ρ∗ = cref/LrefΩref is a small parameter that measures the size of the ion gyro-

orbits compared to the macroscopic size of the system. Note that bz is also a small
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parameter in the formal ordering of the 2D model [7, 8]. Equation (3) takes the form

∂F̃n

∂t̃
+ ṽz

∂F̃n

∂z̃
+ ṽr

∂F̃n

∂r̃
= −R̃in

(
ñiF̃n − ñnF̃i

)
− R̃ionñeF̃n + S̃n, (28)

and quasineutrality, equation (6), takes the form

ñi = ñe = Ñe exp

(
ϕ̃

T̃e

)
. (29)

The normalised electric fields are defined by

Ẽz = −∂ϕ̃

∂z̃
, and Ẽr = −∂ϕ̃

∂r̃
. (30)

and the densities have the following definitions

ñi =
1√
π

∫ ∞

−∞
dṽ∥

∫ ∞

0

2dṽ⊥ṽ⊥F̃i. (31)

and

nn =
1

π3/2

∫ ∞

−∞
dṽζ

∫ ∞

−∞
dṽr

∫ ∞

−∞
dṽzF̃n. (32)

The boundary conditions (15) and (16) carry over trivially. The wall boundary

condition on the neutrals takes the form

F̃n(z̃ = −Lz/2Lref , ṽz > 0, ṽr, ṽζ , t̃) =
(
Γ̃i,−Lz/2 + Γ̃n,−Lz/2

)
F̃Kw

(
ṽz,
√
ṽ2r + ṽ2ζ

)
,

F̃n(z̃ = Lz/2Lref , ṽz < 0, ṽr, ṽζ , t̃) =
(
Γ̃i,−Lz/2 + Γ̃n,−Lz/2

)
F̃Kw

(
ṽz,
√

ṽ2r + ṽ2ζ

)
,
(33)

where

F̃Kw =
3
√
π

T̃ 2
w

|ṽz|√
ṽ2z + ṽ2t

exp

(
−(ṽ2z + ṽ2t )

T̃w

)
(34)

is the normalised Knudsen cosine distribution [11], and the normalised particle fluxes

are

Γ̃i,−Lz/2
.
=

1√
π

∫ ρ∗Ẽr/2

−∞
dṽ∥

∫ ∞

0

2dṽ⊥ṽ⊥

∣∣∣bzṽ∥ − ρ∗
2
Ẽr

∣∣∣ F̃i(z̃ = −Lz/2Lref , r̃, ṽ∥, ṽ⊥, t̃)

(35)

Γ̃n,−Lz/2
.
=

1

π3/2

∫ 0

−∞
dṽz

∫ ∞

−∞
dṽr

∫ ∞

−∞
dṽζ |ṽz| F̃n(z̃ = −Lz/2Lref , r̃, ṽz, ṽr, ṽζ , t̃) (36)

and

Γ̃i,Lz/2
.
=

1√
π

∫ ∞

ρ∗Ẽr/2

dṽ∥

∫ ∞

0

2dṽ⊥ṽ⊥

∣∣∣bzṽ∥ − ρ∗
2
Ẽr

∣∣∣ F̃i(z̃ = Lz/2Lref , r̃, ṽ∥, ṽ⊥, t̃) (37)

Γ̃n,Lz/2
.
=

1

π3/2

∫ ∞

0

dṽz

∫ ∞

−∞
dṽr

∫ ∞

−∞
dṽζ |ṽz| F̃n(z̃ = Lz/2Lref , r̃, ṽz, ṽr, ṽζ , t̃) (38)

Finally, the electron sheath model for Ne, equation (26), takes the normalised form

Ñe = −
√

4πme

mi

exp

(
− ϕ̃w

T̃e

)
J∥,i

enrefcs
. (39)
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7. Numerical implementation

The algorithms used to implement the 2D model are identical to those used to implement

the 1D model described in previous reports. To avoid repetition, we simply list these

algorithms here, with further details left to previous reports [2, 3, 4, 5].

We evolve the normalised systems of equations with a time-advance scheme. To

maximise the efficiency of the algorithm with regards to numerical stability, we utilise a

Strong Stability Preserving (SSP) Runge-Kutta (RK) scheme [13, 14, 15]. By default,

we use the four-stage SSPRK3 method, although two and three stage SSPRK schemes

are options in the code. The implementation of the time-stepping algorithm was tested

in the 1D-1V code (figures 1 and 2 of [3]).

For the spatial and velocity discretisation both finite difference and Chebyshev

spectral methods are implemented. For the finite difference option, a uniformly spaced

grid is used. Derivatives are evaluated with the third order upwind scheme [16] and

integration is carried out using the composite Simpson’s rule [3]. For the Chebyshev

spectral elements option, the coordinate grid is the Gauss-Chebyshev-Lobatto grid on

each element [17]. Inclusion of the endpoints within each element facilitates enforcement

of continuity at element boundaries, and the use of Chebyshev polynomials as a basis

enables the use of Fast Fourier Transforms. In our code, these transforms are done

using the widely-used FFTW library [18]. The associated integration weights used for

integration are obtained using Clenshaw-Curtis quadrature rules [19]. Clenshaw-Curtis

quadrature allows for the use of endpoints in the integration domain while still exactly

integrating polynomials up to degree Ngrid − 1, with Ngrid the number of points within

the element. The implementation of the spatial discretisation was tested in the 1D-1V

code (figures 3, 4 and 5 of [3]).

The scale of the 2D-3V model, having 5 dimensions for the neutral species, and

4 for the ion species, requires a larger memory requirement than can be supported by

a single core of a typical computer. To reach large enough resolutions to achieve the

results presented in this report, it was necessary to implement shared memory OpenMPI

support [20].

The previous implementation of the 1D-1V code [2, 3, 4, 5] allowed for the

development of a suite of automatic functional tests. The tests come in two classes.

In the first class, the automated 1D-1V tests check the numerical results for sound wave

damping of small amplitude fluctuations against analytically obtained results [21, 4].

In the second class of test, results from converged ‘nonlinear’ simulations with finite

fluctuation amplitudes are stored and tested against the output of the code after a new

revision. The current 2D-3V version of the code passes all previous 1D-1V automated

tests, suggesting that the time-stepping and spatial discretisation algorithms have been

preserved in the generalisation of the code to the 2D-3V case.

All revisions of the ‘moment kinetics’ code are written in the Julia programming

language, and are currently available on GitHub at https://github.com/mabarnes/

moment_kinetics. The latest 2D-3V code is held in the branch https://github.com/

https://github.com/mabarnes/moment_kinetics
https://github.com/mabarnes/moment_kinetics
https://github.com/mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-with-neutrals
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mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-with-neutrals.

8. Testing the numerical implementation with the method of manufactured

solutions

The normalised system of equations (27)-(32) is difficult to solve analytically, especially

with the wall boundary conditions described in sections 4-5. This presents a challenge

for testing the numerical implementation of the 2D model. To overcome this challenge

we use a standard technique from the fluid mechanics community: the method of

manufactured solutions. The great power of the method of manufactured solutions is

that tests derived from this method can be tuned to focus on individual operators, or the

whole code, as desired. In the following, we present tests which can be used separately

to cover the time advance algorithm, the spatial advection, the velocity advection, the

collisions, periodic boundary conditions, and the wall boundary conditions. New tests

can be developed as features are added to the model.

We use the following method to test the 2D model equations with manufactured

solutions [22]. First, we propose manufactured, target, solutions F̃MS
i and F̃MS

n that

we can write down in closed form with known functions. The manufactured solutions

are only restricted to obey the boundary conditions that are imposed on the system

of equations. Second, we compute manufactured sources S̃i and S̃n by inserting the

manufactured solutions F̃MS
i and F̃MS

n into equations (27) and (28) and evaluating the

necessary derivatives and velocity integrals analytically. Third, we perform a numerical

simulation using the manufactured sources. We run the simulation for a fixed time

t̃ = O(1) (to allow numerical errors to accrue) for varying resolutions. We check that

the numerical solution is consistent with the target manufactured solution by confirming

that the numerical error reduces towards zero as the resolution increases. To measure

the error between the numerical solution and the target manufactured solution, we

introduce the following measures. We define an error on the ion and neutral species

density

ϵ(ñs) =

√∑
i,j |ñs(zi, rj)− ñMS

s (zi, rj)|2

NrNz

, (40)

where ñMS
s is the target manufactured density of species s, and Nr and Nz are the

total number of points in the r and z grids, respectively. We define an error on the ion

distribution function

ϵ(F̃i) =

√√√√∑i,j,k,l |F̃i(v∥i, v⊥j, zk, rl)− F̃MS
i (v∥i, v⊥j, zk, rl)|2

Nv∥Nv⊥NrNz

, (41)

where Nv∥ and Nv⊥ are the total number of points in the v∥ and v⊥ grids, respectively.

Finally, we define an error on the neutral distribution function

ϵ(F̃n) =

√√√√∑i,j,k,l,m |F̃n(vzi, vrj, vζk, zl, rm)− F̃MS
n (vzi, vrj, vζk, zl, rm)|2

NvzNvrNvζNrNz

, (42)

https://github.com/mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-with-neutrals
https://github.com/mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-with-neutrals
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where Nvz , Nvr , and Nvζ are the total number of points in the vz, vr and vζ grids,

respectively. The errors ϵ(ñs), ϵ(F̃i), and ϵ(F̃n) measure the average error per point in

the array of the numerical solution.

As noted previously [22], Julia has support for elements of symbolic algebra via

the Symbolics.jl package [23, 24]. This allows us to partially automate the process of

calculating the manufactured sources. Currently, the Symbolics.jl package supports

symbolic differentiation, allowing for a great reduction in the effort of developing

manufactured solutions tests. Unfortunately, symbolic integration is not yet supported

by the Symbolics.jl package, so the target manufactured solutions must be chosen to

be sufficiently simple to integrate by hand.

8.1. Tests with periodic boundary conditions in r and z

We first describe a manufactured solutions test that is compatible with periodic

boundary conditions in r and z. We choose target manufactured solutions that depend

on time and space in a nontrivial manner, allowing for tests of the timestepping

algorithm and the advection in r, z, and v∥. We choose the ion density to be of the form

ñi =
3

2
+

sin(2πt̃)

10

(
sin

(
2πr

Lr

)
+ sin

(
2πz

Lz

))
. (43)

We choose the neutral density to take the form

ñn =
3

2
+

sin(2πt̃)

10

(
cos

(
2πr

Lr

)
+ cos

(
2πz

Lz

))
. (44)

We specify the ion and neutral distributions as Maxwellians with constant temperatures

and no flow, i.e.,

F̃i = ñi exp
(
−ṽ2∥ − ṽ2⊥

)
, (45)

and

F̃n = ñn exp
(
−ṽ2z − ṽ2r − ṽ2ζ

)
. (46)

The gyroaverage of Fn in equation (27) is computed analytically by noting that

ṽ2∥ + ṽ2⊥ = ṽ2z + ṽ2r + ṽ2ζ . This test could easily be extended to include a specified

temperature or mean velocity moment in addition to the density moment.

Having specified target solutions, we must calculate S̃i and S̃n for specific input

physics parameters – the target solutions can be used to test cases with or without

collisions, and with any specific choice of the helical magnetic field. We first focus on

a case with bz = 0.5, ρ∗ = 1.0, T̃e = Ñe = 1.0 and R̃in = R̃ion = 0. We must also

describe the numerical input parameters. We use spectral-element coordinate grids for

all dimensions [3]. These grids are characterised by Ngrid, the number of points in each

spectral element, and Nelement, the number of elements. The total number of grid points

is N total
grid = (Ngrid−1)Nelement+1. We identified that the biggest source of numerical error

comes from the velocity grid discretization. In the following, we present tests where we
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Figure 3: Plot of the measures of the error on the ion and neutral density, and the ion

and neutral distribution function, defined in equations, (40), (41), and (42), respectively.

The simulations use the manufactured solutions (43)-(46), and retain all but the collision

terms in equations (27)-(32). The scan is in the number of elements Nelement in the

spectral-element scheme in the velocity space coordinates v∥, v⊥, vz, vr, and vζ . The

relatively small errors observed for Nelement = 16 suggests that the implementation is

performing well.

have increased the number of elements Nelement in the velocity space grids v∥, v⊥, vz, vr,

and vζ , holding fixed Ngrid = 5 for all coordinates, and holding fixed Nelement = 2 in the

coordinates r and z. We take the maximum velocity vmax/cref = 6.0 on all grids. We

simulate for 160 time steps with ∆t̃ = 0.002. The results of these simulations are shown

in figure 3. The numerical error in all fields is either small, or reduces for increasing

Nelement. At the largest Nelement = 16, the error in the ion and electron densities appears

to be converged. The residual error is likely due to the finite size of ∆t̃, see fig 2 in [3].

The input files for these simulations are provided in Appendix A.1.

In a second test, we now introduce the charge-exchange and ionisation collision

operators. We use the input parameters described above, with R̃in = R̃ion = 1.0, and

we again scan in the velocity space resolution. The results of the simulations appear in

figure 4. We again see convergence with increasing Nelement, but at a slower rate than in

the case without collisions. We can attribute the slower convergence to the presence of

the linear interpolation in the collision operators, as discussed in section 3. The linear

interpolation is likely to be more inaccurate for larger values of Ngrid, where the spacing

of the grid points in each element become more nonuniform. The input files for these

simulations are provided in Appendix A.2.
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Figure 4: Plot of the measures of the error on the ion and neutral density, and the ion

and neutral distribution function, defined in equations, (40), (41), and (42), respectively.

The simulations use the manufactured solutions (43)-(46), and retain all terms in

equations (27)-(32). The parameter Nelement is in the number of spectral elements in

the velocity space coordinates v∥, v⊥, vz, vr, and vζ . The size of the errors observed for

Nelement = 16 suggests that the implementation is performing well.

8.2. Tests with wall and sheath boundary conditions in z

We now describe tests for the implementation of the wall and sheath boundary conditions

described in sections 4-5. For simplicity, we consider periodic boundary conditions

in r. We must construct a target distribution function that satisfies the necessary

boundary conditions. The ion distribution function F̃i must satisfy the condition (16).

We can achieve this by constructing a distribution function from the velocity coordinate

v∥ = ṽ∥ − ρ∗Ẽr/2bz. We choose

F̃i =

[
H
(
v∥
)
v2∥

(
1

2
+

z

Lz

)
n+(r) +H

(
−v∥

)
v2∥

(
1

2
− z

Lz

)
n−(r)

+

(
1

2
− z

Lz

)(
1

2
+

z

Lz

)
n0(r)

]
exp

(
−v2∥ − ṽ2⊥

)
,

(47)

with H (x) the Heaviside function, taking the values 1 for x > 0 and 0 for x < 0. In the

Julia implementation H (0) = 1/2. Note that the forward going part of the distribution

vanishes at z = −Lz/2 and the backward going part vanishes at z = Lz/2 – ensuring

that condition (16) holds. In principle, we could specify any functions for n+(r), n−(r)
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Figure 5: Plot showing the error measures on the ion and neutral densities, and the

ion and neutral distribution functions for a test case with wall boundary conditions in

z, no radial coordinate (meaning Ẽr = vr = 0), and the full ion and neutral velocity

spaces. The target manufactured solutions (47)-(53) are used. Electrons are taken to be

Boltzmann with Ñe = 1.0, and no collisions are included in the simulation. Convergence

of the errors is observed for increasing number Nelement of spectral elements in the

velocity space coordinates.

and n0(r) that satisfy the radial boundary conditions. We take n+ = n− = n0, with

n0 = 1 +
1

20
sin

(
2πr

Lr

)
. (48)

We choose the radially varying component of n0 to be relatively small to ensure that any

E ×B drifts are easy to resolve with vmax/cref = 6.0 – note that radial variation in n0

induces radial variation in ni, and hence, in ϕ, thus generating an Er ̸= 0. This choice

is necessary, because the manufactured solution is proportional to a shifted Gaussian in

v∥, with the shift proportional to Er/B. If Er/B is set too large, then the bulk of the

Gaussian is off grid.

The Julia Symbolics.jl package does not currently support symbolic or numerical

integration. To specify the ion density, needed to compute the potential via

quasineutrality, we compute the velocity integral of equation (47) analytically, with

the result

ñi =
n+(r)

4

(
1

2
+

z

Lz

)
+

n−(r)

4

(
1

2
− z

Lz

)
+ n0(r)

(
1

2
+

z

Lz

)(
1

2
− z

Lz

)
. (49)

To write down the neutral target distribution function for the MMS test, we also require
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Figure 6: Plot showing the error measures on the ion and neutral densities, and the

ion and neutral distribution functions for a test case with wall boundary conditions in

z, no radial coordinate (meaning Ẽr = vr = 0), and the full ion and neutral velocity

spaces. The target manufactured solutions (47)-(53) are used. Electrons are taken to be

Boltzmann with Ñe determined by the sheath through equation (39), and no collisions

are included in the simulation. Convergence of the errors is observed for increasing

number Nelement of spectral elements in the velocity space coordinates.

the particle fluxes Γ̃i,−Lz/2 and Γ̃i,Lz/2. We find that

Γ̃−Lz/2 =
bzn−(r)

2
√
π

, and Γ̃Lz/2 =
bzn+(r)

2
√
π

. (50)

For the neutral particles we can specify any target distribution function that satisfies

the condition (33). We choose

F̃n =H (ṽz)

[
Γ̃i,−Lz/2

(
1

2
− z

Lz

)2

+ Γ̃n

]
F̃Kw

(
ṽz,
√

ṽ2r + ṽ2ζ

)
+H (−ṽz)

[
Γ̃i,Lz/2

(
1

2
+

z

Lz

)2

+ Γ̃n

]
F̃Kw

(
ṽz,
√

ṽ2r + ṽ2ζ

). (51)

The neutral particle flux Γ̃n is a constant. That we can identify this constant with the

particle flux is demonstrated by noting that

1

π3/2

∫ 0

−∞
dṽz

∫ ∞

−∞
dṽr

∫ ∞

−∞
dṽζ |ṽz| F̃Kw

(
ṽz,
√

ṽ2r + ṽ2ζ

)
= 1. (52)
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We must also evaluate the neutral density. We find that

ñn =
3
√
π

4T̃
1/2
w

(
Γ̃i,−Lz/2

(
1

2
− z

Lz

)2

+ Γ̃i,Lz/2

(
1

2
+

z

Lz

)2

+ 2Γ̃n

)
. (53)

To perform these integrals, we used the identities∫ ∞

0

u√
x2 + u2

exp

(
−u2

v2

)
du =

√
π

2
v erfc

(x
v

)
exp

(
x2

v2

)
,∫ ∞

0

x erfc(x) dx =
1

4
, and

∫ ∞

0

x2 erfc(x) dx =
1

3
√
π
.

(54)

The above target manufactured solutions can be used to test the implementation of

the wall and sheath boundary conditions. We first describe a test for the wall boundary

condition in z in isolation from the radial coordinate and sheath boundary condition. For

our physics parameters we take Ñe = 1.0 (obviating the need for an electron sheath),

bz = 1.0, T̃e = T̃w = 1.0 and R̃in = R̃ion = 0. For the numerical input we take

∆t̃ = 0.001, 200 time steps, Ngrid = 1 and Nelement = 1 for r (so that no radial advection

is carried out), and Ngrid = 6 for all other dimensions. We take Nelement = 2 for z,

and we vary Nelement for the velocity space coordinates. The resulting error measures

from these simulations are provided in figure 5. We note the rapid convergence of the

four error measures as Nelement increases. We also note that it is important for the

integration scheme that an even number of Nelement is used. This is to make sure that

the discontinuity in the neutral distribution F̃Kw appears at an element boundary. If

an odd number of elements were utilised, no convergence would be observed.

We can use an identical test setup to check implementation of the electron sheath

boundary condition. To evaluate the ion current at the wall we use the fluxes evaluated

in equation (50). Instead of specifying Ñe = 1.0 as a constant, we calculate Ñe via

equation (39). The resulting numerical errors from this series of simulations is shown in

figure 6. We see almost (but not quite) identical results as in figure 5. As expected from

the reports on the 1D wall boundary condition in the 1V case [5], the implementation

handles well the wall boundary condition in the 3V case, providing that the velocity

space resolution is high enough. The input files for the simulations in the 1D-3V wall

tests are provided in Appendix A.3 and Appendix A.4.

Finally, we describe the results of testing the wall boundary condition in a case with

both z and r spatial dimensions. To avoid complication in evaluating the electrostatic

potential, in this test we revert to a simple Boltzmann response for electrons with

Ñe = 1.0. We take Ngrid = 6 and Nelement = 2 for the r dimension, and we take

ρ∗ = 1.0. Otherwise, we use the physics and numerical input parameters described

above. We again vary the number of velocity space spectral elements. We plot the

resulting error measures from the simulations in figure 7. In contrast to the other tests

presented in this report, figure 7 does not show good convergence as Nelement increases.

In fact, more detailed investigations reveal that the error results from deviations between

the numerical and symbolic solutions at the wall boundary, see figures 8 and 9. This
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suggests that the numerical integration scheme is not handling well the discontinuities in

the ion distribution function that now depend on Ẽr. It is worth noting that the electric

fields show larger errors than the ion density, indicating that problems with the spatial

differentiation may also contribute to the issue highlighted here. Further investigations

are required to determine an adequate solution to this problem. The input files for the

simulations in the 2D-3V wall tests are provided in Appendix A.5.

Figure 7: Plot showing the error measures on the ion and neutral densities, and the

ion and neutral distribution functions for a test case with wall boundary conditions

in z, periodic boundary conditions in r, and the full ion and neutral velocity spaces.

Equations (27)-(32) are solved with a Boltzmann electron response and Ñe = 1.0.

Collisions are removed by setting R̃in = R̃ion = 0.0. The target manufactured solutions

(47)-(53) are used. Convergence of the errors is not observed for increasing number

Nelement of spectral elements in the velocity space coordinates, suggesting an underlying

problem with the implementation of the numerical scheme.

9. Conclusions and future plans

The work presented in this report consists of two parts. First, the implementation of,

and description of, a 2D (drift-) kinetic model that includes both ion and neutral species

and wall boundary conditions. Second, the development of manufactured solutions tests

that can be used to check the accuracy of the implementation.

To our knowledge, the model presented here is unique in the plasma physics

community in supporting drift-kinetic ions, fully kinetic neutrals, and wall boundary

conditions for both species. The code has the potential to be developed into a leading
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(a) (b)

(c) (d)

Figure 8: Plots showing moments at the last timestep of the simulation with Nelement =

16 in figure 7. We plot (a) the symbolic, target ion density ni, (b) the numerically

computed ion density ni, (c) the symbolic, target neutral density nn, (d) the numerically

computed neutral density nn, Note that the scales on each plot differ, and that the error

in concentrated near the boundaries in z.

physics simulation software for modelling plasmas in the tokamak edge. Some of the

features that would be desirable in generalising the model are available in other codes,

such as GKEYLL [25] and COGENT [26], making it plausible that our model could

be developed in a relatively short timeframe. Important features to be developed in

a generalisation of the model could include the following: a fluid or kinetic electron

model; a vorticity equation for computing the electric field in the closed field line

regions; nontrivial tokamak geometry, including a separatrix; more complicated collision

models including ion-ion collisions; more accurate sheath models; and electromagnetic

fluctuations.

The manufactured solution tests that we have developed here were critical in

the rapid implementation of the code, allowing us to quickly check the correct

implementation of new features as they were added. For example, in the results shown

in this report, the tests have revealed the difficulties that the numerical integration
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(a) (b)

(c) (d)

Figure 9: Plots showing the fields at the last timestep of the simulation with Nelement =

16 in figure 7. We plot (a) the symbolic, target Er, (b) the numerically computed Er,

and finally (c) the symbolic, target Ez and (d) the numerically computed Ez. Note that

the scales on each plot differ, and that the error in concentrated near the boundaries in

z, and are larger in the electric fields than the moments shown in figure 9.

algorithm has with dealing with the wall boundary condition – the wide coverage of

the implemented tests means that we should be able to easily pinpoint the area of the

algorithm that must be addressed. The results from the manufactured solutions tests

are not only useful in determining if there is a problem with the algorithm: the tests

also give information about the resolution needed to resolve different types of position

space or velocity space features.

The main priority for future development of the 2D implementation should be to

track down and fix the numerical issue that leads to poor convergence with velocity

space resolution when wall boundary conditions are imposed, see figure 7 and the

corresponding discussion. Preliminary evidence suggests that the error is due to the

treatment of the discontinuity of the ion distribution function at z = ±Lz/2 and

v∥ − Er/Bz = 0 that is introduced by the wall boundary condition. However, the

dominant errors are observed in the electric fields and the ion and neutral densities,
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rather than in the distribution function itself. Determining the source of these numerical

errors is the object of future work.

The presence of the automated functional tests of the 1D-1V code and the

manufactured solutions tests in the 2D-3V code will make this software attractive to

scientists in the plasma physics community that desire a robust simulation tool with

automated self-testing. With this in mind, we have made a start in automating the

manufactured solutions tests. In the ideal case, a manufactured solution test would be

run every time a revision was made to the code, and the result would be returned to

the developer. This is already possible with the 1D-1V functional tests. However, in

the case of the manufactured solutions tests on the 2D-3V model, significant computing

resources are required across multiple cores to perform a 2D-3V model test. In the

future, computing frameworks will be needed in order to facilitate rapid automated

testing.

Appendix A. Supporting documentation for the manufactured solutions

tests

The simulations used to create the data presented in this report were

generated by the branch https://github.com/mabarnes/moment_kinetics/tree/

radial-vperp-standard-DKE-with-neutrals, with the latest commit at the time of

writing being 19ba012d11c5a0fb2c55d45547fa070ec27f30e7.

In this appendix we give URL links to the input files used to generate the simulation

data. To run a simulation use the following command

$ julia -O3 --project run_moment_kinetics.jl input.toml

To post process the simulation data and to generate the plots in this report run

the following command:

$ julia -O3 --project run_MMS_test.jl

Appendix A.1. 2D-3V periodic boundary condition tests without collisions

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_16_vperp_16.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_8_vperp_8.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_4_vperp_4.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_2_vperp_2.toml

https://github.com/mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-with-neutrals
https://github.com/mabarnes/moment_kinetics/tree/radial-vperp-standard-DKE-with-neutrals
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_16_vperp_16.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_16_vperp_16.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_8_vperp_8.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_8_vperp_8.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_4_vperp_4.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_4_vperp_4.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_2_vperp_2.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-sound-wave_cheb_nel_r_2_z_2_vpa_2_vperp_2.toml
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Appendix A.2. 2D-3V periodic boundary condition tests with collisions

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-sound-wave_cheb_cxiz_nel_r_2_z_2_vpa_16_vperp_16.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-sound-wave_cheb_cxiz_nel_r_2_z_2_vpa_8_vperp_8.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-sound-wave_cheb_cxiz_nel_r_2_z_2_vpa_4_vperp_4.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-sound-wave_cheb_cxiz_nel_r_2_z_2_vpa_2_vperp_2.toml

Appendix A.3. 1D-3V Wall boundary condition test

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_16_vperp_16.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_8_vperp_8.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_4_vperp_4.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_2_vperp_2.toml

Appendix A.4. 1D-3V Wall boundary condition and electron sheath test

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_16_vperp_16.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_8_vperp_8.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_4_vperp_4.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_2_vperp_2.toml

Appendix A.5. 2D-3V Wall boundary condition test

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-wall_cheb-with-neutrals_nel_r_2_z_2_vpa_16_vperp_16.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-wall_cheb-with-neutrals_nel_r_2_z_2_vpa_12_vperp_12.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/

runs/2D-wall_cheb-with-neutrals_nel_r_2_z_2_vpa_8_vperp_8.toml

https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/
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https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_16_vperp_16.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_16_vperp_16.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_8_vperp_8.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_8_vperp_8.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_4_vperp_4.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_4_vperp_4.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_2_vperp_2.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_1_z_2_vpa_2_vperp_2.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_16_vperp_16.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_16_vperp_16.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_8_vperp_8.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_8_vperp_8.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_4_vperp_4.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_4_vperp_4.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_2_vperp_2.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals-with-sheath_nel_r_1_z_2_vpa_2_vperp_2.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_2_z_2_vpa_16_vperp_16.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_2_z_2_vpa_16_vperp_16.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_2_z_2_vpa_12_vperp_12.toml
https://github.com/mabarnes/moment_kinetics/blob/radial-vperp-standard-DKE-with-neutrals/runs/2D-wall_cheb-with-neutrals_nel_r_2_z_2_vpa_12_vperp_12.toml
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