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1 Executive summary

This report briefly outlines potential routes for implementation of the system 2-6 equations
within the Nektar++ framework. Owing to the practicality of implementing such a system
within the limited resources of this project, we focus on the steps required to implement such
a system, highlighting where improvements should be made within Nektar++ to enable future
implementation.

2 Introduction

As taken from the equations document supplied with NEPTUNE [1], system 2-6 is a spatially
2D plasma model incorporating velocity space effects and is expressed in the following manner
for the electron number density ne, vorticity ∇ · E+, electron energy Ee, ion energy Ei and
neutral number density nn:
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where pα is pressure, Tα is temperature, Zi is charge state. We omit the definitions of the
various sub-terms and constants to the equation document [1] as the equation system itself
provides sufficient motivation for the remainder of this document.

3 Test cases (D5.1)

D5.1 focuses on the development of adequate test cases for this set of equations. Given the
inexperience of the primary author of this deliverable with the physics exhibited in these sys-
tems, we will not discuss here the consideration of simplified versions of this system under the
selection of simplified parameters (although such a case may be possible).

In lieu of this, and also considering that this approach would not consider every term’s correct-
ness by definition, a sensible alternative strategy in this case would to be consider a functional
test of the solver via the method of manufactured solutions (MMS) [2], which is an approach
previously used successfully in e.g. BOUT++ [3], within the test suite of Nektar++, and in
many other codes where analytic solutions are unavailable. In this setting, a solution field is
chosen a priori, and the equations evaluated analytically using this manufactured solution. A
source term is then added to the equations with these calculated terms, which then permits
verification of the computed discretised equations. This permits a number of benefits, namely
that:

• In the limit of small element size and increasing polynomial order, this should therefore
serve as a mechanism to test the formal accuracy of the solver.

• Given an appropriate choice of manufactured solution, this yields a functional unit test
of all of the terms from the equations.

• This removes the limitation of the complexity of the equations or the need for exact
analytic solutions.

The MMS approach does, however, come with a number of limitations.

• The choice of domain and solution is important in order to ensure correctness is tested
adequately. For example, a zero solution field is technically a ‘correct’ solution, but
unlikely to yield any useful validation of the solver.

• For higher-order methods, the use of non-polynomial manufactured solutions is also crit-
ical in ensuring that all modes of the solution are adequately energised, and sometimes
this can be difficult to ensure across the entire domain of interest.

• In parallel with the above, the complexity of the system likely necessitates the use of
e.g. a computer-algebra system to compute desired source terms accurately and without
human error.

• Issues due to timestepping problems will very likely not be highlighted in this approach
(at least in the experience of this author).
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4 Path to implementation within Nektar++ (D5.2)

The complexity of system 2-6 poses some challenges in terms of implementation, particularly
considering the existing infrastructure within Nektar++. In this section we highlight a few of
the expected bottlenecks and potential mitigations for these.

4.1 Discretisation choice

Given the conservative form of the equations as written and need to ensure accuracy in terms
of mass conservation, the anticipated discretisation would be a discontinuous Galerkin (DG)
formulation, which should map naturally onto the equations at hand. With this said, there
are some terms (particularly for e.g. the vorticity) which will need careful consideration in
terms of the weak formulation. Additionally, certain terms such as the electrostatic potential
could potentially be solved in a continuous manner for efficiency and accuracy purposes. This
joint-discretisation methodology has been shown to work quite successfully in Nektar++ for
e.g. the implementation of the Hasegawa-Wakatani proxyapp, whereby the DG method acts to
stabilise the equations (thereby meaning that hyperelliptic terms are not required for stability),
whilst the CG method provides a route towards obtaining the elliptic solution for φ robustly
and efficiently.

4.2 Explicit vs. implicit solutions

An initial implementation of these terms within Nektar++ will need to be explicit in time.
There are a number of reasons to motivate this:

• From a practical perspective this is the path of least resistance and the infrastructure
for this is relatively robust, with several solvers (such as the compressible Navier-Stokes
equations) implemented in this manner.

• The dependence of terms as a nonlinear function of plasma properties (e.g. eqs 110-113
in [1]) makes a fully nonlinear solve arguably difficult in the first instance, bearing in
mind the likely time constraints of the development.

• For implicit-in-time problems, much of the infrastructure around Nektar++ is designed for
a series of scalar solutions vs. the solution of a large coupled system. For example in the
incompressible Navier-Stokes equations the use of the velocity correction scheme of [4]
involves the solution of a pressure Poisson and three Helmholtz equations for velocity.
There are however exceptions to this, as we discuss in the below.

However, given an initial explicit-in-time implementation, there is the potential to consider
implicit implementations based on the techniques proposed in [5]. This work has extended
the existing explicit implementation of the compressible Navier-Stokes equations through the
Jacobi-free Newton-Krylov method (JFNK). In this approach, the explicit solver is evaluated
twice in order to determine an approximate Jacobian based on a simple first-order approxima-
tion, and the framework in Nektar++ has been designed to be reasonably generic in its use
for other systems. Theoretically the JFNK approach enables the implicit solution of any sys-
tem, given an appropriate explicit solver; however, in practical terms, to address conditioning
issues in the solution of the resultant system, it is often necessary to precondition the system
by using appropriate parts of the linearised equations. Such an approach could be adopted
here, although deriving appropriate preconditioner terms and their implementation complexity
would likely be considerable.
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4.3 Particle coupling

As noted in [1], there is no explicit coupling of this system with particle models within the
interior of the domain. However, the sheath boundary condition is more accurately represented
as particles. Appropriate interfaces must therefore be made in order to enable this integration.
These are presently the subject of discussion between UKAEA and the authors, and conceptu-
ally the process has been established to e.g. determine cell information and query for solution
values given a position in space; however more detailed technical development is required to
establish the parallel execution strategy.

4.4 Practical considerations

System 2-5 as stated is highly complex involving not only a large number of parameters, vari-
ables and equations, but a large amount of domain-specific knowledge in terms of the underlying
physics. A successful solver development will therefore require a balance of efforts between an
interdisciplinary team comprising experts in the numerical implementation as well as assistance
in interpretation and translation from the plasma physics & fusion domains. For example:

• Initial assistance will be required in developing the appropriate solution pathway and
time integration scheme in a more complete form. The lack of a DSL within Nektar++
necessitates more direct implementation, and is perhaps an area for future development
(e.g. with the provision of a lightweight DSL in the setting of an explicit solver, the
specification of these equations would be more straightforward).

• Some terms (e.g. τ· terms, eqs 110-113 in [1]) are written as either constants or nonlinear
functions of the plasma; guidance as to the most appropriate route as the code is developed
is critical.

• Even after initial development, instabilities and errors will be inevitable: tracking down
the source of these instabilities and determining their nature (as either implementation-
specific or physics-based) requires input from both ‘teams’ in this setting.

5 Conclusions

This deliverable has briefly outlined the likely development route for a solver based around
system 2-6. The final phase of this project will be to start in the development of some aspects
of this solver; for example in discussion with partners at York and UKAEA, to map out the
solver structure and order of operations given the system. This progress will be reported in
the final deliverable, D5.3 at the conclusion of this project, along with any initial development
efforts that are possible.
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