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1 Executive summary

In this report we discuss approaches to code design and the adoption of domain

specific languages (DSLs) for multi-species simulations in the BOUT++ [1] and

Nektar++ [2] solvers. Specifically this report covers:

1. Approaches to code design in Bout++ that allow for single-species plasma

simulations to be extended to multiple species.

2. How these multi-species models are expressed in a high-level DSL.

3. An overview of the DSLs that exist already in the Bout++ and Nektar++

frameworks and how a common UFL-like DSL might drive both Bout++

and Nektar++ solvers.

2 Approaches to Multi-Species Simulations

Our previous report (2047356-TN-05) focuses on the implementation of two

multi-fluid simulations within the BOUT++ framework.

When developing such a simulation, if only a small number of species are re-

quired, such as in Hermes-2 [3] and STORM [4], then code can be copied and

modified for each individual species relatively easily. However, as the number

of species grows, so too does the length and complexity of the code. This makes

the code increasingly error prone, difficult to test and difficult to maintain.

Instead, our previous report outlines two approaches to extending from single

species simulations to multi species simulations.

Those two approaches demonstrated in Bout++ are:

• Subclassing, where the class hierarchy is used as a base from which to

adapt and specialise the behaviour of each species.

• State-Command Pattern, where the states of multiple species are stored

in a dictionary structure, and the evolution of those species is defined by

a collection of model components.
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These two approaches are implemented in the BOUT++ framework in SD1D [5]

and Hermes-3 [6], respectively.

In SD1D, the model is constructed from numerous Species classes, which repre-

sent particular atomic or ion species, and Reaction classes which represent the

interactions between different species. These interactions are orchestrated by a

central object representing the whole system, containing a list of participating

species and reaction objects. Figure 1 shows this simplistic design.

Species Reaction

getDensity()

getTemperature()

getVelocity()

addParticleSource()

addMomentumSource()

addEnergySource()

updateSpecies(species[])

getParticleSources()

getMomentumSources()

getEnergySources()

n

T

v

state

Figure 1: Subclassing architecture, in which Species objects describe plasma
species, and Reactions represent interactions between them. All interactions
are carried out through exchange of sources.

The main time look for SD1D is them implemented as follows:
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1 for species in species_list:

2 species.evolve ()

3

4 for reaction in reaction_list:

5 # Calculate reaction rates using all species

6 reaction.updateSpecies(species_list)

7

8 for species_name , source in reaction.densitySources ():

9 # Check that the species is in species_list

10 species_list[species_name ]. addDensity(source)

11

12 for species_name , source in reaction.momentumSources ():

13 species_list[species_name ]. addMomentum(source)

14

15 for species_name , source in reaction.energySources ():

16 species_list[species_name ]. addEnergy(source)

Figure 2: Psuedo-code for the main time loop in SD1D, showing how polymor-
phism is used to evolve multiple species.
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In Hermes-3, a state-command pattern is used, where instead each individ-

ual species is specified in a nested dictionary-like structure, based on a simple

schema, e.g., state["species"]["h+"]["density"] for the number density of

hydrogen ions. A collection of composable model components are then defined

that evolve the simulation state, performing calculations on single species or

multiple species at once (e.g. collisions, etc). Figure 3 shows this design pat-

tern.

Component Component Component

transform() transform() transform()

finally() finally() finally()

DoneState

Figure 3: State-Command pattern: The State of the simulation system is
passed through a sequence of Components in two passes. In the first pass
(transform() calls), components can modify the state; in the second pass
(finally() calls) the state cannot be modified, but is used to update com-
ponent internal states.

Alternative approaches are also outlined in our previous report including the

use of an Entity-Component System (ECS) and a task graph approach. The

ECS approach is not dissimilar to our state-command approach detailed above,

while a task graph approach can be taken together with either of our stated

approaches. Task graphs are particularly of interest since they can be mapped

directly to the SYCL/DPC++ programming model [7].

3 DSL Adoption

While our previous report covered the code structures that might be required to

process multi-fluid simulations in Bout++, it did not elaborate how this might

be exposed to a developer through a domain specific language (DSL).

In the T/NA086/20 [DSL and code generation] work package, a number of DSLs

are outlined that exist at different levels of abstraction. Report 2057699-TN-02

details some of these DSLs and embedded DSLs (eDSLs) that are relevant to

Project NEPTUNE.
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At the lowest level are DSLs like RAJA, Kokkos and SYCL that provide mech-

anisms to specify regions of code for parallel execution. At a higher level, there

are DSLs such as OP2 and OPS, where a developer are exposed to particular

structures such as meshes, and they can write kernels that execute over elements

of these structures (e.g. iterate over edges, nodes, etc.). At the highest level are

DSLs such as UFL (used by Firedrake and FEniCS) and Bout++, where PDEs

can be represented directly in code.

It is possible (and perhaps desirable) that multiple levels of DSL are used within

a single application. This approach is already taken by Bout++. At its core,

Bout++ is implemented in C++ with MPI; there are ongoing efforts to merge

the low-level RAJA DSL with some of the core code, in order to provide het-

erogeneous loop-level parallelism. Bout++ then exposes a high-level eDSL to

developers, allowing PDEs to be expressed relatively naturally in code. This

approach is very similar to UFL. The C++ core is heavily templated, allowing

the eDSL code to be translated at compile time to efficient code for execution.

The psuedo-code in Figure 2 provides an example of how to use Bout++’s

primary DSL to create the SD1D code (the implementation can be seen in

sd1d.cxx).

Bout++ also contains a secondary DSL (at a higher-level still) in its input

files. This is used in the Hermes-3 simulation detailed above. Within the input

DSL, we can specify multiple species and define their parameters and reactions.

Figure 4 demonstrates this DSL.

Version 5.0 of the Nektar++ framework introduces a python interface for users

that are less familiar with spectral elements and the Nektar++ framework it-

self [8]. This interface exists at a similar level to that of the UFL and primary

Bout++ DSL.

Given the broad similarity in the three DSLs exposed by FEniCS, Bout++ and

Nektar++, it is possible that common features could be extracted from the

languages to form a common DSL that can drive both Bout++ and Nektar++

frameworks. However, defining a common DSL and building solvers that im-

plement such a DSL will be a significant undertaking. Extending this DSL to

multi-fluid reactions will also require that additional functionality is added to

the Nektar++ framework.
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1 [hermes]

2 components = d+, d, t+, t, e, collisions, sheath_boundary, recycling,

reactions

3

4 # properties of each component

5 [d+]

6 type = evolve_density, evolve_momentum, evolve_pressure,

anomalous_diffusion

7 AA = 2 # Atomic mass

8 charge = 1

9

10 [t]

11 ...

12

13 [reactions]

14 type = (

15 d + e -> d+ + 2e, # Deuterium ionisation

16 t + e -> t+ + 2e, # Tritium ionisation

17 )

Figure 4: An example of the Bout++ Ini input file describing a simple simulation
with deuterium and tritium ions and atoms. The reactions are described in the
input file.

4 Conclusions

In this report, we have outlined how Bout++ has been extended to support

multi-fluid simulations. As part of this, the Bout++ DSLs have required exten-

sion to allow us to represent the complex reactions present in a multi-species

simulation. In order to extend Bout++ to multi-fluid simulations, the embed-

ded input DSL has also required extension, allowing run-time specification of

component reactions.

While there are significant similarities in the interfaces exposed by Bout++

and Nektar++ (and indeed to UFL), there are areas of significant divergence in

approach, meaning that it is likely to be challenging to drive both frameworks

from a common DSL.
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