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1 Executive summary

In this report we summarise some performance considerations relevant to the

use of non-intrusive uncertainty quantification (UQ) through tools such as the

easyvvuq package [1, 2]. Minimising the number of simulations and effective use

of workflow management tools are often the primary route to improving the time

to solution and freeing up researcher time. The number of moments required for

converged uncertainty measures near the boundary is also explored for a sample

test case from the SD1D [3] test cases [4]. It is demonstrated that, depending

on the boundary conditions selected and the uncertain inputs, convergence can

require between 2nd and 5th order projections.

2 Introduction

In task 83-2.4 non-intrusive uncertainty quantification (UQ) for SD1D [3], a

BOUT++ [5] based 1D fluid system, was explored. The corresponding report

[6] introduced the approach to implementing a UQ workflow with easyvvuq,
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demonstrated some of the different possible workflows and made brief mention of

possible performance considerations. Here we seek to build on this previous work

in two ways. Firstly, in section 3 we will expand on some of the considerations

relevant to optimising the time to solution (TTS) in a UQ workflow. The order

of the UQ sampler used can determine the number of simulations required,

potentially impacting TTS and in section 4 we will explore the influence of

boundary conditions on the order of UQ sampler required for convergence.

3 Performance considerations

Approaches to UQ can be classified as either intrusive or non-intrusive. Intrusive

approaches require the underlying computational model to be adapted in order

to effectively run an ensemble of cases simultaneously, increasing the problem

size of a single simulation. Non-intrusive approaches on the other hand require

a large number of “standard” simulations to be performed for a range of inputs.

These approaches have different performance considerations/characterisics. For

example, suppose UQ increases the amount of computation required by a fac-

tor N compared to a single simulation which returns a result in time T . Here

intrusive UQ increases the problem size by N and non-intrusive UQ requires

N separate simulations to be performed. If the weak scaling of the code is not

ideal, say due to collective communication, then simply increasing the number

of processing units by N will not allow the intrusive approach to return a re-

sult in the same time T as previously and one must either wait NT to get the

result or accept a degree of increased inefficiency. Conversely, the non-intrusive

approach can split the problem into N trivially parallelisable jobs1. Provided

there is sufficient computational resource to runs these jobs simulataneously it

is possible to return a result in T . However, in the extreme limit where it is

only possible to run one simulation at a time the non-intrusive approach may

actually return a result slower than the intrusive approach run on the same

number of processors, due to repetition of overheads. For example, suppose the

simulation generates a large mesh as part of the initialisation of the simulation.

Without code modification, time may then be wasted in repeatedly generating

the same mesh within each simulation rather than reusing this. More generally,

whilst the distribution of work into separate simulations used in non-intrusive

methods can make the additional work trivially parallelisable this may typi-
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cally make less efficient use of the available resources than intrusive methods

due to the isolation of each simulation and hence the duplication of common

operations. Furthermore, the isolation of separate simulations means it is not

possible to take advantage of the expected similarity of the different cases. For

example, suppose the simulation involves the iterative solution of a large sparse

matrix problem for each case within the ensemble. In an intrusive approach one

may envisage using the solution of one sample to provide a good first guess for

subsequent samples, accelerating future solves and limiting the increase in re-

quired computation to less than the factor N . Such an approach is not trivially

possible in non-intrusive UQ and certainly not without introducing some seri-

alisation of the simulations. Where the balance lies strongly depends on both

the simulation problem at hand as well as the properties of the computational

systems available. Within the ExCALIBUR-Neptune project non-intrusive ap-

proaches are currently preferred and this report will focus on aspects relevant

for these cases.

With non-intrusive UQ requiring a number of repeated simulation executions

with different parameters, it is clearly important to ensure that individual sim-

ulations are setup as efficiently as possible. In doing so care must be taken,

however, to consider the potential for variation across the runs required. For

example, when manually running a single simulation one may be able to iden-

tify the resolutions required for the result to converge to a given degree. The

required resolution may, however, vary with the inputs. As such, operating

on the edge of satisfactory resolution for the nominal case may lead to severe

under-resolution in other parts of the sample space. It may therefore be ap-

propriate to build in a margin of safety to the resolutions used. This however,

may degrade the overall efficiency of the problem by over-resolving some cases

and using more resource than strictly necessary. Such problems may be avoided

by the use of adapative algorithms which can adapt the order and resolution in

order to keep errors to some fixed level. A common example which can be ob-

served even in fixed-grid finite difference codes, such as BOUT++, is from time

step adaptivity. Here the limiting time step may be strongly dependent on the

uncertain input parameters and as such it is possible to find highly variable wall

time requirements for simulations within a UQ study. This can have different

consequences depending on the approach to running the independent simula-

1This is only true for non-adaptive sampling, which may not be the optimal approach for
problems with a large number of uncertain inputs.
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tions. Where it is possible to define and launch all simulations simultaneously,

variable run time has the effect of slowing the TTS to that of the longest sim-

ulation. Where runs are executed sequentially the impact of variable run time

may be more limited if one expects there to be similar numbers of simulations

which go faster and slower than the nominal simulation. In the common case

where a subset of the total number of simulations are executed in parallel the

impact on TTS is less clear and depends upon the distribution of job run times

across the jobs and the order of execution. Where it is possible to anticipate

the impact on wall time requirements as a function of input parameters, it may

be possible to attempt to load balance simulations across the available resource,

such as allocating more processors to those problems with a smaller time step.

When running a single simulation the TTS can often be minimised by selecting

an optimal number of processors. The optimal choice depends upon both the

scaling efficiency of the simulation code as well as the impact on queue time.

Queue time can become a significant factor in determining TTS in certain sce-

narios. This will depend the policies of the queue manager that have been set

and will often become more significant when requiring a substantial fraction of

the resource available. The impact of queue time can be compounded when at-

tempting to run a large number of simulations and the user has several decisions

to make and options to attempt to optimise TTS. For example, some machines

may limit the number of separate jobs which can be submitted/running at any

one time. In such instances it may be beneficial to bundle a number of sim-

ulations into single jobscripts. This may then increase the amount of time it

takes for each job to start running, however, due to the increase in the scale

of resource required. Another motivation for bundling jobs may be where the

job manager policies are such that priority is given to larger jobs. Conversely,

a large number of small jobs may be easier for the queue manager to schedule

in the gaps around larger jobs (i.e. using small jobs for backfill). The optimal

approach can therefore be highly sensitive to the specific details of the system

at hand combined with the resource requirements and performance properties

of the simulation code. Fortunately, these concerns are also not unique to any

one code and there exist tools to assist the user in constructing appropriate

workflows and approaches to execution such as FabSim3 [7] and QCG-PilotJob

[8] integrated within the VECMA toolkit [9].

Of course, whilst optimising individual runs and the job strategy can be helpful,
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ultimately the number of simulations required plays a large part in determin-

ing the TTS and this is determined by the sampling strategy selected and the

order of the sampler. For example, with a polynomial-chaos-expansion (PCE)

sampler the number of simulations is given by (O + 1)
U

where O is the order

of the projection and U is the number of uncertain parameters. Minimising O

therefore can significantly reduce the number of simulations required, however it

may not be possible to determine the order required for convergence. Adaptive

approaches, such as demonstrated with stochastic-collocation (SC) in task 2.4

[6], offer the potential to reduce the number of simulations further by selectively

refining the sampling of parameter space in the inputs which provide the most

information. Furthermore, these offer the ability to terminate a study early if

results appear to be converged. These gains come at the cost of limiting the

parallelisability of the simulations – there are fewer simulations to be performed

at a time, introducing order dependencies. In some situations this may be of

limited consequence, e.g. where it is only possible to run a small number of sim-

ulations at a time. It is important to note that developing sampling strategies

with improved performance properties is still an area of active research, see for

example [10].

4 The influence of the boundary

SD1D evolves the following plasma equations for plasma density n, pressure p

and momentum minV||

∂n
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where the heat conduction coefficient κ||e is a nonlinear function of temperature

Te:

κ||e = κ0T
5/2
e

and is given by the Spitzer conduction

κ||e = 3.2
ne2Tτe

me
' 3.1× 104

T 5/2

ln Λ

A similar set of equations can be included to describe neutrals [11].

In the 1D system studied by SD1D there are boundary conditions applied at ei-

ther end of the domain. The left most boundary corresponds to the “upstream”

representing where plasma enters the scrape-off-layer (SOL) from the core at the

outboard mid-plane whilst the right most boundary corresponds to the “target”

where the field line intersects the material surface and plasma can interact with

the wall. In the presence of material surfaces plasmas form a “sheath” just in

front of the surface which is a small region over which quasi-neutrality no longer

holds and which holds a negative potential, accelerating ions and reflecting elec-

trons from the material surface such that the net flux of ions and electrons to

the wall is equal. In SD1D sheath boundary conditions are applied at the target

and zero flow boundaries are applied upstream. It is also necessary to provide

a plasma source upstream to compensate for the flow to the target. There are

multiple options with which once can specify these sources, including the use

of a feedback controller to keep the upstream density fixed. One expects the

neutral density to be largest close to the target and hence for the plasma-neutral

interactions to dominate here. There are many parameters within the model

with which one can tune the behaviour near to the boundary such as the propor-

tion of ions interacting with the wall which return to the system, known as the

recycling fraction, the energy of neutrals coming from the wall, the sheath heat

transmission coefficient etc. Imposing boundary conditions can constrain the

solution and the choice of boundary treatment can sometimes lead to signifcant

differences in the simulation. It can therefore be interesting to consider how the

uncertainty due to boundary conditions behaves.

To explore this here we consider test case-04 of SD1D as used in task 2.4 [6].

This combines the full plasma system given above with that for the neutral gas
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and fixed upsteam sources, and can be captured by Hermes-3. Here we con-

sider two scenarios. Firstly, we will treat the upstream density and pressure

sources as uncertain. Secondly, we will consider uncertainty in the recycling

fraction frecycle and the fraction of recycled ions redistributed over the do-

main, fredistribute2.

For both of these scenarios we will also vary the density and pressure boundary

conditions between free (constant gradient), zero gradient and constant flux.

This provides six different cases to consider and for each of these we use PCE

samples for all orders from one to six to explore the convergence of the results.

We note that first order studies cannot capture higher order interactions in

the Sobol indices so it is generally expected that at least second order will be

required in most cases.

We begin by considering the uncertain upstream source cases. Figure 1 shows

the output for 2nd and 3rd order studies with free boundary at the target. One

can see good agreement in the uncertainty and the Sobol indices. It is interesting

to note that the 5th order results, shown in figure 2, show some deviation from

these converged results. Despite this, the 6th order study is also near identical

to the 2nd and 3rd order, suggesting good convergence by 2nd order. The zero

gradient study shows near identical behaviour so results are not presented here.

The constant flux boundary condition study is presented in figure 3. Firstly,

one may clearly note how the structure of the solution has changed in this case.

From the plot of the mean density it is not immediately apparent that there is

any variation between the 2nd, 4th and 6th order results. On close inspection,

one can see that the uncertainty near the target broadens slightly as the order

increases. This is a small relative change, but does indicate the results may not

be fully converged by this point. Changing attention to the Sobol indices, the

variation between the orders becomes more apparent. Whilst there is only a

small change between 2nd and 4th order, there is a more significant change in

the 6th order result. In particular, one can see that the P:powerflux index has

reduced somewhat across most of the domain, and particularly in the outer half

of the domain. This is matched by a corresponding increase in the higher order

indices, with the Ne:flux remaining relatively unchanged. This suggests that

there are inter-dependencies that are relatively high order in nature. These

cases serve to demonstrate some of the benefits and challenges for adaptive

2See section 6.2 of [11] for more details.
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methods, such as those discussed in task 2.4. The free boundary results were

well converged by 3rd order whilst going to 6th order required substantially

more simulations (16 vs 49 in this case). A high order adaptive method may

be able to stop early when convergence is observed. However, the case with

constant flux boundaries demonstrates a challenge to this – results can appear

broadly converged at low order but new variation can arise when continuing to

yet higher order. One needs to take care in the stopping condition for adaptive

approaches.

(a) (b)

(c) (d)

Figure 1: Plots of the mean normalised plasma density, Ne, as a function of
parallel arc length along with the mean ± the standard deviation for a 2nd (a)
and 3rd (c) order PCE sampler and the corresponding first order Sobol indices
(b/d). Free boundary.
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(a) (b)

Figure 2: Plots of the mean normalised plasma density, Ne, as a function of
parallel arc length along with the mean ± the standard deviation (a) and the
corresponding first order Sobol indices (b) for a 5th order PCE sampler. Free
boundary.
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Plots of the mean normalised plasma density, Ne, as a function of
parallel arc length along with the mean ± the standard deviation for a 2nd (a),
4th (c) and 6th (e) order PCE sampler and the corresponding first order Sobol
indices (b/d/f). Constant flux boundary.
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We now turn attention to the case where we treat the recycling fraction, frecycle,

and the redistribution, fredistribute, as uncertain inputs. Here we adopt a

uniform distribution with minimum of 0 and maximum of 1 for both parame-

ters. Figure 4 shows the 2nd, 4th and 6th order results for the free boundary

case. This demonstrates reasonable convergence at 4th order and the 5th and

6th order results are near identical. Again, the zero gradient results give very

similar behaviour so are ommitted. The constant flux results are shown in fig-

ure 5. Although hard to see, this shows that there is variation in the uncertainty

on the measured Ne between 4th and 6th order, particular near the target. This

is, again, more visible in the Sobol indices, especially in the higher order and

sd1d:fredistribute parameters. These results shown that at least 5th order

is required for convergence here. It is important to note that the confidence

intervals shown here include unphysical negative densities which cannot have

been found in any simulation. In such situations one may wish to work with

logarithmic variables.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Plots of the mean normalised plasma density, Ne, as a function of
parallel arc length along with the mean ± the standard deviation for a 2nd (a),
4th (c) and 6th (e) order PCE sampler and the corresponding first order Sobol
indices (b/d/f). Free boundary.

12



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5: Plots of the mean normalised plasma density, Ne, as a function of
parallel arc length along with the mean ± the standard deviation for a 2nd (a),
4th (c), 5th (e) and 6th (g) order PCE sampler and the corresponding first order
Sobol indices (b/d/f/h). Constant flux boundary.
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5 Summary

In this report we have discussed some of the relevant performance considerations

when performing UQ studies with a toolkit such as easyvvuq. Whilst there are

many aspects that can influence the time to solution, two of the most significant

aspects which impact the efficiency of such studies are minimising the number

of simulations required and effective use of tools to help automate and manage

complex workflows. The latter frees the user from having to micro-manage the

simulations and analysis, allowing them to focus on other aspects of the work.

In a crude sense, the number of simulations to be performed is controlled by the

order of the projection and the number of uncertain inputs. However, adaptive

schemes can optimise the approach to sampling such that simulations are tar-

geted to refine in the directions returning the most useful information. This,

combined with a method to test for convergence, can allow for a significant

reduction in the number of simulations required. We demonstrated how Sobol

indices and the population distribution estimates required different projection

orders to converge depending on the uncertain parameters and boundary condi-

tions used, ranging from 2nd to 6th order. This highlights one possible advantage

of adaptive schemes, but also gave a demonstration of challenges to be faced in

testing for convergence where Sobol indices were observed to roughly converge

by 4th order, only for significant change to be found at 5th and 6th order. For

the simple test case considered here it was possible to perform high order PCE

studies in under ten minutes using a single node of Archer2. More expensive

systems would likely benefit from the use of FabSim3 [7].
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