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1 Executive summary

This report briefly outlines the initial efforts on implementing the system 2-6 equation set
within the Nektar++ framework. In particular, we discuss changes made to the equation set
since the previous deliverable, and outline a prototype solver for a simplified set of equations,
as well as the future development pathway for system 2-6.

2 Introduction

In the initial phase of the NEPTUNE project, the goal of the team at KCL and ICL has
been to enable the production of a prototype code, based on the Nektar++ framework, for a
set of spatially 2D plasma model incorporating velocity space effects. As outlined in previous
deliverables, and as taken from the initial equations document supplied at the beginning of
NEPTUNE [1], these were formulated in the system 2-6 equations.

As discussed in the previous report [2], this system was highly complex involving not only a
large number of parameters, variables and equations, but a large amount of domain-specific
knowledge in terms of the underlying physics. In addition the following issues were identified:

• the lack of an existing code for these equations, which does not provide an easy route to
validation of the code;

• the equations in their current form may be challenging to discretise under the typical
high-order approaches, and some aspects are unclear (e.g. numerical flux terms);
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• there seemed to be limited opportunity to produce simplified versions of this equation set
to naturally ’build-up’ the complexity of the solver and test numerical approaches in a
more constrained fashion.

As part of discussions with UKAEA and the NEPTUNE partners, we have therefore aimed
to define a new equation set which can address at least a subset of these issues. Noting the
development of Hermes [3] at the University of York, these discussions led to an adjustment in
the latest equations document [4], considering a system modelled as a modified version of those
found in the latest Hermes3 code [5]:
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The terms above are left undefined for brevity, but can be found in the latest equations docu-
ment [4].

This set of equations provides a more flexible approach to developing a solver:

• there is a known reference code with documented examples;

• the terms above are more amenable to discretisation and numerical fluxes are more readily
defined;

• moreover there is a tranche of equations of increasing complexity that can be used as a
basis for development.

As a pathway to development, we therefore plan to first implement simpler models with the
numerical hallmarks of the system above: namely, the Blob2D examples, starting from a single
species isothermal model, and then moving onto versions incorporating multiple species and
full turbulence case. These are found on the Hermes3 website [6]. The rest of this document
therefore sets out initial progress in the implementation of the first (and simplest) of these
examples.
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3 Initial solver for Blob2D example

As a first step, we have implemented a sample solver for the isothermal transport of a seeded
plasma filament. This is governed by the equation set
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where

• pe = eneTe is the pressure;

• ∇ · jsh = neϕ/L∥ is the sheath closure

In addition, we look to implement the diamagnetic drift term as
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where ∇× (b/B) = (0, 1
R2 ) and R is a constant. We use the constants:

• e = −1 is the electron charge;

• B = 0.35T;

• Te is a fixed electron temperature (5 eV);

• L∥ = 10m is the connection length;

• R = 1.5m

3.1 Discretisation strategy

Functionally these equations are similar in form to the Hasegawa-Wakatani equations, for which
a solver based on Nektar++ already exists [7]. We therefore adopt the following procedure,
using an explicit timestepping scheme:

• Compute the potential ϕ by solving equation (7) in a continuous discretisation.

• Use this to compute the drift velocity vE×B = B−1(∂yϕ,−∂xϕ).

• Evaluate the terms −∇ · (nevE×B) and −∇ · (ωvE×B) using a DG discretisation.

• Finally evaluate all other source terms.

This solver is encapsulated in the nektar-driftplane solver [8]

3.2 Test case

Following the test case1, we set up a basic simulation of a filament, using the following simulation
parameters:

• The domain is taken as Ω = [−0.5, 0.5]2, with periodic boundary conditions used on all
sides.

1Test case found here: https://github.com/bendudson/hermes-3/tree/master/examples/blob2d
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(a) t = 0 (b) t = 2 (c) t = 4

Figure 1: Example of Blob2D simulation with snapshots of number density ne at three time
intervals.

• A mesh of quadrilateral elements at order 5 is used to discretise Ω.

• Fourth order Runge-Kutta timestepping is used with ∆t = 2× 10−4.

• The various parameter values above are passed into the simulation in the session file.

• As initial condition we use ω = 0 and set

ne(x, y, 0) = 1 + h exp

(
−x2 + y2

w2

)
where h = 0.5 and w = 0.05 as in the Hermes3 example.

The simulation is encapsulated in the examples/blob2d directory of the drift plane solver,
and can be run either in serial or in parallel, using e.g. mpirun -n 28 DriftPlaneSolver

driftwave.xml square.xml. A sample of the output as the solution evolves in time can be
seen in figure 1. Visually, there is a clear similarity between the Hermes-3 output: however
there are a few differences that require additional investigation:

• Hermes-3 uses a mixture of periodic and Neumann boundary conditions;

• The Hermes-3 test case uses a Gaussian centred initially at x = −0.25, rather than x = 0
which is investigated here;

• the coefficient in front of the dn/dy term of eq. (6) is difficult to determine precisely from
Hermes-3 and may explain some of the visual differences.

4 Conclusions and outlook

This deliverable has briefly outlined the likely development route for the revised system 2-6
equations. There is a relatively clear development pathway, in combination with partners at
UKAEA and University of York.

• Consider the addition of artificial diffusion terms to the Blob2D solver, akin to the diffu-
sion noted in eqs. (2), (3) and (4). Use of an explicit-in-time diffusion term is likely to
add increasingly severe timestep restrictions. Therefore it may be beneficial to consider
a semi-implicit approach for the addition of diffusion.
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• Implementation of the Hermes-3 Blob2D-Te-Ti equations, and the turbulent version of
these.

• Finally, extension to the full system 2-6 equations.

At each step, numerical performance can be examined in detail and compared against the
equivalent Hermes-3 solvers, up to the implementation of the full system 2-6.
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